1
|
Burratti L, Sgreccia E, Bertelà F, Galiano F. Metal nanostructures in polymeric matrices for optical detection and removal of heavy metal ions, pesticides and dyes from water. CHEMOSPHERE 2024; 362:142636. [PMID: 38885767 DOI: 10.1016/j.chemosphere.2024.142636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Water pollutants such as heavy metal ions, pesticides, and dyes pose a worldwide issue. Their presence in water resources interferes with the normal growth mechanisms of living beings and causes long or short-term diseases. For this reason, research continuously tends to develop innovative, selective, and efficient processes or technologies to detect and remove pollutants from water. This review provides an up-to-date overview on metal nanoparticles loaded in polymeric matrices, such as hydrogels and membranes, and employed as optical sensors and as removing materials for water pollutants. The synthetic pathways of nanomaterials loading into polymeric matrices have been analyzed, particularly focusing on noble metal nanoparticles, noble metal nanoclusters, and metal oxide nanoparticles. Moreover, the sensing properties of modified matrices towards water pollutants have been discussed in addition to the interaction mechanisms between the sensors and the toxic compounds. The last part of the review has been devoted to illustrating the separation mechanism and removal performance of membranes loaded with nanomaterials in the treatment and purification of water streams from different contaminants (heavy metals, dyes and pesticides).
Collapse
Affiliation(s)
- Luca Burratti
- Faculty of Science, Technology and Innovation of the University "Mercatorum", Piazza Mattei 10, 00186, Rome (RM), Italy
| | - Emanuela Sgreccia
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome (RM), Italy
| | - Federica Bertelà
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146, Rome (RM), Italy
| | - Francesco Galiano
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy.
| |
Collapse
|
2
|
Burratti L, Bertelà F, Sisani M, Di Guida I, Battocchio C, Iucci G, Prosposito P, Venditti I. Three-Dimensional Printed Filters Based on Poly(ethylene glycol) Diacrylate Hydrogels Doped with Silver Nanoparticles for Removing Hg(II) Ions from Water. Polymers (Basel) 2024; 16:1034. [PMID: 38674954 PMCID: PMC11054970 DOI: 10.3390/polym16081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, due to water pollution, more and more living beings are exposed to dangerous compounds, which can lead to them contracting diseases. The removal of contaminants (including heavy metals) from water is, therefore, a necessary aspect to guarantee the well-being of living beings. Among the most used techniques, the employment of adsorbent materials is certainly advantageous, as they are easy to synthesize and are cheap. In this work, poly(ethylene glycol) diacrylate (PEGDA) hydrogels doped with silver nanoparticles (AgNPs) for removing Hg(II) ions from water are presented. AgNPs were embedded in PEGDA-based matrices by using a photo-polymerizable solution. By exploiting a custom-made 3D printer, the filters were synthesized. The kinetics of interaction was studied, revealing that the adsorption equilibrium is achieved in 8 h. Subsequently, the adsorption isotherms of PEGDA doped with AgNPs towards Hg(II) ions were studied at different temperatures (4 °C, 25 °C, and 50 °C). In all cases, the best isotherm model was the Langmuir one (revealing that the chemisorption is the driving process and the most favorable one), with maximum adsorption capacities equal to 0.55, 0.57, and 0.61 mg/g, respectively. Finally, the removal efficiency was evaluated for the three temperatures, obtaining for 4 °C, 25 °C, and 50 °C the values 94%, 94%, and 86%, respectively.
Collapse
Affiliation(s)
- Luca Burratti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| | - Federica Bertelà
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| | - Michele Sisani
- Prolabin & Tefarm S.r.l., 06134 Perugia, Italy; (M.S.); (I.D.G.)
| | - Irene Di Guida
- Prolabin & Tefarm S.r.l., 06134 Perugia, Italy; (M.S.); (I.D.G.)
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| | - Paolo Prosposito
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy;
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy; (F.B.); (C.B.); (G.I.); (I.V.)
