1
|
Moghimi S, Shafiei M, Foroumadi A. Drug design strategies for the treatment azole-resistant candidiasis. Expert Opin Drug Discov 2022; 17:879-895. [PMID: 35793245 DOI: 10.1080/17460441.2022.2098949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the availability of novel antifungals and therapeutic strategies, the rate of global mortality linked to invasive fungal diseases from fungal infection remains high. Candida albicans account for the most invasive mycosis produced by yeast. Thus, the current arsenal of medicinal chemists is focused on finding new effective agents with lower toxicity and broad-spectrum activity. In this review article, recent efforts to find effective agents against azole-resistant candidiasis, a common fungal infection, are covered. AREAS COVERED Herein, the authors outlined all azole-based compounds, dual target, and new scaffolds (non-azole-based compounds) which were effective against azole-resistant candidiasis. In addition, the mechanism of action and SAR studies were also discussed, if the data were available. EXPERT OPINION The current status of fungal infections and the drawbacks of existing drugs have encouraged scientists to find novel scaffolds based on different methods like virtual screening and fragment-based drug discovery. Machine learning and in-silico methods have found their role in this field and experts are hopeful to find novel scaffolds/compounds by using these methods.
Collapse
Affiliation(s)
- Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shafiei
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Brankiewicz W, Okońska J, Serbakowska K, Lica J, Drab M, Ptaszyńska N, Łęgowska A, Rolka K, Szweda P. New Peptide Based Fluconazole Conjugates with Expanded Molecular Targets. Pharmaceutics 2022; 14:pharmaceutics14040693. [PMID: 35456526 PMCID: PMC9026428 DOI: 10.3390/pharmaceutics14040693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Infections of Candida spp. etiology are frequently treated with azole drugs. Among azoles, the most widely used in the clinical scenario remains fluconazole (FLC). Promising results in treatment of dangerous, systemic Candida infections demonstrate the advantages of combined therapies carried out with combinations of at least two different antifungal agents. Here, we report five conjugates composed of covalently linked FLC and cell penetrating or antimicrobial peptide: TP10-7-NH2, TP10-NH2, LFcinB(2-11)-NH2, LFcinB[Nle1,11]-NH2, and HLopt2-NH2, with aspects of design, chemical synthesis and their biological activities. Two of these compounds, namely FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2, exhibit high activity against reference strains and fluconazole-resistant clinical isolates of C. albicans, including strains overproducing drug transporters. Moreover, both of them demonstrate higher fungicidal effects compared to fluconazole. Analysis performed with fluorescence and scanning electron microscopy as well as flow cytometry indicated the cell membrane as a molecular target of synthesized conjugates. An important advantage of FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2 is their low cytotoxicity. The IC90 value for the human cells after 72 h treatment was comparable to the MIC50 value after 24 h treatment for most strains of C. albicans. In reported conjugates, FLC was linked to the peptide by its hydroxyl group. It is worth noting that conjugation of FLC by the nitrogen atom of the triazole ring led to practically inactive compounds. Two compounds produced by us and reported herein appear to be potential candidates for novel antifungal agents.
Collapse
Affiliation(s)
- Wioletta Brankiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
| | - Joanna Okońska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Katarzyna Serbakowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
| | - Jan Lica
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Marek Drab
- Unit of Nanostructural Bio-Interactions, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla-Street, 53-114 Wrocław, Poland;
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
- Correspondence: (N.P.); (P.S.); Tel.: +48-58-523-5092 (N.P.); +48-58-347-2440 (P.S.); Fax: +48-58-523-5012 (N.P.)
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
- Correspondence: (N.P.); (P.S.); Tel.: +48-58-523-5092 (N.P.); +48-58-347-2440 (P.S.); Fax: +48-58-523-5012 (N.P.)
| |
Collapse
|
3
|
Piatek M, Sheehan G, Kavanagh K. Galleria mellonella: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics (Basel) 2021; 10:antibiotics10121545. [PMID: 34943757 PMCID: PMC8698334 DOI: 10.3390/antibiotics10121545] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Larvae of the greater wax moth, Galleria mellonella, are a convenient in vivo model for assessing the activity and toxicity of antimicrobial agents and for studying the immune response to pathogens and provide results similar to those from mammals. G. mellonella larvae are now widely used in academia and industry and their use can assist in the identification and evaluation of novel antimicrobial agents. Galleria larvae are inexpensive to purchase and house, easy to inoculate, generate results within 24–48 h and their use is not restricted by legal or ethical considerations. This review will highlight how Galleria larvae can be used to assess the efficacy of novel antimicrobial therapies (photodynamic therapy, phage therapy, metal-based drugs, triazole-amino acid hybrids) and for determining the in vivo toxicity of compounds (e.g., food preservatives, ionic liquids) and/or solvents (polysorbate 80). In addition, the disease development processes are associated with a variety of pathogens (e.g., Staphylococcus aureus, Listeria monocytogenes, Aspergillus fumigatus, Madurella mycotomatis) in mammals are also present in Galleria larvae thus providing a simple in vivo model for characterising disease progression. The use of Galleria larvae offers many advantages and can lead to an acceleration in the development of novel antimicrobials and may be a prerequisite to mammalian testing.
