1
|
Liu H, Lv J, Wang X, Dong S, Li X, Gao L. Construction of a supramolecular antibacterial material based on water-soluble pillar[5]arene and a zwitterionic guest molecule. Chem Commun (Camb) 2024; 60:9202-9205. [PMID: 39110448 DOI: 10.1039/d4cc01737d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A new antibacterial system (HG) based on the host-guest chemistry between pillar[5]arene and a zwitterionic guest was fabricated. The HG complex displayed excellent antibacterial and biofilm formation inhibition and dispersal activities against E. coli, S. aureus and MRSA.
Collapse
Affiliation(s)
- Haoming Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Jinmeng Lv
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Xue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xinyun Li
- College of Rehabilitation, Hangzhou Medical College, Hangzhou, China.
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Jin Y, Liu Y, Zhu J, Liu H. Pillararenes: a new frontier in antimicrobial therapy. Org Biomol Chem 2024; 22:4202-4211. [PMID: 38727528 DOI: 10.1039/d4ob00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Pillararenes have gained great interest among researchers in many fields due to their symmetric structure and facile functionalization. In this review, we summarize recent progress for pillararenes as antimicrobial agents, ranging from cationic pillararenes and peptide-modified pillararenes to sugar-functionalized pillararenes. Moreover, their structure-activity relationships are presented, and their mechanisms of action are discussed. As a state-of-the-art technology, their opportunities and outlook are also outlined in this emerging field. Overall, their potent inhibitory activity and high biocompatibility give them potential for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yanqing Jin
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, P. R. China.
| | - Yisu Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, P. R. China.
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical college, Nanchong 637000, Sichuan, P. R. China
| | - Hui Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, P. R. China.
| |
Collapse
|
3
|
Zyryanov GV, Kopchuk DS, Kovalev IS, Santra S, Majee A, Ranu BC. Pillararenes as Promising Carriers for Drug Delivery. Int J Mol Sci 2023; 24:ijms24065167. [PMID: 36982244 PMCID: PMC10049520 DOI: 10.3390/ijms24065167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Since their discovery in 2008 by N. Ogoshi and co-authors, pillararenes (PAs) have become popular hosts for molecular recognition and supramolecular chemistry, as well as other practical applications. The most useful property of these fascinating macrocycles is their ability to accommodate reversibly guest molecules of various kinds, including drugs or drug-like molecules, in their highly ordered rigid cavity. The last two features of pillararenes are widely used in various pillararene-based molecular devices and machines, stimuli-responsive supramolecular/host-guest systems, porous/nonporous materials, organic-inorganic hybrid systems, catalysis, and, finally, drug delivery systems. In this review, the most representative and important results on using pillararenes for drug delivery systems for the last decade are presented.
Collapse
Affiliation(s)
- Grigory V Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Dmitry S Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Igor S Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Adinath Majee
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Brindaban C Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
A Fucosylated Lactose-Presenting Tetravalent Glycocluster Acting as a Mutual Ligand of Pseudomonas aeruginosa Lectins A (PA-IL) and B (PA-IIL)-Synthesis and Interaction Studies. Int J Mol Sci 2022; 23:ijms232416194. [PMID: 36555839 PMCID: PMC9782601 DOI: 10.3390/ijms232416194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is an important opportunistic human pathogen associated with cystic fibrosis. P. aeruginosa produces two soluble lectins, the d-galactose-specific lectin PA-IL (LecA) and the l-fucose-specific lectin PA-IIL (LecB), among other virulence factors. These lectins play an important role in the adhesion to host cells and biofilm formation. Moreover, PA-IL is cytotoxic to respiratory cells in the primary culture. Therefore, these lectins are promising therapeutic targets. Specifically, carbohydrate-based compounds could inhibit their activity. In the present work, a 3-O-fucosyl lactose-containing tetravalent glycocluster was synthesized and utilized as a mutual ligand of galactophilic and fucophilic lectins. Pentaerythritol equipped with azido ethylene glycol-linkers was chosen as a multivalent scaffold and the glycocluster was constructed by coupling the scaffold with propargyl 3-O-fucosyl lactoside using an azide-alkyne 1,3-dipolar cycloaddition reaction. The interactions between the glycocluster and PA-IL or PA-IIL were investigated by isothermal titration microcalorimetry and saturation transfer difference NMR spectroscopy. These results may assist in the development of efficient anti-adhesion therapy for the treatment of a P. aeruginosa infection.