| |
Collapse
|
3
|
Sharafinia S, Rashidi A, Tabarkhoon F, Dehghan F, Tabarkhoon F, Bazmi M. Effective adsorption of amoxicillin by using UIO-66@ Cr-MIL-101 nanohybrid: isotherm, kinetic, thermodynamic, and optimization by central composite design. Sci Rep 2023; 13:22689. [PMID: 38114649 PMCID: PMC10730908 DOI: 10.1038/s41598-023-49393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
In this research, the amoxicillin (AMX) removal was studied on a prepared nanosorbent from MOFs. The aim of this research work is to prepare nanohybrids based on metal-organic frameworks (MOFs) as an efficient nanosorbent for the absorption of amoxicillin drug. In this study, UIO-66 nanoparticles (UIO-66 NPs) were prepared from Zirconium (Zr) metal and 1,4-benzene dicarboxylic acid (BDC). Then UIO-66@Cr-MIL-101 nanohybrid was synthesized by hydrothermal method. Structural and physicochemical properties of nanohybrid UIO-66@Cr-MIL-101 were characterized by different analyses such as X-ray diffraction analysis (XRD), fourier transform infrared spectrometer (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), therapeutic goods administration (TGA), and Brunauer-Emmett-Teller (BET). The effect of four fundamental variables effective on adsorption was optimized by the central composite response surface methodology (CCRSM). This parameters including loading percentage of Cr-MIL-101 NPs (10-30%), initial concentration of AMX (20-140 mg L-1), contact time (20-60 min), and pH (20-10). The removal percentage (Re%) of AMX equal to 99.50% was obtained under the following conditions: The loading value of 20% Wt%, the initial concentration of AMX 80 mg L-1, contact time 20 min, and pH = 6. Also, the experimental data were investigated with famous kinetic models and isotherms, and it was observed that AMX removal by nanohybrid is correlated with the PSO kinetic model and Langmuir isotherm.
Collapse
Affiliation(s)
- Soheila Sharafinia
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| | - Farnoush Tabarkhoon
- College of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Fahime Dehghan
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Farnaz Tabarkhoon
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Bazmi
- Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Li M, Shi Q, Song N, Xiao Y, Wang L, Chen Z, James TD. Current trends in the detection and removal of heavy metal ions using functional materials. Chem Soc Rev 2023; 52:5827-5860. [PMID: 37531220 DOI: 10.1039/d2cs00683a] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The shortage of freshwater resources caused by heavy metal pollution is an acute global issue, which has a great impact on environmental protection and human health. Therefore, the exploitation of new strategies for designing and synthesizing green, efficient, and economical materials for the detection and removal of heavy metal ions is crucial. Among the various methods for the detection and removal of heavy ions, advanced functional systems including nanomaterials, polymers, porous materials, and biomaterials have attracted considerable attention over the past several years due to their capabilities of real-time detection, excellent removal efficiency, anti-interference, quick response, high selectivity, and low limit of detection. In this tutorial review, we review the general design principles underlying the aforementioned functional materials, and in particular highlight the fundamental mechanisms and specific examples of detecting and removing heavy metal ions. Additionally, the methods which enhance water purification quality using these functional materials have been reviewed, also current challenges and opportunities in this exciting field have been highlighted, including the fabrication, subsequent treatment, and potential future applications of such functional materials. We envision that this tutorial review will provide invaluable guidance for the design of functional materials tailored towards the detection and removal of heavy metals, thereby expediting the development of high-performance materials and fostering the development of more efficient approaches to water pollution remediation.
Collapse
Affiliation(s)
- Meng Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Quanyu Shi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Ningxin Song
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Yumeng Xiao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
5
|
BSA-stabilized silver nanoclusters for efficient photoresponsive colorimetric detection of chromium(VI). Anal Bioanal Chem 2023; 415:1477-1485. [PMID: 36680590 DOI: 10.1007/s00216-023-04535-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Hexavalent chromium is a highly toxic substance, which will pose a serious threat to human life and health and the entire ecosystem. Therefore, it is crucial to establish a simple and rapid detection method for hexavalent chromium. In this work, we fabricated bovine serum albumin-stabilized silver nanocluster (BSA-Ag13 NC) which exhibited photoresponsive oxidase-like activity, catalyzing the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to the blue oxidized state TMB (oxTMB) in a short time. Interestingly, 8-hydroxyquinoline (8-HQ) can significantly inhibit the color reaction of TMB oxidation while Cr(VI) can interact specifically with 8-HQ to restore this chromogenic reaction. Based on the above facts, a colorimetric sensing system for detecting Cr(VI) was developed. The sensing system shows a wide linear range, and good selectivity, with a low detection limit of 2.32 nM. Moreover, this sensing system could be successfully applied to the detection of Cr(VI) in lake water, tap water, and sewage with satisfactory results.