Collapse
|
4
|
Wilson JA, Lin ZJ, Rodriguez I, Ta T, Martz L, Fico D, Johnson SS, Gorden JD, Shelton KL, King LB. Synthesis, characterization, and antimicrobial activity of lipophilic
N
,
N
′‐bis‐substituted triazolium salts. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julie A. Wilson
- Department of Biology Columbus State University Columbus Georgia USA
| | - Zi Jie Lin
- Department of Chemistry Columbus State University Columbus Georgia USA
| | | | - Thong Ta
- Department of Chemistry Columbus State University Columbus Georgia USA
| | - Luke Martz
- Department of Chemistry Columbus State University Columbus Georgia USA
| | - Dominic Fico
- Department of Chemistry Columbus State University Columbus Georgia USA
| | | | - John D. Gorden
- Department of Chemistry Texas Tech University Lubbock Texas USA
| | - Kerri L. Shelton
- Department of Chemistry Columbus State University Columbus Georgia USA
| | - Lauren B. King
- Department of Biology Columbus State University Columbus Georgia USA
| |
Collapse
|
5
|
Ali A, Hasan P, Irfan M, Uddin A, Khan A, Saraswat J, Maguire R, Kavanagh K, Patel R, Joshi MC, Azam A, Mohsin M, Haque QMR, Abid M. Development of Oxadiazole-Sulfonamide-Based Compounds as Potential Antibacterial Agents. ACS OMEGA 2021; 6:27798-27813. [PMID: 34722980 PMCID: PMC8552329 DOI: 10.1021/acsomega.1c03379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this work, substituted 1,2,4-oxadiazoles (OX1-OX27) were screened against five bacterial strains, identified to be OX7 and OX11 as growth inhibitors with minimum inhibitory concentration (MIC) values of 31.25 and 15.75 μg/mL, respectively. The growth inhibitory property of OX7 and OX11 was further validated by disk diffusion, growth curve, and time kill curve assays. Both disrupted biofilm formation with 92-100% reduction examined by the XTT assay were further visualized by scanning electron microscopy analysis. These compounds in combination with ciprofloxacin also exhibit synergy against Escherichia coli cells. With insignificant cytotoxic behavior on HEK293 cells, human red blood cells, and Galleria mellonella larvae, OX11 was tested against 28 multidrug resistant environmental isolates of bacteria and showed inhibition of Kluyvera georgiana and Citrobacter werkmanii strains with 32 and 16 μg/mL MIC values, respectively. The synergistic behavior of OX11 with ampicillin showed many fold reductions in MIC values against K. georgiana and Klebsiella pneumoniae multidrug resistant strains. Further, transmission electron microscopy analysis of OX11-treated E. coli cells showed a significantly damaged cell wall, which resulted in the loss of integrity and cytosolic oozing. OX11 showed significant changes in the secondary structure of human serum albumin (HSA) in the presence of OX11, enhancing HSA stability. Overall, the study provided a suitable core for further synthetic alterations and development as an antibacterial agent.
Collapse
Affiliation(s)
- Asghar Ali
- Microbiology
Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Phool Hasan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Irfan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Amad Uddin
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ashba Khan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Juhi Saraswat
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ronan Maguire
- Department
of Biology, Maynooth University, Maynooth, Co. Kildare ABC127 Ireland
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Maynooth, Co. Kildare ABC127 Ireland
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mukesh C. Joshi
- Motilal
Nehru College, University of Delhi, Benito Juarez Marg, South Campus, New Delhi 110021, India
| | - Amir Azam
- Department
of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd. Mohsin
- Metabolic
Engineering Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Qazi Mohd. Rizwanul Haque
- Microbiology
Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
6
|
Aksenov AV, Grishin IY, Aksenov NA, Malyuga VV, Aksenov DA, Nobi MA, Rubin M. Electrophilically Activated Nitroalkanes in Synthesis of 3,4-Dihydroquinozalines. Molecules 2021; 26:4274. [PMID: 34299549 PMCID: PMC8306411 DOI: 10.3390/molecules26144274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Nitroalkanes activated with polyphosphoric acid serve as efficient electrophiles in reactions with various nucleophilic amines. Strategically placed second functionality allows for the design of annulation reactions enabling preparation of various heterocycles. This strategy was employed to develop an innovative synthetic approach towards 3,4-dihydroquinazolines from readily available 2-(aminomethyl)anilines.
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Igor Yu. Grishin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Vladimir V. Malyuga
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
| | - Mezvah A. Nobi
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA;
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia; (I.Y.G.); (N.A.A.); (V.V.M.); (D.A.A.)
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA;
| |
Collapse
|
7
|
Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021; 12:638609. [PMID: 33995297 PMCID: PMC8121174 DOI: 10.3389/fmicb.2021.638609] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.
Collapse
Affiliation(s)
- Tanu Atriwal
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Nadeem Khan
- Department of Tashreehul Badan, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Singh V, Hada RS, Uddin A, Aneja B, Abid M, Pandey KC, Singh S. Inhibition of Hemoglobin Degrading Protease Falcipain-2 as a Mechanism for Anti-Malarial Activity of Triazole-Amino Acid Hybrids. Curr Top Med Chem 2020; 20:377-389. [PMID: 32000644 DOI: 10.2174/1568026620666200130162347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Novel drug development against malaria parasite over old conventional antimalarial drugs is essential due to rapid and indiscriminate use of drugs, which led to the emergence of resistant strains. METHODS In this study, previously reported triazole-amino acid hybrids (13-18) are explored against Plasmodium falciparum as antimalarial agents. Among six compounds, 15 and 18 exhibited antimalarial activity against P. falciparum with insignificant hemolytic activity and cytotoxicity towards HepG2 mammalian cells. In molecular docking studies, both compounds bind into the active site of PfFP-2 and block its accessibility to the substrate that leads to the inhibition of target protein further supported by in vitro analysis. RESULTS Antimalarial half-maximal inhibitory concentration (IC50) of 15 and 18 compounds were found to be 9.26 μM and 20.62 μM, respectively. Blood stage specific studies showed that compounds, 15 and 18 are effective at late trophozoite stage and block egress pathway of parasites. Decreased level of free monomeric heme was found in a dose dependent manner after the treatment with compounds 15 and 18, which was further evidenced by the reduction in percent of hemoglobin hydrolysis. Compounds 15 and 18 hindered hemoglobin degradation via intra- and extracellular cysteine protease falcipain-2 (PfFP-2) inhibitory activity both in in vitro and in vivo in P. falciparum. CONCLUSION We report antimalarial potential of triazole-amino acid hybrids and their role in the inhibition of cysteine protease PfFP-2 as its mechanistic aspect.