Collapse
|
5
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
6
|
Rim-differentiation vs. mixture of constitutional isomers: A binding study between pillar[5]arene-based glycoclusters and lectins from pathogenic bacteria. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Wojtczak K, Byrne JP. Structural Considerations for Building Synthetic Glycoconjugates as Inhibitors for Pseudomonas aeruginosa Lectins. ChemMedChem 2022; 17:e202200081. [PMID: 35426976 PMCID: PMC9321714 DOI: 10.1002/cmdc.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium, responsible for a large portion of nosocomial infections globally and designated as critical priority by the World Health Organisation. Its characteristic carbohydrate-binding proteins LecA and LecB, which play a role in biofilm-formation and lung-infection, can be targeted by glycoconjugates. Here we review the wide range of inhibitors for these proteins (136 references), highlighting structural features and which impact binding affinity and/or therapeutic effects, including carbohydrate selection; linker length and rigidity; and scaffold topology, particularly for multivalent candidates. We also discuss emerging therapeutic strategies, which build on targeting of LecA and LecB, such as anti-biofilm activity, anti-adhesion and drug-delivery, with promising prospects for medicinal chemistry.
Collapse
Affiliation(s)
- Karolina Wojtczak
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| | - Joseph P. Byrne
- School of Biological and Chemical SciencesNational University of Ireland GalwayUniversity RoadGalwayIreland
| |
Collapse
|
8
|
Vincent SP, Chen W. Copillar[5]arene Chemistry: Synthesis and Applications. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1738369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractResearch on pillar[n]arenes has witnessed a very quick expansion. This emerging class of functionalized macrocyclic oligoarenes not only offers host–guest properties due to the presence of the central cavity, but also presents a wide variety of covalent functionalization possibilities. This short review focuses on copillararenes, a subfamily of pillar[n]arenes. In copillararenes, at least one of the hydroquinone units bears different functional groups compared to the others. After having defined the particular features of copillararenes, this short review compares the different synthetic strategies allowing their construction. Some key applications and future perspectives are also described. 1 Introduction2 General Features of Pillar[5]arenes3 Synthesis of Functionalized Copillar[4+1]arenes4 Concluding Remarks
Collapse
Affiliation(s)
| | - Wenzhang Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University
- Department of Chemistry, UNamur, NARILIS
| |
Collapse
|
9
|
|
10
|
Zhao J, Yang W, Liang C, Gao L, Xu J, Sue ACH, Zhao H. Rim-differentiated Co-pillar[4+1]arenes. Chem Commun (Camb) 2021; 57:11193-11196. [PMID: 34622259 DOI: 10.1039/d1cc04840f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of rim-differentiated Co-pillar[4+1]arenes featuring penta-substituted "upper" rims and mono-functionalisable "lower" rims was successfully synthesised and fully characterised. These novel pillar[5]arene-based scaffolds with clickable moieties and extra synthetic handles are versatile platforms for self-assembled molecular architectures and biological applications.
Collapse
Affiliation(s)
- Jianyi Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Weiwei Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Chuanyun Liang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Liya Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Jun Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, China.
| | - Hongxia Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, China.
| |
Collapse
|
11
|
Ramos-Soriano J, Ghirardello M, Galan MC. Recent advances in multivalent carbon nanoform-based glycoconjugates. Curr Med Chem 2021; 29:1232-1257. [PMID: 34269658 DOI: 10.2174/0929867328666210714160954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022]
Abstract
Multivalent carbohydrate-mediated interactions are fundamental to many biological processes, including disease mechanisms. To study these significant glycan-mediated interactions at a molecular level, carbon nanoforms such as fullerenes, carbon nanotubes, or graphene and their derivatives have been identified as promising biocompatible scaffolds that can mimic the multivalent presentation of biologically relevant glycans. In this minireview, we will summarize the most relevant examples of the last few years in the context of their applications.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
12
|
Bettucci O, Pascual J, Turren-Cruz SH, Cabrera-Espinoza A, Matsuda W, Völker SF, Köbler H, Nierengarten I, Reginato G, Collavini S, Seki S, Nierengarten JF, Abate A, Delgado JL. Dendritic-Like Molecules Built on a Pillar[5]arene Core as Hole Transporting Materials for Perovskite Solar Cells. Chemistry 2021; 27:8110-8117. [PMID: 33872460 DOI: 10.1002/chem.202101110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/27/2022]
Abstract
Multi-branched molecules have recently demonstrated interesting behaviour as charge-transporting materials within the fields of perovskite solar cells (PSCs). For this reason, extended triarylamine dendrons have been grafted onto a pillar[5]arene core to generate dendrimer-like compounds, which have been used as hole-transporting materials (HTMs) for PSCs. The performances of the solar cells containing these novel compounds have been extensively investigated. Interestingly, a positive dendritic effect has been evidenced as the hole transporting properties are improved when going from the first to the second-generation compound. The stability of the devices based on the best performing pillar[5]arene material has been also evaluated in a high-throughput ageing setup for 500 h at high temperature. When compared to reference devices prepared from spiro-OMeTAD, the behaviour is similar. An analysis of the economic advantages arising from the use of the pillar[5]arene-based material revealed however that our pillar[5]arene-based material is cheaper than the reference.