Collapse
|
6
|
Yang L, Zhang Z, Zhang R, Du H, Zhou T, Wang X, Wang F. A “ turn on” fluorescent sensor for Hg2+ detection based on rolling circle amplification with DNA origami-assisted signal amplification strategy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Zhai Y, Li Y, Huang X, Hou J, Li H, Ai S. Colorimetric and ratiometric fluorescent dual-mode sensitive detection of Hg 2+ based on UiO-66-NH 2@Au composite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121187. [PMID: 35366526 DOI: 10.1016/j.saa.2022.121187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
A colorimetric and ratiometric fluorescent dual-mode assay is constructed for sensitive and specific Hg2+ sensing based on UiO-66-NH2 and Au composite (UiO-66-NH2@Au). The addition of Hg2+ stimulates the peroxidase-like activity of UiO-66-NH2@Au by the formation of Au-Hg amalgam, promoting the oxidizing of chromogenic substrate OPD to DAP with the aid of H2O2, which lead to the change of colorimetric and fluorescent signals. The absorbance of the sensing system at 450 nm is linear positive correlation with Hg2+ concentration of 30-1400 nM and the color of the solution under visible light shaded from light yellow to dark yellow. With the increase of Hg2+ concentration, the fluorescence signal at 570 nm (DAP) increased whereas that at 455 nm (intrinsic fluorescence of UiO-66-NH2) decreased due to inner filter effect (IFE), the fluorescence intensity ratio (F455/F570) decreasing linearly with Log [Hg2+] over the range 60-1700 nM; the fluorescence emission of sensing system under UV excitation changed from blue to yellow, which can easily be discerned visually. This assay was successfully applied to the determination of Hg2+ in tap water and river water. The results indicate that the colorimetric and ratiometric fluorescent dual-mode assay based on UiO-66-NH2@Au realized visual determination of Hg2+ rapidly and reliably, revealed application prospect in Hg2+ monitoring.
Collapse
Affiliation(s)
- Yuzhu Zhai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yijing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, PR China.
| | - Xiaoke Huang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Juying Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, PR China
| | - Houshen Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian, Shandong 271018, PR China.
| |
Collapse
|
8
|
The adsorption of cationic dye onto ACPMG@ZIF-8 core-shell, optimization using central composite response surface methodology (CCRSM). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Amalraj A, Narayanan M, Perumal P. Highly efficient peroxidase-like activity of a metal–oxide-incorporated CeO 2–MIL(Fe) metal–organic framework and its application in the colorimetric detection of melamine and mercury ions via induced hydrogen and covalent bonds. Analyst 2022; 147:3234-3247. [PMID: 35766241 DOI: 10.1039/d2an00864e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The illegal addition of melamine to dairy products and the contamination of water with Hg2+ are serious threats to human health. This necessitates the search for new and efficient probe for detection of melamine in foods and Hg2+ in water samples.
Collapse
Affiliation(s)
- Arunjegan Amalraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Mariyammal Narayanan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
10
|
Pandiyaraj V, Murmu A, Pandy SK, Sevanan M, Arjunan S. Metal nanoparticles and its application on phenolic and heavy metal pollutants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The perpetual exposure of several manmade materials and their activities such as urbanization, industrialization, transportation, mining, construction, petroleum refining, manufacturing, preservatives, disinfectants etc., release various pollutants like organic, inorganic, and heavy metals which pollute the air, water, and soil. This poses various environmental issues which are relevant to the ecosystem and human wellbeing that intensify the implementation of new expedient treatment technologies. Likewise, phenolic and heavy metal pollutants find their way into the environment. These phenolic and heavy metals are toxic to the liver, heart and carcinogenic. Therefore, the removal of these kinds of pollutants from the environment is a highly challenging issue. As conventional treatment technologies have consequent drawbacks, new interests have been developed to remediate and remove pollutants from the ecosystem using metal nanoparticles (MPNs). To date, many researchers all over the world have been investigating novel approaches to enhance various remediation application technologies. One such approach that the researchers are constantly showing interest in is the use of nanomaterials with potential applications towards the environment. In this regard, MPNs like Copper (Cu), Nickel (Ni), Palladium (Pd), Gold (Au), Silver (Ag), Platinum (Pt), Titanium (Ti), and other nano metals are serving as a suitable agent to eliminate emerging contaminants in various fields, particularly in the removal of phenolic and heavy metal pollutants. This chapter discusses the mechanism and application of various MPNs in eliminating various phenolic and heavy metal pollutants from the environment.
Collapse
Affiliation(s)
- Vaanmathy Pandiyaraj
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Ankita Murmu
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Saravana Kumari Pandy
- Department of Microbiology , Rathnavel Subramaniam College of Arts and Science , Coimbatore , India
| | - Murugan Sevanan
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Shanamitha Arjunan
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| |
Collapse
|
11
|
Zou X, Ji Y, Li H, Wang Z, Shi L, Zhang S, Wang T, Gong Z. Recent advances of environmental pollutants detection via paper-based sensing strategy. LUMINESCENCE 2021; 36:1818-1836. [PMID: 34342392 DOI: 10.1002/bio.4130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Paper has become one of the most promising substrates for building low-cost and powerful sensing platforms due to its self-pumping ability and compatibility with multiple patterning methods. Paper-based sensors have been greatly developed in the field of environmental monitoring. In this review, we introduced the research and application of paper-based sensors in environmental monitoring, focusing on the deposition and patterning methods of building paper-based sensors, and summarized the applications of detecting environmental pollutants, including metal ions, anions, explosives, neurotoxins, volatile organic compounds, and small molecules. In addition, the development prospects and challenges of promoting paper-based sensors are also discussed. The current review will provide references for the construction of portable paper-based sensors, and has implications for the field of on-site real-time detection of the environment.