Collapse
Affiliation(s)
- Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rahul Singh Hada
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar UP, 201314, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.,Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Kailash C Pandey
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi 110077, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
9
|
Piatek M, Sheehan G, Kavanagh K. UtilisingGalleria mellonella larvae for studying in vivo activity of conventional and novel antimicrobial agents. Pathog Dis 2020; 78:5917982. [DOI: 10.1093/femspd/ftaa059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACTThe immune response of insects displays many structural and functional similarities to the innate immune response of mammals. As a result of these conserved features, insects may be used for evaluating microbial virulence or for testing the in vivo efficacy and toxicity of antimicrobial compounds and results show strong similarities to those from mammals. Galleria mellonella larvae are widely used in this capacity and have the advantage of being easy to use, inexpensive to purchase and house, and being free from the ethical and legal restrictions that relate to the use of mammals in these tests. Galleria mellonella larvae may be used to assess the in vivo toxicity and efficacy of novel antimicrobial compounds. A wide range of antibacterial and antifungal therapies have been evaluated in G. mellonella larvae and results have informed subsequent experiments in mammals. While insect larvae are a convenient and reproducible model to use, care must be taken in their use to ensure accuracy of results. The objective of this review is to provide a comprehensive account of the use of G. mellonella larvae for assessing the in vivo toxicity and efficacy of a wide range of antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Magdalena Piatek
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| | - Gerard Sheehan
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| |
Collapse
|
10
|
Andrade G, Orlando HCS, Scorzoni L, Pedroso RS, Abrão F, Carvalho MTM, Veneziani RCS, Ambrósio SR, Bastos JK, Mendes-Giannini MJS, Martins CHG, Pires RH. Brazilian Copaifera Species: Antifungal Activity against Clinically Relevant Candida Species, Cellular Target, and In Vivo Toxicity. J Fungi (Basel) 2020; 6:jof6030153. [PMID: 32872100 PMCID: PMC7560146 DOI: 10.3390/jof6030153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Plants belonging to the genus Copaifera are widely used in Brazil due to their antimicrobial properties, among others. The re-emergence of classic fungal diseases as a consequence of antifungal resistance to available drugs has stimulated the search for plant-based compounds with antifungal activity, especially against Candida. The Candida-infected Caenorhabditis elegans model was used to evaluate the in vitro antifungal potential of Copaifera leaf extracts and trunk oleoresins against Candida species. The Copaifera leaf extracts exhibited good antifungal activity against all Candida species, with MIC values ranging from 5.86 to 93.75 µg/mL. Both the Copaifera paupera and Copaifera reticulata leaf extracts at 46.87 µg/mL inhibited Candida glabrata biofilm formation and showed no toxicity to C. elegans. The survival of C. glabrata-infected nematodes increased at all the tested extract concentrations. Exposure to Copaifera leaf extracts markedly increased C. glabrata cell vacuolization and cell membrane damage. Therefore, Copaifera leaf extracts are potential candidates for the development of new and safe antifungal agents.
Collapse
Affiliation(s)
- Géssica Andrade
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Haniel Chadwick Silva Orlando
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-902, Brazil; (L.S.); (M.J.S.M.-G.)
- Science and Technology Institute of São José dos Campos (ICT), São Paulo State University (UNESP), São José dos Campos 12245-000, Brazil
| | - Reginaldo Santos Pedroso
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
- Health Technical School (ESTES), Federal University of Uberlandia, Uberlandia 38400-732, Brazil
| | - Fariza Abrão
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Marco Túlio Menezes Carvalho
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Rodrigo Cassio Sola Veneziani
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Sérgio Ricardo Ambrósio
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Jairo Kenupp Bastos
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto 14040-903, Brazil;
| | | | - Carlos Henrique Gomes Martins
- Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia, Uberlandia 38400-902, Brazil
- Correspondence: (C.H.G.M.); (R.H.P.); Tel.: +55-(34)-3225-8670 (C.H.G.M.); +55-(16)-3711-8945 (R.H.P.)
| | - Regina Helena Pires
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
- Correspondence: (C.H.G.M.); (R.H.P.); Tel.: +55-(34)-3225-8670 (C.H.G.M.); +55-(16)-3711-8945 (R.H.P.)
| |
Collapse
|
11
|
Sharma Y, Rastogi SK, Perwez A, Rizvi MA, Manzoor N. β-citronellol alters cell surface properties of Candida albicans to influence pathogenicity related traits. Med Mycol 2020; 58:93-106. [PMID: 30843057 DOI: 10.1093/mmy/myz009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/26/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
The pathogenicity of Candida albicans, an opportunistic human fungal pathogen, is attributed to several virulence factors. β-citronellol is a monoterpenoid present in several plant essential oils. The present study explores the antifungal potential and mode of action of β-citronellol against C. albicans ATCC 90028 (standard), C. albicans D-27 (FLC-sensitive), and C. albicans S-1 (FLC-resistant). Anti-Candida potential was studied by performing MIC, MFC, growth curves, disc diffusion, spot assay, and WST1 cytotoxic assay. Morphological transition was monitored microscopically in both solid and liquid hyphae inducing media. β-citronellol inhibits yeast to hyphal transition in both liquid and solid hyphae inducing media. It had a significant inhibitory effect on biofilm formation and secretion of extracellular proteinases and phospholipases. We showed that it has an adverse effect on membrane ergosterol levels and modulates expression of related ERG genes. Expression profiles of selected genes associated with C. albicans pathogenicity displayed reduced expression in treated cells. This work suggests that β-citronellol inhibits morphological transition in C. albicans and decreases the secretion of hydrolytic enzymes involved in the early stage of infection as well as modulates the expression of associated genes. Pleiotropic phenotype shown by β-citronellol treated Candida cells suggests various modes of action. Further studies will assess the clinical application of β-citronellol in the treatment of fungal infections.
Collapse
Affiliation(s)
- Yamini Sharma
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sumit Kumar Rastogi
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ahmad Perwez
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah-30001, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL. Bioactive Peptides Against Fungal Biofilms. Front Microbiol 2019; 10:2169. [PMID: 31681179 PMCID: PMC6797862 DOI: 10.3389/fmicb.2019.02169] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells’ adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.