Collapse
Affiliation(s)
- Ottavia Bettucci
- Institute for the Chemistry of Organometallic Compounds (ICCOM) Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100, Siena, Italy.,Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Naples, 80125, Italy
| | - Jorge Pascual
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Silver-Hamill Turren-Cruz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Andrea Cabrera-Espinoza
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Wakana Matsuda
- Department of Molecular Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Sebastian F Völker
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Hans Köbler
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042 LIMA) Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Gianna Reginato
- Institute for the Chemistry of Organometallic Compounds (ICCOM) Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Silvia Collavini
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Shu Seki
- Department of Molecular Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042 LIMA) Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Antonio Abate
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.,Department of Chemical Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy
| | - Juan Luis Delgado
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
13
|
Grafting Dendrons onto Pillar[5]Arene Scaffolds. Molecules 2021; 26:molecules26082358. [PMID: 33919656 PMCID: PMC8073356 DOI: 10.3390/molecules26082358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
With their ten peripheral substituents, pillar[5]arenes are attractive compact scaffolds for the construction of nanomaterials with a controlled number of functional groups distributed around the macrocyclic core. This review paper is focused on the functionalization of pillar[5]arene derivatives with small dendrons to generate dendrimer-like nanomaterials and bioactive compounds. Examples include non-viral gene vectors, bioactive glycoclusters, and liquid-crystalline materials.
Collapse
|
14
|
|
15
|
Cao S, Zhou L, Liu C, Zhang H, Zhao Y, Zhao Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 2021; 181:113164. [PMID: 33744670 DOI: 10.1016/j.bios.2021.113164] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
The ingenious design and synthesis of novel macrocycles bring out renewed vigor of supramolecular chemistry in the past decade. As an intriguing class of macrocycles, pillararene and pillararene-based functional materials that are constructed through the noncovalent bond self-assembly approach have been undergoing a rapid growth, benefiting from their unique structures and physiochemical properties. This review elaborates recent significant advances of electrochemical studies based on pillararene systems. Fundamental electrochemical behavior of pillar[n]arene[m]quinone and pillararene-based self-assemblies as well as their applications in electrochemical biosensors are highlighted. In addition, the advantages and functions of pillararene self-assembly systems resulted from the unique molecular architectures are analyzed. Finally, current challenges and future development tendency in this burgeoning field are discussed from the viewpoint of both fundamental research and applications. Overall, this review not only manifests the main development vein of pillararene-based electrochemical systems, but also conquers a solid foundation for their further bioelectrochemical applications.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
16
|
Chen W, Mohy Ei Dine T, Vincent SP. Synthesis of functionalized copillar[4+1]arenes and rotaxane as heteromultivalent scaffolds. Chem Commun (Camb) 2021; 57:492-495. [PMID: 33326542 DOI: 10.1039/d0cc07684h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, novel copillar[4+1]arenes were used as central heteromultivalent scaffolds via orthogonal couplings with a series of biologically relevant molecules such as carbohydrates, α-amino acids, biotin and phenylboronic acid. Further modifications by introducing maleimides or cyclooctyne groups provided molecular probes adapted to copper-free click chemistry. An octa-azidated fluorescent rotaxane bearing two distinct ligands was also generated in a fully controlled manner.