Collapse
Affiliation(s)
- Xue Zou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yayun Ji
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hangzhou Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhaoli Wang
- Chengdu Academy of Environmental Sciences, Chengdu, China
| | - Linhong Shi
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shengli Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tengfei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Sun QZ, Zhao B, Chai LY, Liu H, Jin HZ, Liu H. A 3D nickel(II) coordination polymer constructed by mixed- ligand strategy: synthesis, crystal structure and sensing of Hg(II) ion. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1952239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qiao-Zhen Sun
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Bo Zhao
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Li-Yuan Chai
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha, China
| | - Hao Liu
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Hao-Zhe Jin
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Hui Liu
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha, China
| |
Collapse
|
13
|
Rani L, Kaushal J, Srivastav AL, Mahajan P. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44771-44796. [PMID: 32975757 DOI: 10.1007/s11356-020-10738-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Effective and substantial remediation of contaminants especially heavy metals from water is still a big challenge in terms of both environmental and biological perspectives because of their adverse effects on the human health. Many techniques including adsorption, ion exchange, co-precipitation, chemical reduction, ultrafiltration, etc. are reported for eliminating heavy metal ions from the water. However, adsorption has preferred because of its simple and easy handlings. Several types of adsorbents are observed and documented well for the purpose. Recently, highly porous metal-organic frameworks (MOFs) were developed by incorporating metals and organic ligands together and claimed as potent adsorbents for the remediation of highly toxic heavy metals from the aqueous solutions due to their unique features like greater surface area, high chemical stability, green and reuse material, etc. In this review, the authors discussed systematically some recent developments about secure MOFs to eliminate the toxic metals such as arsenic (both arsenite and arsenate), chromium(VI), cadmium (Cd), mercury (Hg) and lead (Pb). MOFs are observed as the most efficient adsorbents with greater selectivity as well as high adsorption capacity for metallic contamination. Graphical abstract.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara University School of Basic Sciences, Chitkara University, Baddi, Himachal Pradesh, India
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Baddi, Himachal Pradesh, India
| | - Pooja Mahajan
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
14
|
Yang JY, Jia XD, Wang XY, Chen ML, Yang T, Wang JH. Mercury speciation based on mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Analyst 2020; 145:5200-5205. [PMID: 32555886 DOI: 10.1039/d0an00803f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mercury speciation is of significant importance in environmental and biological analysis because its toxicity and metabolic behavior in the human body differ among species. Nanomaterial-assisted optical sensors are widely used for mercury ion detection but rarely applied in mercury speciation analysis. In this work, we develop a novel colorimetric sensing strategy for mercury speciation based on mercury-stimulated peroxidase mimetic activity of gold nanoparticles with the assistance of different reductants. In the presence of a weak reductant, only inorganic mercury can be reduced to Hg0, whereas both inorganic mercury and organic mercury can be reduced to Hg0 in the presence of a strong reductant. Due to the high affinity between Hg and Au, Hg0 deposits on the AuNP surface in the form of a Au-Hg amalgam, leading to a remarkable enhancement of peroxidase mimetic activity of gold nanoparticles. On the basis of this effect, inorganic mercury and total mercury can be detected by using 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate. The limits of detection for inorganic mercury and total mercury are 1.9 and 0.9 nM within 5-100 nM, respectively. The selectivity of this sensing system is high due to the specificity of Au-Hg interaction. Its practical applications are further demonstrated by organic mercury analysis in a fish sample and mercury speciation in a human hair sample.