Collapse
Affiliation(s)
- Karen G N Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bruna Estéfani D Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
13
|
Suay-García B, Alemán-López PA, Bueso-Bordils JI, Falcó A, Antón-Fos G, Pérez-Gracia MT. New solvent options for in vivo assays in the Galleria mellonella larvae model. Virulence 2019; 10:776-782. [PMID: 31451073 PMCID: PMC6735471 DOI: 10.1080/21505594.2019.1659663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Experimentation in mammals is a long and expensive process in which ethical aspects must be considered, which has led the scientific community to develop alternative models such as that of Galleria mellonella. This model is a cost and time effective option to act as a filter in the drug discovery process. The main limitation of this model is the lack of variety in the solvents used to administer compounds, which limits the compounds that can be studied using this model. Five aqueous (DMSO, MeOH, acetic acid, HCl and NaOH) and four non-aqueous (olive oil, isopropyl myristate, benzyl benzoate and ethyl oleate) solvents was assessed to be used as vehicles for toxicity and antimicrobial activity in vivo assays. All the tested solvents were innocuous at the tested concentrations except for NaOH, which can be used at a maximum concentration of 0.5 M. The toxicity of two additional compounds, 5-aminosalicylic acid and DDT, was also assessed. The results obtained allow for the testing of a broader range of compounds using wax moth larvae. This model appears as an alternative to mammal models, by acting as a filter in the drug development process and reducing costs and time invested in new drugs.
Collapse
Affiliation(s)
- Beatriz Suay-García
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Pedro A Alemán-López
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - José Ignacio Bueso-Bordils
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Antonio Falcó
- ESI International Chair@CEU-UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Gerardo Antón-Fos
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - María Teresa Pérez-Gracia
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| |
Collapse
|
14
|
Wani F, Amaduddin, Aneja B, Sheehan G, Kavanagh K, Ahmad R, Abid M, Patel R. Synthesis of Novel Benzimidazolium Gemini Surfactants and Evaluation of Their Anti-Candida Activity. ACS OMEGA 2019; 4:11871-11879. [PMID: 31460297 PMCID: PMC6682078 DOI: 10.1021/acsomega.9b01056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/10/2019] [Indexed: 09/01/2023]
Abstract
Owing to the rise in antimicrobial and chemotherapeutic drug resistance, there is a desperate need to formulate newer as well as more effective agents. With this perspective, here we outline the synthesis of two novel gemini surfactants with different substitutions at the nitrogen atom of the benzimidazolium ring. Both the compounds induced significant reductions in Candida growth in various yeast strains. The reduction in Candida growth seemed likely through the reduction in ergosterol biosynthesis: a sterol constituent of yeast cell membranes. Different concentrations of both compounds were used to determine the cellular ergosterol content which indicates an important disordering of the ergosterol biosynthetic pathway. Cytotoxic studies were carried out using HEK 293 (human embryonic-kidney cells) and Galleria mellonella larvae (an in vivo model of antimicrobial studies). Administration of both the compounds to G. mellonella larvae diseased by the yeast Candida albicans resulted in increased survival indicating their in vivo activity.
Collapse
Affiliation(s)
- Farooq
Ahmad Wani
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Amaduddin
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Gerard Sheehan
- Department
of Biology, Maynooth University, Co Kildare 045, Ireland
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Co Kildare 045, Ireland
| | - Rabia Ahmad
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, and Department of
Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
| |
Collapse
|
15
|
Gong Y, Liu W, Huang X, Hao L, Li Y, Sun S. Antifungal Activity and Potential Mechanism of N-Butylphthalide Alone and in Combination With Fluconazole Against Candida albicans. Front Microbiol 2019; 10:1461. [PMID: 31312187 PMCID: PMC6614440 DOI: 10.3389/fmicb.2019.01461] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a common opportunistic fungal pathogen that may cause nosocomial fungal infections. The resistance of Candida albicans to traditional antifungal drugs has been increasing rapidly in recent years, and it brings a great challenge in clinical treatment. N-butylphthalide is originally extracted from the seed of Apium graveolens and is currently used for the treatment of ischemic stroke in the clinic. This study demonstrated that n-butylphthalide exhibited antifungal activity against Candida albicans with minimum inhibitory concentrations of 128 μg/ml; moreover, n-butylphthalide combined with fluconazole showed synergistic antifungal effects against resistant Candida albicans, resulting in a decrease in the minimum inhibitory concentrations of fluconazole from >512 to 0.25–1 μg/ml. Time-killing curves verified the antifungal activity in dynamic. Besides, n-butylphthalide exhibited anti-biofilm activity against Candida albicans, biofilms preformed <12 h with sessile minimum inhibitory concentrations of 128–256 μg/ml and synergism was observed when n-butylphthalide combined with fluconazole against resistant Candida albicans biofilms preformed <12 h, resulting in a decrease in the sessile minimum inhibitory concentrations of fluconazole from >1,024 to 0.5–8 μg/ml. Furthermore, in vitro antifungal effects of n-butylphthalide were confirmed in vivo. N-butylphthalide prolonged survival rate of larvae infected by Candida albicans, reduced the fungal burden in larvae and caused less damage to larval tissues. Notably, n-butylphthalide inhibited hyphal growth and induced intracellular reactive oxygen species accumulation and a loss in mitochondrial membrane potential, which was a potential antifungal mechanism. Besides, the synergistic effects between n-butylphthalide and fluconazole potentially relied on the mechanism that n-butylphthalide significantly promoted drug uptake, and suppressed drug efflux via down-regulating the drug transporter encoding genes CDR1 and CDR2. These findings demonstrated the antifungal effects and mechanisms of n-butylphthalide against Candida albicans for the first time, which might provide broad prospects for the identification of new potential antifungal targets.