Collapse
Affiliation(s)
- Wenzhang Chen
- Faculty of Science, University of Namur, Rue de Bruxelles, 61, Namur, Belgium.
| | | | - Stéphane P Vincent
- Faculty of Science, University of Namur, Rue de Bruxelles, 61, Namur, Belgium.
| |
Collapse
|
17
|
Antimicrobial Activity of Calixarenes and Related Macrocycles. Molecules 2020; 25:molecules25215145. [PMID: 33167339 PMCID: PMC7663816 DOI: 10.3390/molecules25215145] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/21/2022] Open
Abstract
Calixarenes and related macrocycles have been shown to have antimicrobial effects since the 1950s. This review highlights the antimicrobial properties of almost 200 calixarenes, resorcinarenes, and pillararenes acting as prodrugs, drug delivery agents, and inhibitors of biofilm formation. A particularly important development in recent years has been the use of macrocycles with substituents terminating in sugars as biofilm inhibitors through their interactions with lectins. Although many examples exist where calixarenes encapsulate, or incorporate, antimicrobial drugs, one of the main factors to emerge is the ability of functionalized macrocycles to engage in multivalent interactions with proteins, and thus inhibit cellular aggregation.
Collapse
|
18
|
Kuhaudomlarp S, Cerofolini L, Santarsia S, Gillon E, Fallarini S, Lombardi G, Denis M, Giuntini S, Valori C, Fragai M, Imberty A, Dondoni A, Nativi C. Fucosylated ubiquitin and orthogonally glycosylated mutant A28C: conceptually new ligands for Burkholderia ambifaria lectin (BambL). Chem Sci 2020; 11:12662-12670. [PMID: 34094460 PMCID: PMC8163020 DOI: 10.1039/d0sc03741a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two orthogonal, metal free click reactions, enabled to glycosylate ubiquitin and its mutant A28C forming two protein scaffolds with high affinity for BambL, a lectin from the human pathogen Burkholderia ambifaria. A new fucoside analogue, with high affinity with BambL, firstly synthetized and co-crystallized with the protein target, provided the insights for sugar determinants grafting onto ubiquitin. Three ubiquitin-based glycosides were thus assembled. Fuc-Ub, presented several copies of the fucoside analogue, with proper geometry for multivalent effect; Rha-A28C, displayed one thio-rhamnose, known for its ability to tuning the immunological response; finally, Fuc-Rha-A28C, included both multiple fucoside analogs and the rhamnose residue. Fuc-Ub and Fuc-Rha-A28C ligands proved high affinity for BambL and unprecedented immune modulatory properties towards macrophages activation.
Collapse
Affiliation(s)
| | - Linda Cerofolini
- CIRMMP, University of Florence via Sacconi, 6 50019 Sesto F.no FI Italy
| | - Sabrina Santarsia
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV 38000 Grenoble France
| | - Silvia Fallarini
- Università del Piemonte Orientale, Department of Pharmaceutical Sciences 28100 Novara Italy
| | - Grazia Lombardi
- Università del Piemonte Orientale, Department of Pharmaceutical Sciences 28100 Novara Italy
| | - Maxime Denis
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy .,Giotto Biotech via Madonna del Piano, 6, 50019 Sesto F.no FI Italy
| | - Stefano Giuntini
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy .,CERM via Sacconi, 6, 50019 Sesto F.no FI Italy
| | - Carolina Valori
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy
| | - Marco Fragai
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy .,CERM via Sacconi, 6, 50019 Sesto F.no FI Italy
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV 38000 Grenoble France
| | - Alessandro Dondoni
- Interdisciplinary Center for the Study of Inflammation, University of Ferrara 44121 Ferrara Italy
| | - Cristina Nativi
- Università di Firenze, Department of Chemistry via della Lastruccia, 3, 13, 50019 Sesto F.no FI Italy
| |
Collapse
|
19
|
Thai Le S, Malinovska L, Vašková M, Mező E, Kelemen V, Borbás A, Hodek P, Wimmerová M, Csávás M. Investigation of the Binding Affinity of a Broad Array of l-Fucosides with Six Fucose-Specific Lectins of Bacterial and Fungal Origin. Molecules 2019; 24:molecules24122262. [PMID: 31216664 PMCID: PMC6631993 DOI: 10.3390/molecules24122262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Series of multivalent α-l-fucoside containing glycoclusters and variously decorated l-fucosides were synthesized to find potential inhibitors of fucose-specific lectins and study the structure-binding affinity relationships. Tri- and tetravalent fucoclusters were built using copper-mediated azide-alkyne click chemistry. Series of fucoside monomers and dimers were synthesized using various methods, namely glycosylation, an azide-alkyne click reaction, photoinduced thiol-en addition, and sulfation. The interactions between compounds with six fucolectins of bacterial or fungal origin were tested using a hemagglutination inhibition assay. As a result, a tetravalent, α-l-fucose presenting glycocluster showed to be a ligand that was orders of magnitude better than a simple monosaccharide for tested lectins in most cases, which can nominate it as a universal ligand for studied lectins. This compound was also able to inhibit the adhesion of Pseudomonas aeruginosa cells to human epithelial bronchial cells. A trivalent fucocluster with a protected amine functional group also seems to be a promising candidate for designing glycoconjugates and chimeras.