Collapse
Affiliation(s)
- Jian-Yu Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
15
|
Xiang H, Cai Q, Li Y, Zhang Z, Cao L, Li K, Yang H. Sensors Applied for the Detection of Pesticides and Heavy Metals in Freshwaters. JOURNAL OF SENSORS 2020; 2020:1-22. [DOI: 10.1155/2020/8503491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water is essential for every life living on the planet. However, we are facing a more serious situation such as water pollution since the industrial revolution. Fortunately, many efforts have been done to alleviate/restore water quality in freshwaters. Numerous sensors have been developed to monitor the dynamic change of water quality for ecological, early warning, and protection reasons. In the present review, we briefly introduced the pollution status of two major pollutants, i.e., pesticides and heavy metals, in freshwaters worldwide. Then, we collected data on the sensors applied to detect the two categories of pollutants in freshwaters. Special focuses were given on the sensitivity of sensors indicated by the limit of detection (LOD), sensor types, and applied waterbodies. Our results showed that most of the sensors can be applied for stream and river water. The average LOD was72.53±12.69 ng/ml (n=180) for all pesticides, which is significantly higher than that for heavy metals (65.36±47.51 ng/ml,n=117). However, the LODs of a considerable part of pesticides and heavy metal sensors were higher than the criterion maximum concentration for aquatic life or the maximum contaminant limit concentration for drinking water. For pesticide sensors, the average LODs did not differ among insecticides (63.83±17.42 ng/ml,n=87), herbicides (98.06±23.39 ng/ml,n=71), and fungicides (24.60±14.41 ng/ml,n=22). The LODs that differed among sensor types with biosensors had the highest sensitivity, while electrochemical optical and biooptical sensors showed the lowest sensitivity. The sensitivity of heavy metal sensors varied among heavy metals and sensor types. Most of the sensors were targeted on lead, cadmium, mercury, and copper using electrochemical methods. These results imply that future development of pesticides and heavy metal sensors should (1) enhance the sensitivity to meet the requirements for the protection of aquatic ecosystems and human health and (2) cover more diverse pesticides and heavy metals especially those toxic pollutants that are widely used and frequently been detected in freshwaters (e.g., glyphosate, fungicides, zinc, chromium, and arsenic).
Collapse
Affiliation(s)
- Hongyong Xiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuan Li
- Northwest Land and Resources Research Center, Shaanxi Normal Northwest University, China
| | - Zhenxing Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, Jilin 130024, China
| | - Lina Cao
- Ecology and Environment Department of Jilin Province, Changchun, Jilin 130024, China
| | - Kun Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China
| | - Haijun Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
- School of Life Science and Geology, Yili Normal University, Yili, Xinjiang 835000, China
| |
Collapse
|
16
|
Zhou H, Yang H, Wang G, Gao A, Yuan Z. Recent Advances of Plasmonic Gold Nanoparticles in Optical Sensing and Therapy. Curr Pharm Des 2020; 25:4861-4876. [DOI: 10.2174/1381612826666191219130033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
:
Gold nanoparticles with special surface plasmon resonance have been widely used in sensing and
therapy because of their easy preparation, unique optical properties, excellent biocompatibility, etc. The applications
of gold nanoparticles in chemo/biosensing, imaging, and therapy reported in 2016-2019, are summarized in
this review. Regarding the gold nanoparticle-based sensing or imaging, sensing mechanisms and strategies are
provided to illustrate the concepts for designing sensitive and selective detection platforms. Gold nanoparticlemediated
therapy is introduced by surface plasmon resonance-based therapy and delivery-based therapy. Beyond
the sole therapeutic system, platforms through synergistic therapy are also discussed. In the end, discussion of the
challenges and future trends of gold nanoparticle-based sensing and therapy systems is described.
Collapse
Affiliation(s)
- He Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongwei Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangke Wang
- Global Energy Interconnection Research Institute Co. Ltd, Beijing 102211, China
| | - Aijun Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, O'Connor D. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. ENVIRONMENT INTERNATIONAL 2020; 134:105281. [PMID: 31726360 DOI: 10.1016/j.envint.2019.105281] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 05/24/2023]
Abstract
Mercury contamination in soil, water and air is associated with potential toxicity to humans and ecosystems. Industrial activities such as coal combustion have led to increased mercury (Hg) concentrations in different environmental media. This review critically evaluates recent developments in technological approaches for the remediation of Hg contaminated soil, water and air, with a focus on emerging materials and innovative technologies. Extensive research on various nanomaterials, such as carbon nanotubes (CNTs), nanosheets and magnetic nanocomposites, for mercury removal are investigated. This paper also examines other emerging materials and their characteristics, including graphene, biochar, metal organic frameworks (MOFs), covalent organic frameworks (COFs), layered double hydroxides (LDHs) as well as other materials such as clay minerals and manganese oxides. Based on approaches including adsorption/desorption, oxidation/reduction and stabilization/containment, the performances of innovative technologies with the aid of these materials were examined. In addition, technologies involving organisms, such as phytoremediation, algae-based mercury removal, microbial reduction and constructed wetlands, were also reviewed, and the role of organisms, especially microorganisms, in these techniques are illustrated.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yining Cao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Solar light induced synthesis of silver nanoparticles by using lignin as a reductant, and their application to ultrasensitive spectrophotometric determination of mercury(II). Mikrochim Acta 2019; 186:727. [DOI: 10.1007/s00604-019-3832-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/15/2019] [Indexed: 02/02/2023]
|
19
|
Zhang L, Wang J, Du T, Zhang W, Zhu W, Yang C, Yue T, Sun J, Li T, Wang J. NH2-MIL-53(Al) Metal–Organic Framework as the Smart Platform for Simultaneous High-Performance Detection and Removal of Hg2+. Inorg Chem 2019; 58:12573-12581. [DOI: 10.1021/acs.inorgchem.9b01242] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Xi’an 710065, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
20
|
Wang BB, Jin JC, Xu ZQ, Jiang ZW, Li X, Jiang FL, Liu Y. Single-step synthesis of highly photoluminescent carbon dots for rapid detection of Hg2+ with excellent sensitivity. J Colloid Interface Sci 2019; 551:101-110. [DOI: 10.1016/j.jcis.2019.04.088] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
|
21
|
Huang L, Li S, Ling X, Zhang J, Qin A, Zhuang J, Gao M, Tang BZ. Dual detection of bioaccumulated Hg2+ based on luminescent bacteria and aggregation-induced emission. Chem Commun (Camb) 2019; 55:7458-7461. [DOI: 10.1039/c9cc02782c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We develop a dual detection strategy for bioaccumulated Hg2+ based on turn-off of the bioluminescence of P. phosphoreum bacteria by disrupting the quorum sensing system and turn-on of the photoluminescence of an aggregation-induced emission (AIE) probe by forming aggregates with Hg2+ inside the bacteria.