Collapse
Affiliation(s)
- Ying Gong
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Weiguo Liu
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First University, Jinan, China
| | - Xin Huang
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First University, Jinan, China
| | - Lina Hao
- Department of Pharmacy, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First University, Jinan, China
| |
Collapse
|
16
|
Karmakar U, Samanta R. Pd(II)-Catalyzed Direct Sulfonylation of Benzylamines Using Sodium Sulfinates. J Org Chem 2019; 84:2850-2861. [DOI: 10.1021/acs.joc.8b03098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ujjwal Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
17
|
Design and development of Isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis. Eur J Med Chem 2019; 163:840-852. [DOI: 10.1016/j.ejmech.2018.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022]
|
18
|
Masood MM, Irfan M, Alam S, Hasan P, Queen A, Shahid S, Zahid M, Azam A, Abid M. Synthesis, Antimicrobial Evaluation and In silico Studies of Novel 2,4- disubstituted-1,3-thiazole Derivatives. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180502120042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
2,4-disubstituted-1,3-thiazole derivatives (2a–j), (3a–f) and (4a–f) were
synthesized, characterized and screened for their potential as antimicrobial agents. In the preliminary
screening against a panel of bacterial strains, nine compounds showed moderate to potent antibacterial
activity (IC50 = 13.7-90.8 μg/ml).
</P><P>
Methods: In the antifungal screening, compound (4c) displayed potent antifungal activity
(IC50 = 26.5 µg/ml) against Candida tropicalis comparable to the standard drug, fluconazole
(IC50 = 10.5 µg/ml). Based on in vitro antimicrobial results, compounds 2f, 4c and 4e were selected
for further pharmacological investigations. Hemolytic activity using human red blood cells
(hRBCs) and cytotoxicity by MTT assay on human embryonic kidney (HEK-293) cells revealed
non-toxic nature of the selected compounds (2f, 4c and 4e). To ascertain their possible mode
of action, docking studies with the lead inhibitors (2f, 4c and 4e) were performed using crystal
structure coordinates of bacterial methionine aminopeptidases (MetAPs), an enzyme involved in
bacterial protein synthesis and maturation.
Results:
The results of in vitro and in silico studies provide a rationale for selected compounds (2f,
4c and 4e) to be carried forward for further structural modifications and structure-activity relationship
(SAR) studies against these bacterial infections.
Conclusion:
The study suggested binding with one or more key amino acid residues in the active
site of Streptococcus pneumoniae MetAP (SpMetAP) and Escherichia coli MetAP (EcMetAP). In
silico physicochemical properties using QikProp confirmed their drug likeliness.
Collapse
Affiliation(s)
- Mir Mohammad Masood
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Irfan
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shadab Alam
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Phool Hasan
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Aarfa Queen
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shifa Shahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Amir Azam
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
19
|
Hasan P, Pillalamarri VK, Aneja B, Irfan M, Azam M, Perwez A, Maguire R, Yadava U, Kavanagh K, Daniliuc CG, Ahmad MB, Rizvi MMA, Rizwanul Haq QM, Addlagatta A, Abid M. Synthesis and mechanistic studies of diketo acids and their bioisosteres as potential antibacterial agents. Eur J Med Chem 2018; 163:67-82. [PMID: 30503944 DOI: 10.1016/j.ejmech.2018.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/13/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
A series of diketo esters and their pertinent bioisosteres were designed and synthesized as potent antibacterial agents by targeting methionine amino peptidases (MetAPs). In the biochemical assay against purified MetAPs from Streptococcus pneumoniae (SpMetAP1a), Mycobacterium tuberculosis (MtMetAP1c), Enterococcus faecalis (EfMetAP1a) and human (HsMetAP1b), compounds 3a, 4a and 5a showed more than 85% inhibition of all the tested MetAPs at 100 μM concentration. Compounds 4a and 5a also exhibited antibacterial potential with MIC values 62.5 μg/mL (S. pneumoniae), 31.25 μg/mL (E. faecalis), 62.5 μg/mL (Escherichia coli) and 62.5 μg/mL (S. pneumoniae), 62.5 μg/mL (E. coli), respectively. Moreover, 5a also significantly inhibited the growth of multidrug resistant E. coli strains at 512 μg/mL conc., while showing no cytotoxic effect towards healthy CHO cells and thus being selected. Growth kinetics study showed significant inhibition of bacterial growth when treated with different conc. of 5a. TEM analysis also displayed vital damage to bacterial cells by 5a at MIC conc. Moreover, significant inhibition of biofilm formation was observed in bacterial cells treated with MIC conc. of 5a as visualized by SEM micrographs. Interestingly, 5a did not cause an alteration in the hemocyte density in Galleria mellonella larvae which is considered in vivo model for antimicrobial studies and was non-toxic up to a conc. of 2.5 mg/mL.
Collapse
Affiliation(s)
- Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India; Department of Chemistry, TNB College, TM Bhagalpur University, Bhagalpur, 812007, India
| | - Vijay K Pillalamarri
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500607, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mudsser Azam
- Microbiology Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ahmad Perwez
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ronan Maguire
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, W23 F2H6, Ireland
| | | | - Md Belal Ahmad
- Department of Chemistry, TNB College, TM Bhagalpur University, Bhagalpur, 812007, India
| | - M Moshahid A Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Qazi Mohd Rizwanul Haq
- Microbiology Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anthony Addlagatta
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500607, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
20
|
Maji K, Abbasi M, Podder D, Datta R, Haldar D. Potential Antileishmanial Activity of a Triazole-Based Hybrid Peptide against Leishmania major. ChemistrySelect 2018. [DOI: 10.1002/slct.201802002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Krishnendu Maji
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246, West Bengal India
| | - Mazharul Abbasi
- Department of Biological Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246, West Bengal India
| | - Debasish Podder
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246, West Bengal India
| | - Rupak Datta
- Department of Biological Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246, West Bengal India
| | - Debasish Haldar
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246, West Bengal India
| |
Collapse
|
21
|
Kavanagh K, Sheehan G. The Use of Galleria mellonella Larvae to Identify Novel Antimicrobial Agents against Fungal Species of Medical Interest. J Fungi (Basel) 2018; 4:jof4030113. [PMID: 30235800 PMCID: PMC6162640 DOI: 10.3390/jof4030113] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system of insects and the innate immune response of mammals share many similarities and, as a result, insects may be used to assess the virulence of fungal pathogens and give results similar to those from mammals. Larvae of the greater wax moth Galleria mellonella are widely used in this capacity and also for assessing the toxicity and in vivo efficacy of antifungal drugs. G. mellonella larvae are easy to use, inexpensive to purchase and house, and have none of the legal/ethical restrictions that are associated with use of mammals. Larvae may be inoculated by intra-hemocoel injection or by force-feeding. Larvae can be used to assess the in vivo toxicity of antifungal drugs using a variety of cellular, proteomic, and molecular techniques. Larvae have also been used to identify the optimum combinations of antifungal drugs for use in the treatment of recalcitrant fungal infections in mammals. The introduction of foreign material into the hemocoel of larvae can induce an immune priming effect which may operate independently with the activity of the antifungal drug. Procedures to identify this effect and limit its action are required.