Collapse
Affiliation(s)
- Son Thai Le
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Lenka Malinovska
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Michaela Vašková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| | - Erika Mező
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Viktor Kelemen
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| | - Michaela Wimmerová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Magdolna Csávás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| |
Collapse
|
20
|
Song N, Lou XY, Ma L, Gao H, Yang YW. Supramolecular nanotheranostics based on pillarenes. Theranostics 2019; 9:3075-3093. [PMID: 31244942 PMCID: PMC6567958 DOI: 10.7150/thno.31858] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
With the rapid development of supramolecular chemistry and nanomaterials, supramolecular nanotheranostics has attracted remarkable attention owing to the advantages compared with conventional medicine. Supramolecular architectures relying on non-covalent interactions possess reversible and stimuli-responsive features; endowing supramolecular nanotheranostics based on supramolecular assemblies great potentials for the fabrication of integrated novel nanomedicines and controlled drug delivery systems. In particular, pillarenes, as a relatively new class of synthetic macrocycles, are important candidates in the construction of supramolecular therapeutic systems due to their excellent features such as rigid and symmetric structures, facile substitution, and unique host-guest properties. This review summarizes the development of pillarene-based supramolecular nanotheranostics for applications in biological mimicking, virus inhibition, cancer therapy, and diagnosis, which contains the following two major parts: (a) pillarene-based hybrid supramolecular nanotheranostics upon hybridizing with porous materials such as mesoporous silica nanoparticles, metal-organic frameworks, metal nanoparticles, and other inorganic materials; (b) pillarene-based organic supramolecular therapeutic systems that include supramolecular amphiphilic systems, artificial channels, and prodrugs based on host-guest complexes. Finally, perspectives on how pillarene-based supramolecular nanotheranostics will advance the field of pharmaceuticals and therapeutics are given.
Collapse
Affiliation(s)
- Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Lianjun Ma
- Department of Endoscopics, China-Japan Union Hospital of Jilin University, Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
21
|
Bücher KS, Babic N, Freichel T, Kovacic F, Hartmann L. Monodisperse Sequence‐Controlled α‐l‐Fucosylated Glycooligomers and Their Multivalent Inhibitory Effects on LecB. Macromol Biosci 2018; 18:e1800337. [DOI: 10.1002/mabi.201800337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/04/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Katharina Susanne Bücher
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Duesseldorf Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Nikolina Babic
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University Duesseldorf and Forschungszentrum Jülich GmbH Wilhelm Johnen Straße 52428 Jülich Germany
| | - Tanja Freichel
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Duesseldorf Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University Duesseldorf and Forschungszentrum Jülich GmbH Wilhelm Johnen Straße 52428 Jülich Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Duesseldorf Universitaetsstraße 1 40225 Duesseldorf Germany
| |
Collapse
|
22
|
Affiliation(s)
- Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences; University of Brighton, Huxley Building, Moulsecoomb.; Brighton East Sussex BN2 4GJ UK
| |
Collapse
|
23
|
Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW. Biological and related applications of pillar[n]arenes. Chem Commun (Camb) 2018; 53:677-696. [PMID: 27942626 DOI: 10.1039/c6cc08967d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pillar[n]arenes are a new class of synthetic supramolecular macrocycles streamlined by their particular pillar-shaped architecture which consists of an electron-rich cavity and two fine-tuneable rims. The ease and diversity of the functionalization of the two rims open possibilities for the design of new architectures, topological isomers, and scaffolds. Significantly, this emerging class of macrocyclic receptors offers a unique platform for biological purposes. This review article covers the most recent contributions from the pillar[n]arene field in terms of artificial membrane transport systems, controlled drug delivery systems, biomedical imaging, biosensors, cell adhesion, fluorescent sensing, and pesticide detection based on host-guest interactions. The review also uniquely describes the properties of sub-units that make pillar[n]arenes suitable for biological applications and it provides a detailed outline for the design of new innovative pillar-like structures with specific properties to open up a new avenue for pillar[n]arene chemistry.