Collapse
Affiliation(s)
- Letao Huang
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- China
- State Key Laboratory of Luminescent Materials and Devices
| | - Shiwu Li
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| | - Xia Ling
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| | - Jun Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction
- Institute for Advanced Study, and Department of Chemical and Biological Engineering
- The Hong Kong University of Science & Technology
- Kowloon
- China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| | - Jian Zhuang
- Department of Cardiovascular Surgery of Guangdong Provincial Cardiovascular Institute
- Guangdong Provicial People's Hospital
- Guangdong Academy of Medical Sciences
- Guangdong
- China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
22
|
Huang Z, Duan B, Li J, Wang M, Yang W. Fabrication of prime number checkers based on colorimetric responses of gold nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c9nj00914k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we demonstrated the fabrication of molecular prime number checkers based on the concentration- and sequence-dependent colorimetric responses of citrate-capped gold nanoparticles (Au NPs) to two simple model chemicals, i.e. cysteine (Cys) and Hg2+ ions.
Collapse
Affiliation(s)
- Zhenzhen Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bohui Duan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jinshuo Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Min Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
23
|
Zhang X, Liu W, Li X, Zhang Z, Shan D, Xia H, Zhang S, Lu X. Ultrahigh Selective Colorimetric Quantification of Chromium(VI) Ions Based on Gold Amalgam Catalyst Oxidoreductase-like Activity in Water. Anal Chem 2018; 90:14309-14315. [PMID: 30474963 DOI: 10.1021/acs.analchem.8b03597] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hexavalent chromium ion (Cr6+) is one of the most toxic substances for plants, for animals, and is a confirmed human respiratory carcinogen. However, so far, there are few independent and efficient colorimetric methods for detection of Cr6+. Here, we introduce a convenient, label-free, catalysis-based, and efficient strategy for quantification of Cr6+ by using a colorimetric sensing probe 3,3',5,5'-tetramethylbenzidine (TMB). In the presence of a trace amount of gold amalgam nanocomposites (Au@Hg) and Cr6+, TMB can be oxidized to oxTMB and the color changed to an intense blue that was observed by naked-eye and absorption spectroscopic method. In addition, the colorimetric method shows the high selectivity against 34 other interfering substances, and it can be performed at room temperature, in water, and requires only ∼5 min. Thus, the catalysis-based colorimetric assay for accurate and ultrahigh selective identification of Cr6+ will find widespread use in the world.
Collapse
Affiliation(s)
- Xuehong Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering , Northwest Normal University , Lanzhou 730070 , People's Republic of China
| | - Wei Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Xuemei Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering , Northwest Normal University , Lanzhou 730070 , People's Republic of China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering , Northwest Normal University , Lanzhou 730070 , People's Republic of China
| | - Hong Xia
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering , Northwest Normal University , Lanzhou 730070 , People's Republic of China.,Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , People's Republic of China
| |
Collapse
|
24
|
Tunsu C, Wickman B. Effective removal of mercury from aqueous streams via electrochemical alloy formation on platinum. Nat Commun 2018; 9:4876. [PMID: 30451827 PMCID: PMC6242894 DOI: 10.1038/s41467-018-07300-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/26/2018] [Indexed: 11/09/2022] Open
Abstract
Retrieval of mercury from aqueous streams has significant environmental and societal importance due to its very high toxicity and mobility. We present here a method to retrieve mercury from aqueous feeds via electrochemical alloy formation on thin platinum films. This application is a green and effective alternative to traditional chemical decontamination techniques. Under applied potential, mercury ions in solution form a stable PtHg4 alloy with platinum on the cathode. A 100 nanometres platinum film was fully converted to a 750 nanometres thick layer of PtHg4. The overall removal capacity is very high, > 88 g mercury per cm3. The electrodes can easily be regenerated after use. Efficient and selective decontamination is possible in a wide pH range, allowing processing of industrial, municipal, and natural waters. The method is suited for both high and low concentrations of mercury and can reduce mercury levels far below the limits allowed in drinking water.