Collapse
Affiliation(s)
- Kevin Kavanagh
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland.
| | - Gerard Sheehan
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland.
| |
Collapse
|
22
|
Aneja B, Azam M, Alam S, Perwez A, Maguire R, Yadava U, Kavanagh K, Daniliuc CG, Rizvi MMA, Haq QMR, Abid M. Natural Product-Based 1,2,3-Triazole/Sulfonate Analogues as Potential Chemotherapeutic Agents for Bacterial Infections. ACS OMEGA 2018; 3:6912-6930. [PMID: 30023966 PMCID: PMC6044994 DOI: 10.1021/acsomega.8b00582] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/08/2018] [Indexed: 05/18/2023]
Abstract
Despite the vast availability of antibiotics, bacterial infections remain a leading cause of death worldwide. In an effort to enhance the armamentarium against resistant bacterial strains, 1,2,3-triazole (5a-x) and sulfonate (7a-j) analogues of natural bioactive precursors were designed and synthesized. Preliminary screening against two Gram-positive (Streptococcus pneumoniae and Enterococcus faecalis) and four Gram-negative bacterial strains (Pseudomonas aeruginosa, Salmonella enterica, Klebsiella pneumoniae, and Escherichia coli) was performed to assess the potency of these analogues as antibacterial agents. Among all triazole analogues, 5e (derived from carvacrol) and 5u (derived from 2-hydroxy 1,4-naphthoquinone) bearing carboxylic acid functionality emerged as potent antibacterial agents against S. pneumoniae (IC50: 62.53 and 39.33 μg/mL), E. faecalis (IC50: 36.66 and 61.09 μg/mL), and E. coli (IC50: 15.28 and 22.57 μg/mL). Furthermore, 5e and 5u also demonstrated moderate efficacy against multidrug-resistant E. coli strains and were therefore selected for further biological studies. Compound 5e in combination with ciprofloxacin displayed a synergistic effect on multidrug-resistant E. coli MRA11 and MRC17 strains, whereas compound 5u was selective against E. coli MRA11 strain. Growth kinetic studies on S. pneumoniae and E. coli treated with 5e and 5u showed an extended lag phase. 5e and 5u did not show significant cytotoxicity up to 100 μg/mL concentration on human embryonic kidney (HEK293) cells. Transmission electron microscopic (TEM) analysis of bacterial cells (S. pneumoniae and E. coli) exposed to 5e and 5u clearly showed morphological changes and damaged cell walls. Moreover, these compounds also significantly inhibited biofilm formation in S. pneumoniae and E. coli strains, which was visualized by scanning electron microscopic (SEM) analysis. Treatment of larvae of Galleria mellonella (an in vivo model for antimicrobial studies) with 5e and 5u did not cause an alteration in the hemocyte density, thereby indicating lack of an immune response, and were nontoxic up to a concentration of 2.5 mg/mL.
Collapse
Affiliation(s)
- Babita Aneja
- Medicinal
Chemistry Laboratory, Department of Biosciences, Department of Chemistry, Microbiology Research
Laboratory, Department of Biosciences, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mudsser Azam
- Medicinal
Chemistry Laboratory, Department of Biosciences, Department of Chemistry, Microbiology Research
Laboratory, Department of Biosciences, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shadab Alam
- Medicinal
Chemistry Laboratory, Department of Biosciences, Department of Chemistry, Microbiology Research
Laboratory, Department of Biosciences, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ahmad Perwez
- Medicinal
Chemistry Laboratory, Department of Biosciences, Department of Chemistry, Microbiology Research
Laboratory, Department of Biosciences, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ronan Maguire
- Department
of Biology, Maynooth University, Co. Kildare ABC127, Ireland
| | - Umesh Yadava
- Department
of Physics, Deen Dayal Upadhyay Gorakhpur
University, Gorakhpur, Uttar Pradesh 273009, India
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Co. Kildare ABC127, Ireland
| | | | - M. Moshahid A. Rizvi
- Medicinal
Chemistry Laboratory, Department of Biosciences, Department of Chemistry, Microbiology Research
Laboratory, Department of Biosciences, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Qazi Mohd. Rizwanul Haq
- Medicinal
Chemistry Laboratory, Department of Biosciences, Department of Chemistry, Microbiology Research
Laboratory, Department of Biosciences, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal
Chemistry Laboratory, Department of Biosciences, Department of Chemistry, Microbiology Research
Laboratory, Department of Biosciences, and Genome Biology Laboratory, Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- E-mail: . Phone: +91-8750295095. Fax: +91-11-26980229 (Mohammad Abid)
| |
Collapse
|
23
|
Van Dijck P, Sjollema J, Cammue BPA, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NA, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SA, Thevissen K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:300-326. [PMID: 29992128 PMCID: PMC6035839 DOI: 10.15698/mic2018.07.638] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, The Netherlands
| | - Bruno P. A. Cammue
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Belgium
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Dept. Microbiology and Molecular Biology, Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Emilia Cantón
- Severe Infection Research Group: Medical Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms, Switzerland
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY USA
| | | | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Re-serve University, Cleveland, OH, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Hubertus Haas
- Biocenter - Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, USA
| | - Elizabeth M. Johnson
- National Infection Service, Public Health England, Mycology Reference Laboratory, Bristol, UK
| | | | | | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium and Clinical Department of Haematology, UZ Leuven, Leuven, Belgium
| | - Carol A. Munro
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeniel E. Nett
- University of Wisconsin-Madison, Departments of Medicine and Medical Microbiology & Immunology, Madison, WI, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, USA