Collapse
Affiliation(s)
- CuhaWijay Sathiyajith
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Rafik Rajjak Shaikh
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qian Han
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yue Zhang
- The First Clinical College, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, P. R. China.
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
24
|
Nierengarten JF. Fullerene hexa-adduct scaffolding for the construction of giant molecules. Chem Commun (Camb) 2018; 53:11855-11868. [PMID: 29051931 DOI: 10.1039/c7cc07479d] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hexa-substituted fullerenes are unique scaffolds for the fast construction of globular dendrimers. Efficient synthetic methodologies based on the post-functionalization of pre-constructed fullerene hexa-adduct derivatives have been reported in recent years and dendrimers difficult or even impossible to prepare by classical fullerene chemistry are now easily accessible. Fullerodendrimers for various applications have been thus prepared. Examples include liquid crystalline materials, non-viral gene delivery systems and bioactive glycoclusters. On the other hand, fullerene hexa-adduct building blocks have been used for the ultra-fast synthesis of giant dendrimers. Indeed, the resulting dendrimers of first generation are already surrounded by 120 peripheral functional groups. This strategy has been used to prepare giant glycoclusters with anti-viral activity and multivalent glycosidase inhibitors.
Collapse
Affiliation(s)
- Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
25
|
Goyard D, Baldoneschi V, Varrot A, Fiore M, Imberty A, Richichi B, Renaudet O, Nativi C. Multivalent Glycomimetics with Affinity and Selectivity toward Fucose-Binding Receptors from Emerging Pathogens. Bioconjug Chem 2017; 29:83-88. [DOI: 10.1021/acs.bioconjchem.7b00616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Veronica Baldoneschi
- Department
of Chemistry Ugo Schiff, University of Florence, via della Lastruccia, 13−50019 Sesto F.no (FI) Italy
| | | | - Michele Fiore
- ICBMS, University of Lyon, 43 Blvd. du 11 novembre 1918, 69622, Villeubanne Cedex, France
| | | | - Barbara Richichi
- Department
of Chemistry Ugo Schiff, University of Florence, via della Lastruccia, 13−50019 Sesto F.no (FI) Italy
| | | | - Cristina Nativi
- Department
of Chemistry Ugo Schiff, University of Florence, via della Lastruccia, 13−50019 Sesto F.no (FI) Italy
| |
Collapse
|
26
|
Trinh TMN, Nierengarten I, Ben Aziza H, Meichsner E, Holler M, Chessé M, Abidi R, Bijani C, Coppel Y, Maisonhaute E, Delavaux-Nicot B, Nierengarten JF. Coordination-Driven Folding in Multi-Zn II -Porphyrin Arrays Constructed on a Pillar[5]arene Scaffold. Chemistry 2017; 23:11011-11021. [PMID: 28570020 DOI: 10.1002/chem.201701622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 01/12/2023]
Abstract
Pillar[5]arene derivatives bearing peripheral porphyrin subunits have been efficiently prepared from a deca-azide pillar[5]arene building block (17) and ZnII -porphyrin derivatives bearing a terminal alkyne function (9 and 16). For the resulting deca-ZnII -porphyrin arrays (18 and 20), variable temperature NMR studies revealed an intramolecular complexation of the peripheral ZnII -porphyrin moieties by 1,2,3-triazole subunits. As a result, the molecules adopt a folded conformation. This was further confirmed by UV/Vis spectroscopy and cyclic voltammetry. In addition, we have also demonstrated that the coordination-driven unfolding of 18 and 20 can be controlled by an external chemical stimulus. Specifically, addition of an imidazole derivative (22) to solution of 18 or 20 breaks the intramolecular coordination at the origin of the folding. The resulting molecular motions triggered by the addition of the imidazole ligand mimic the blooming of a flower.