Collapse
Affiliation(s)
- Cristian Tunsu
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Björn Wickman
- Department of Physics, Chemical Physics, Chalmers University of Technology, 41296, Göteborg, Sweden.
| |
Collapse
|
25
|
Xie S, Tang Y, Tang D, Cai Y. Highly sensitive impedimetric biosensor for Hg2+ detection based on manganese porphyrin-decorated DNA network for precipitation polymerization. Anal Chim Acta 2018; 1023:22-28. [DOI: 10.1016/j.aca.2018.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/23/2018] [Accepted: 04/08/2018] [Indexed: 01/12/2023]
|
26
|
Martínez-Esaín J, Ros J, Faraudo J, Ricart S, Yáñez R. Tailoring the Synthesis of LnF 3 (Ln = La-Lu and Y) Nanocrystals via Mechanistic Study of the Coprecipitation Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6443-6453. [PMID: 29566494 DOI: 10.1021/acs.langmuir.7b03454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, 15 LnF3 nanocrystals are synthesized using coprecipitation method with citrate stabilization to allow the fast, easy, and reproducible synthesis of several nanoscaled structures in water. General trends related to the behavior of LnF3 nanocrystals are highlighted due to their broad range of application in several fields (e.g., medical applications). The same nature for all Ln3+ cations is expected due to the internal role of f orbitals. However, we found that the use of different lanthanide elements is crucial in the final size, shape, assembly, and crystalline structure. In addition, the decrease of the cation size of the lanthanide series changes the behavior of these compounds, resulting in hexagonal, orthorhombic, and cubic crystalline structures. In addition, we are able to tune the cubic crystalline phase to pure orthorhombic by modifying the pH of the system using HBF4 instead of tetramethylammonium citrate. Via 11B NMR, we demonstrated the mechanism of HBF4 as fluorinating agent if an additional source of F- is not added during the synthesis. 1H NMR and IR techniques were performed to unravel the picture of the surface chemistry of the two representative metal cations (Y and La). Finally, HRTEM and SAED were performed to uncover the shape of the obtained nanocrystals and the preferential orientation of the assembled particles, giving crucial information on the involved mechanisms. This study reveals not only the dependence of the crystalline structure on the used metal and pH but also ability to achieve LnF3 assembled particles depending on the final shape and temperature.
Collapse
Affiliation(s)
- Jordi Martínez-Esaín
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Bellaterra , Catalonia , Spain
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , 08193 Bellaterra , Catalonia , Spain
| | - Josep Ros
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Bellaterra , Catalonia , Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , 08193 Bellaterra , Catalonia , Spain
| | - Susagna Ricart
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , 08193 Bellaterra , Catalonia , Spain
| | - Ramón Yáñez
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Bellaterra , Catalonia , Spain
| |
Collapse
|
27
|
Li L, Wang F, Lv Y, Liu J, Bian H, Wang W, Li Y, Shao Z. CQDs-Doped Magnetic Electrospun Nanofibers: Fluorescence Self-Display and Adsorption Removal of Mercury(II). ACS OMEGA 2018; 3:4220-4230. [PMID: 31458655 PMCID: PMC6641464 DOI: 10.1021/acsomega.7b01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/02/2018] [Indexed: 06/10/2023]
Abstract
This paper reports the carbon quantum dots-doped magnetic electrospinning nanofibers for the self-display and removal of Hg(II) ions from water. The fluorescent carbon quantum dots and magnetic Fe3O4 nanoparticles were pre-prepared successfully, and they appeared to be homogeneously dispersed in nanofibers via electrospinning. During the sorption of Hg(II) ions, the significant fluorescence signals of nanofibers gradually declined and exhibited a good linear relationship with cumulative adsorption capacity, which could be easily recorded by the photoluminescence spectra. The sorption performance of mercury ions onto the nanofibers was investigated in terms of different experimental factors including contact time, solution pH value, and initial ion concentration. Considering the actual parameters, the nanofibers were sensitive self-display adsorption system for Hg(II) ions in the existence of other cation. The sorption data were described by different kinetic models, which indicate that the whole sorption was controlled by chemical adsorption. The intraparticle diffusion mass transfer was not obvious in this system, which further proved the uniform adsorption and even fluorescence quenching in nanofibers. Additionally, the nanocomposite fiber could regenerate in several cycles with no significant loss of adsorption capacity and fluorescence intensity. Thus, the nanofibers are promising alternatives for environmental pollution incidents. It is especially competent due to its high efficiency for self-display and removal of high concentration of mercury ions.