| | - Michael A. Pfaller
- Departments of Pathology and Epidemiology, University of Iowa, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | - Gordon Ramage
- ESCMID Study Group for Biofilms, Switzerland
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, IRCCS-Fondazione Policlinico "Agostino Gemelli", Rome, Italy
| | - Isabel Spriet
- Pharmacy Dpt, University Hospitals Leuven and Clinical Pharmacology and Pharmacotherapy, Dpt. of Pharmaceutical and Pharma-cological Sciences, KU Leuven, Belgium
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands (omit "Nijmegen" in Radboud University Medical Center)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Joost Wauters
- KU Leuven-University of Leuven, University Hospitals Leuven, Department of General Internal Medicine, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael R. Yeaman
- Geffen School of Medicine at the University of California, Los Angeles, Divisions of Molecular Medicine & Infectious Diseases, Har-bor-UCLA Medical Center, LABioMed at Harbor-UCLA Medical Center
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Am-sterdam, Netherlands
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Aneja B, Arif R, Perwez A, Napoleon JV, Hasan P, Rizvi MMA, Azam A, Rahisuddin, Abid M. N-Substituted 1,2,3-Triazolyl-Appended Indole-Chalcone Hybrids as Potential DNA Intercalators Endowed with Antioxidant and Anticancer Properties. ChemistrySelect 2018. [DOI: 10.1002/slct.201702913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Babita Aneja
- Department of Biosciences; Jamia Millia Islamia; Medicinal Chemistry Laboratory, Jamia Nagar; New Delhi 110025 India
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Rizwan Arif
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Ahmad Perwez
- Department of Biosciences; Jamia Millia Islamia; Genome Biology Laboratory, Jamia Nagar; New Delhi 110025 India
| | - John V. Napoleon
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE 68198-6805 USA
| | - Phool Hasan
- Department of Biosciences; Jamia Millia Islamia; Medicinal Chemistry Laboratory, Jamia Nagar; New Delhi 110025 India
| | - M. Moshahid A. Rizvi
- Department of Biosciences; Jamia Millia Islamia; Genome Biology Laboratory, Jamia Nagar; New Delhi 110025 India
| | - Amir Azam
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Rahisuddin
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Mohammad Abid
- Department of Biosciences; Jamia Millia Islamia; Medicinal Chemistry Laboratory, Jamia Nagar; New Delhi 110025 India
| |
Collapse
|
25
|
Masood MM, Irfan M, Khan P, Alajmi MF, Hussain A, Garrison J, Rehman MT, Abid M. 1,2,3-Triazole–quinazolin-4(3H)-one conjugates: evolution of ergosterol inhibitor as anticandidal agent. RSC Adv 2018; 8:39611-39625. [PMID: 35558055 PMCID: PMC9090800 DOI: 10.1039/c8ra08426b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
Abstract
The present study describes the synthesis of 1,2,3-triazole–quinazolinone conjugates (5a–q) from ethyl 4-oxo-3-(prop-2-ynyl)-3,4-dihydroquinazoline-2-carboxylate and phenyl azide/substituted phenyl azides employing Cu(i) catalysed Huisgen 1,3-dipolar cycloaddition. The corresponding acids (6a–q) were obtained by hydrolysis of esters (5a–q) to study the effect of these functionalities on the biological activity. All synthesized compounds were screened for in vitro anticandidal evaluation against Candia albicans, Candida glabrata and Candida tropicalis strains. The results indicated that compound 5n showed potent anticandidal activity with IC50 in the range of 8.4 to 14.6 μg mL−1. Hemolytic activity using human red blood cells (hRBCs) and cytotoxicity by MTT assay on human embryonic kidney (HEK-293) cells revealed the non-toxic nature of the selected compounds. Growth kinetic study with compound 5n showed its fungicidal nature as no significant growth of Candida cells was observed even after 24 h. Cellular ergosterol content was determined in the presence of different concentrations of 5n to measure the activity of lanosterol 14α-demethylase indirectly. The results showed significant disruption of the ergosterol biosynthetic pathway through inhibition of lanosterol 14α-demethylase activity supported by docking studies (PDB: 5v5z). Overall, this study demonstrates the anticandidal potential of 5n which can serve as the lead for further structural optimization and SAR studies. The present study elicits the synthesis of 1,2,3-triazole–quinazolinone conjugates (5a–q) as ergosterol inhibitors for Candida infections.![]()
Collapse
Affiliation(s)
- Mir Mohammad Masood
- Medicinal Chemistry Laboratory
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi-110025
- India
| | - Mohammad Irfan
- Medicinal Chemistry Laboratory
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi-110025
- India
| | - Parvez Khan
- Center for Interdisciplinary Research in Basic Science
- Jamia Millia Islamia
- New Delhi
- India-110025
| | - Mohamed F. Alajmi
- Department of Pharmacognosy
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Jered Garrison
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Nebraska Medical Center
- Omaha
- USA
| | - Md. Tabish Rehman
- Department of Pharmacognosy
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory
- Department of Biosciences
- Jamia Millia Islamia
- New Delhi-110025
- India
| |
Collapse
|
26
|
Vellé A, Maguire R, Kavanagh K, Sanz Miguel PJ, Montagner D. Steroid-AuI
-NHC Complexes: Synthesis and Antibacterial Activity. ChemMedChem 2017; 12:841-844. [DOI: 10.1002/cmdc.201700257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Alba Vellé
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
- Chemistry Department; Maynooth University; Maynooth Ireland
- Biology Department; Maynooth University; Maynooth Ireland
| | - Ronan Maguire
- Biology Department; Maynooth University; Maynooth Ireland
| | - Kevin Kavanagh
- Biology Department; Maynooth University; Maynooth Ireland
| | - Pablo J. Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | | |
Collapse
|
27
|
Maguire R, Kunc M, Hyrsl P, Kavanagh K. Analysis of the acute response of Galleria mellonella larvae to potassium nitrate. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:44-51. [PMID: 28232230 DOI: 10.1016/j.cbpc.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 01/04/2023]