Collapse
Affiliation(s)
- Thi Minh Nguyet Trinh
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Haifa Ben Aziza
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France.,Laboratoire d'Applications de la Chimie aux Ressources et Substances, Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Eric Meichsner
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Matthieu Chessé
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Rym Abidi
- Laboratoire d'Applications de la Chimie aux Ressources et Substances, Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Christian Bijani
- Laboratoire de Chimie de Coordination du CNRS, Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination du CNRS, Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France
| | - Emmanuel Maisonhaute
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8235, Laboratoire Interfaces et Systèmes Electrochimiques, 75005, Paris, France
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination du CNRS, Université de Toulouse, UPS, INPT, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
27
|
Trinh TMN, Holler M, Schneider JP, García-Moreno MI, García Fernández JM, Bodlenner A, Compain P, Ortiz Mellet C, Nierengarten JF. Construction of giant glycosidase inhibitors from iminosugar-substituted fullerene macromonomers. J Mater Chem B 2017; 5:6546-6556. [PMID: 32264416 DOI: 10.1039/c7tb01052d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An ultra-fast synthetic procedure based on grafting of twelve fullerene macromonomers onto a fullerene hexa-adduct core was used for the preparation of a giant molecule with 120 peripheral iminosugar residues. The inhibition profile of this giant iminosugar ball was evaluated against various glycosidases. In the particular case of the Jack bean α-mannosidase, a dramatic enhancement of the glycosidase inhibitory effect was observed for the giant molecule with 120 peripheral subunits as compared to that of the corresponding mono- and dodecavalent model compounds.
Collapse
Affiliation(s)
- Thi Minh Nguyet Trinh
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Donnier-Maréchal M, Galanos N, Grandjean T, Pascal Y, Ji DK, Dong L, Gillon E, He XP, Imberty A, Kipnis E, Dessein R, Vidal S. Perylenediimide-based glycoclusters as high affinity ligands of bacterial lectins: synthesis, binding studies and anti-adhesive properties. Org Biomol Chem 2017; 15:10037-10043. [DOI: 10.1039/c7ob02749d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid access to perylenediimide-based glycoclusters allowed their evaluation as high affinity ligands of bacterial lectins and their potential as anti-adhesive antibacterials.
Collapse
|
29
|
Sun Y, Wang J, Yao Y. The first water-soluble pillar[5]arene dimer: synthesis and construction of a reversible fluorescent supramolecular polymer network in water. Chem Commun (Camb) 2017; 53:165-167. [DOI: 10.1039/c6cc08452d] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first water-soluble pillar[5]arene dimer was successfully designed and synthesized. It can complex with carboxylate anion functionalized tetraphenyl ethylene to form a reversible fluorescent supramolecular polymer network in water.
Collapse
Affiliation(s)
- Yan Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Jin Wang
- Research and Development Center
- China Tobacco Yunnan Industrial Co., Ltd
- Kunming
- China
| | - Yong Yao
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
- Department of Chemistry
| |
Collapse
|
30
|
Galanos N, Chen Y, Michael ZP, Gillon E, Dutasta JP, Star A, Imberty A, Martinez A, Vidal S. Cyclotriveratrylene-Based Glycoclusters as High Affinity Ligands of Bacterial Lectins fromPseudomonas aeruginosaandBurkholderia ambifaria. ChemistrySelect 2016. [DOI: 10.1002/slct.201601324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicolas Galanos
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246; CNRS and Université Claude Bernard Lyon 1; 43 Boulevard du 11 Novembre 1918, F- 69622 Villeurbanne France
- CERMAV (UPR5301); CNRS and Université Grenoble Alpes; 601 Rue de la Chimie, BP 53 38041 Grenoble France
| | - Yanan Chen
- Department of Chemistry; University of Pittsburgh; Pittsburgh, PA 15260 United States
| | - Zachary P. Michael
- Department of Chemistry; University of Pittsburgh; Pittsburgh, PA 15260 United States
| | - Emilie Gillon
- CERMAV (UPR5301); CNRS and Université Grenoble Alpes; 601 Rue de la Chimie, BP 53 38041 Grenoble France
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie; CNRS and École Normale Supérieure de Lyon; 46 Allée d'Italie, F- 69364 Lyon 07 France
| | - Alexander Star
- Department of Chemistry; University of Pittsburgh; Pittsburgh, PA 15260 United States
| | - Anne Imberty