Collapse
Affiliation(s)
- Lei Li
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
- Beijing
Engineering Research Centre of Cellulose and Its Derivatives, Beijing 100081, China
| | - Feijun Wang
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
- Beijing
Engineering Research Centre of Cellulose and Its Derivatives, Beijing 100081, China
| | - Yanyan Lv
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
- Beijing
Engineering Research Centre of Cellulose and Its Derivatives, Beijing 100081, China
| | - Jianxin Liu
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
- Beijing
Engineering Research Centre of Cellulose and Its Derivatives, Beijing 100081, China
| | - Hongli Bian
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
- Beijing
Engineering Research Centre of Cellulose and Its Derivatives, Beijing 100081, China
| | - Wenjun Wang
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
- Beijing
Engineering Research Centre of Cellulose and Its Derivatives, Beijing 100081, China
| | - Yonghong Li
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Ziqiang Shao
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
- Beijing
Engineering Research Centre of Cellulose and Its Derivatives, Beijing 100081, China
| |
Collapse
|
28
|
Hai J, Chen F, Su J, Xu F, Wang B. Porous Wood Members-Based Amplified Colorimetric Sensor for Hg2+ Detection through Hg2+-Triggered Methylene Blue Reduction Reactions. Anal Chem 2018. [DOI: 10.1021/acs.analchem.8b00710] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou 730000, P. R. China
| | - Fengjuan Chen
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou 730000, P. R. China
| | - Junxia Su
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou 730000, P. R. China
| | - Fu Xu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou 730000, P. R. China
| |
Collapse
|
29
|
Patel K, Singh N, Nayak JM, Jha B, Sahoo SK, Kumar R. Environmentally Friendly Inorganic Magnetic Sulfide Nanoparticles for Efficient Adsorption-Based Mercury Remediation from Aqueous Solution. ChemistrySelect 2018. [DOI: 10.1002/slct.201702851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Khushbu Patel
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Nimisha Singh
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Jyotsna M. Nayak
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Babli Jha
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Suban K. Sahoo
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| | - Rajender Kumar
- Department of Applied Chemistry; S.V. National Institute of Technology; Surat- 395007 India
| |
Collapse
|
30
|
KIRK KA, OTHMAN A, ANDREESCU S. Nanomaterial-functionalized Cellulose: Design, Characterization and Analytical Applications. ANAL SCI 2018; 34:19-31. [DOI: 10.2116/analsci.34.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kevin A. KIRK
- Department of Chemistry and Biomolecular Science, Clarkson University
| | - Ali OTHMAN
- Department of Chemistry and Biomolecular Science, Clarkson University
| | - Silvana ANDREESCU
- Department of Chemistry and Biomolecular Science, Clarkson University
| |
Collapse
|
31
|
Zhi L, Liu H, Xu Y, Hu D, Yao X, Liu J. Pyrolysis of metal–organic framework (CuBTC) decorated filter paper as a low-cost and highly active catalyst for the reduction of 4-nitrophenol. Dalton Trans 2018; 47:15458-15464. [DOI: 10.1039/c8dt03327g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication of noble metal free catalysts with excellent performance and high stability by a simple, efficient, general and low-cost approach remains an urgent task for solving the problem of resource shortage.
Collapse
Affiliation(s)
- Lihua Zhi
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Hua Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Youyuan Xu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Dongcheng Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Xiaoqiang Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Jiacheng Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| |
Collapse
|
32
|
Xu C, Liu D, Zhang D, Zhao C, Liu H. Ultrasensitive point-of-care testing of arsenic based on a catalytic reaction of unmodified gold nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj03259a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ultrasensitive arsenic detection based on inhibition of a catalytic reaction between Rhodamine B and sodium borohydride.
Collapse
Affiliation(s)
- Chengtao Xu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Deye Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Dagan Zhang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Hong Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
33
|
Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci Rep 2017; 7:2806. [PMID: 28584238 PMCID: PMC5459837 DOI: 10.1038/s41598-017-02948-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
In this study, we developed a facile gold nanozyme-based paper chip (AuNZ-PAD) for Hg2+ detection. This device has the advantages of being simple, rapid, cost effective, sensitive, selective, high throughput, and applicable to onsite detection. The colorimetric mercury assay on the AuNZ-PAD is established based on the enzyme-like catalytic activity of gold nanoparticles promoted by the formation of Au–Hg amalgam, which is correlated to the intensity of the colorimetric response resulting from the catalytic reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2. Highly sensitive and selective detection of Hg2+ ions is achieved in both distilled and tap water samples, indicating the feasibility and applicability of our device for the determination of mercury pollution in real samples. Moreover, AuNZ-PAD analysis using a smartphone camera eliminates the need for expensive analytical equipment, thereby increasing the practicality of field monitoring of trace Hg2+ compared with other sensing methods.
Collapse
|