Abstract
Potassium nitrate (E252) is widely used as a food preservative and has applications in the treatment of high blood pressure however high doses are carcinogenic. Larvae of Galleria mellonella were administered potassium nitrate to establish whether the acute effects in larvae correlated with those evident in mammals. Intra-haemocoel injection of potassium nitrate resulted in a significant increase in the density of circulating haemocytes and a small change in the relative proportions of haemocytes but haemocytes showed a reduced fungicidal ability. Potassium nitrate administration resulted in increased superoxide dismutase activity and in the abundance of a range of proteins associated with mitochondrial function (e.g. mitochondrial aldehyde dehydrogenase, putative mitochondrial Mn superoxide dismutase), metabolism (e.g. triosephosphate isomerase, glyceraldehyde 3 phosphate dehydrogenase) and nitrate metabolism (e.g. aliphatic nitrilase, glutathione S-transferase). A strong correlation exists between the toxicity of a range of food preservatives when tested in G. mellonella larvae and rats. In this work a correlation between the effect of potassium nitrate in larvae and mammals is shown and opens the way to the utilization of insects for studying the in vivo acute and chronic toxicity of xenobiotics.
Collapse
Affiliation(s)
- Ronan Maguire
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Martin Kunc
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Pavel Hyrsl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
28
|
Effect of quinoline based 1,2,3-triazole and its structural analogues on growth and virulence attributes of Candida albicans. PLoS One 2017; 12:e0175710. [PMID: 28430797 PMCID: PMC5400251 DOI: 10.1371/journal.pone.0175710] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/30/2017] [Indexed: 11/29/2022] Open
Abstract
Candida albicans, along with some other non-albicans Candida species, is a group of yeast, which causes serious infections in humans that can be both systemic and superficial. Despite the fact that extensive efforts have been put into the discovery of novel antifungal agents, the frequency of these fungal infections has increased drastically worldwide. In our quest for the discovery of novel antifungal compounds, we had previously synthesized and screened quinoline containing 1,2,3-triazole (3a) as a potent Candida spp inhibitor. In the present study, two structural analogues of 3a (3b and 3c) have been synthesized to determine the role of quinoline and their anti-Candida activities have been evaluated. Preliminary results helped us to determine 3a and 3b as lead inhibitors. The IC50 values of compound 3a for C. albicans ATCC 90028 (standard) and C. albicans (fluconazole resistant) strains were 0.044 and 2.3 μg/ml, respectively while compound 3b gave 25.4 and 32.8 μg/ml values for the same strains. Disk diffusion, growth and time kill curve assays showed significant inhibition of C. albicans in the presence of compounds 3a and 3b. Moreover, 3a showed fungicidal nature while 3b was fungistatic. Both the test compounds significantly lower the secretion of proteinases and phospholipases. While, 3a inhibited proteinase secretion in C. albicans (resistant strain) by 45%, 3b reduced phospholipase secretion by 68% in C. albicans ATCC90028 at their respective MIC values. Proton extrusion and intracellular pH measurement studies suggested that both compounds potentially inhibit the activity of H+ ATPase, a membrane protein that is crucial for various cell functions. Similarly, 95–97% reduction in ergosterol content was measured in the presence of the test compounds at MIC and MIC/2. The study led to identification of two quinoline based potent inhibitors of C. albicans for further structural optimization and pharmacological investigation.
Collapse
|
29
|
Masood MM, Hasan P, Tabrez S, Ahmad MB, Yadava U, Daniliuc CG, Sonawane YA, Azam A, Rub A, Abid M. Anti-leishmanial and cytotoxic activities of amino acid-triazole hybrids: Synthesis, biological evaluation, molecular docking and in silico physico-chemical properties. Bioorg Med Chem Lett 2017; 27:1886-1891. [PMID: 28359789 DOI: 10.1016/j.bmcl.2017.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 11/17/2022]
Abstract
According to WHO, leishmaniasis is a major tropical disease, ranking second after malaria. Significant efforts have been therefore invested into finding potent inhibitors for the treatment. In this work, eighteen novel 1,2,3-triazoles appended with l-amino acid (Phe/Pro/Trp) tail were synthesized via azide-alkyne click chemistry with moderate to good yield, and evaluated for their anti-leishmanial activity against promastigote form of Leishmania donovani (Dd8 strain). Among all, compounds 40, 43, and 53 were identified with promising anti-leishmanial activity with IC50=88.83±2.93, 96.88±12.88 and 94.45±6.51μM respectively and displayed no cytotoxicity towards macrophage cells. Moreover, compound 43 showed highest selectivity index (SI=8.05) among all the tested compounds. Supported by docking studies, the lead inhibitors (40, 43 and 53) showed interactions with key residues in the catalytic site of trypanothione reductase. The results of pharmacokinetic parameters suggest that these selected inhibitors can be carried forward for further structural optimization and pharmacological investigation.
Collapse
Affiliation(s)
- Mir Mohammad Masood
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Phool Hasan
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Chemistry, TNB College, TM Bhagalpur University, Bhagalpur 812007, Bihar, India
| | - Shams Tabrez
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Bilal Ahmad
- Department of Chemistry, TNB College, TM Bhagalpur University, Bhagalpur 812007, Bihar, India
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, UP 273009, India
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelm-Universität Münster, 48149, Germany
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Amir Azam
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|