- CERMAV (UPR5301); CNRS and Université Grenoble Alpes; 601 Rue de la Chimie, BP 53 38041 Grenoble France
| | - Alexandre Martinez
- Laboratoire de Chimie; CNRS and École Normale Supérieure de Lyon; 46 Allée d'Italie, F- 69364 Lyon 07 France
- Aix Marseille Univ, CNRS; Centrale Marseille, iSm2 Marseille France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246; CNRS and Université Claude Bernard Lyon 1; 43 Boulevard du 11 Novembre 1918, F- 69622 Villeurbanne France
| |
Collapse
|
31
|
Wang S, Dupin L, Noël M, Carroux CJ, Renaud L, Géhin T, Meyer A, Souteyrand E, Vasseur JJ, Vergoten G, Chevolot Y, Morvan F, Vidal S. Toward the Rational Design of Galactosylated Glycoclusters That Target Pseudomonas aeruginosa Lectin A (LecA): Influence of Linker Arms That Lead to Low-Nanomolar Multivalent Ligands. Chemistry 2016; 22:11785-94. [PMID: 27412649 DOI: 10.1002/chem.201602047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 02/03/2023]
Abstract
Anti-infectious strategies against pathogen infections can be achieved through antiadhesive strategies by using multivalent ligands of bacterial virulence factors. LecA and LecB are lectins of Pseudomonas aeruginosa implicated in biofilm formation. A series of 27 LecA-targeting glycoclusters have been synthesized. Nine aromatic galactose aglycons were investigated with three different linker arms that connect the central mannopyranoside core. A low-nanomolar (Kd =19 nm, microarray) ligand with a tyrosine-based linker arm could be identified in a structure-activity relationship study. Molecular modeling of the glycoclusters bound to the lectin tetramer was also used to rationalize the binding properties observed.
Collapse
Affiliation(s)
- Shuai Wang
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie UMR 5246, CNRS - Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Lucie Dupin
- Institut des Nanotechnologies de Lyon (INL) - UMR CNRS 5270, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134, Ecully cedex, France
| | - Mathieu Noël
- Institut des Biomolécules Max Mousseron (IBMM) - UMR 5247, CNRS - Université Montpellier - ENSCM, Place Eugène Bataillon, CC1704, 34095, Montpellier cedex 5, France
| | - Cindy J Carroux
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie UMR 5246, CNRS - Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Louis Renaud
- Institut des Nanotechnologies de Lyon, UMR CNRS 5270, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Thomas Géhin
- Institut des Nanotechnologies de Lyon (INL) - UMR CNRS 5270, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134, Ecully cedex, France
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron (IBMM) - UMR 5247, CNRS - Université Montpellier - ENSCM, Place Eugène Bataillon, CC1704, 34095, Montpellier cedex 5, France
| | - Eliane Souteyrand
- Institut des Nanotechnologies de Lyon (INL) - UMR CNRS 5270, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134, Ecully cedex, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM) - UMR 5247, CNRS - Université Montpellier - ENSCM, Place Eugène Bataillon, CC1704, 34095, Montpellier cedex 5, France
| | - Gérard Vergoten
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576, CNRS - Université de Lille 1, Cité Scientifique, Avenue Mendeleiev, Bat C9, 59655, Villeneuve d'Ascq cedex, France
| | - Yann Chevolot
- Institut des Nanotechnologies de Lyon (INL) - UMR CNRS 5270, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134, Ecully cedex, France.
| | - François Morvan
- Institut des Biomolécules Max Mousseron (IBMM) - UMR 5247, CNRS - Université Montpellier - ENSCM, Place Eugène Bataillon, CC1704, 34095, Montpellier cedex 5, France.
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie UMR 5246, CNRS - Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France.
| |
Collapse
|
32
|
Joseph R, Kaizerman D, Herzog IM, Hadar M, Feldman M, Fridman M, Cohen Y. Phosphonium pillar[5]arenes as a new class of efficient biofilm inhibitors: importance of charge cooperativity and the pillar platform. Chem Commun (Camb) 2016; 52:10656-9. [DOI: 10.1039/c6cc05170g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibition of biofilm formation (MBIC50 = 0.67–1.66 μM) by pillar[5]arene congugates.
Collapse
Affiliation(s)
- Roymon Joseph
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Dana Kaizerman
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Ido M. Herzog
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Maya Hadar
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Mark Feldman
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Micha Fridman
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Yoram Cohen
- School of Chemistry
- Raymond and Beverly Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| |
Collapse
|