1
|
Tsai MS, Lee CH, Hsiao JC, Sun SS, Yang JS. Solvatochromic Fluorescence of a GFP Chromophore-Containing Organogelator in Solutions and Organogels. J Org Chem 2021; 87:1723-1731. [PMID: 34649423 DOI: 10.1021/acs.joc.1c01911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solvatofluorochromism, a solvation effect on the fluorescence color of an organic dye, is a property generally limited to fluid solutions. We demonstrate herein the concept of solid-state solvatofluorochromism by using an organogelator (1-SG), which consists of a solvatofluorochromic green fluorescence protein (GFP) chromophore (1) and a sugar gelator (SG). While 1-SG could be located in the liquid phase or in the fibrous solid matrix of the SG gel, our results show that the one in the solid matrix but near the liquid interface has superior fluorescence stability and quantum efficiency as well as solvatofluorochromicity than the one in the liquid phase. In addition, the phenomenon of fluorescence turn-on occurs when the gel is formed in protic solvents. These features have been applied to perform multicolor fluorescence patterning, chemical vapor sensing, data encryption and decryption, and real-time fluorescence cell imaging.
Collapse
Affiliation(s)
- Meng-Shiue Tsai
- Department of Chemistry, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan.,Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Chin-Han Lee
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Jye-Chian Hsiao
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Shih-Sheng Sun
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Cao X, Gao A, Hou JT, Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213792] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Ortuño RM. Carbocycle-Based Organogelators: Influence of Chirality and Structural Features on Their Supramolecular Arrangements and Properties. Gels 2021; 7:gels7020054. [PMID: 34062755 PMCID: PMC8162357 DOI: 10.3390/gels7020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
The rational design and engineer of organogel-based smart materials and stimuli-responsive materials with tuned properties requires the control of the non-covalent forces driving the hierarchical self-assembly. Chirality, as well as cis/trans relative configuration, also plays a crucial role promoting the morphology and characteristics of the aggregates. Cycloalkane derivatives can provide chiral chemical platforms allowing the incorporation of functional groups and hydrophobic structural units able for a convenient molecular stacking leading to gels. Restriction of the conformational freedom imposed by the ring strain is also a contributing issue that can be modulated by the inclusion of flexible segments. In addition, donor/acceptor moieties can also be incorporated favoring the interactions with light or with charged species. This review offers a perspective on the abilities and properties of carbocycle-based organogelators starting from simple cycloalkane derivatives, which were the key to establish the basis for an effective self-assembling, to sophisticated polycyclic compounds with manifold properties and applications.
Collapse
Affiliation(s)
- Rosa M Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
4
|
Panja A, Raza R, Ghosh K. Cholesterol‐Coupled Diazine‐Phenol Gelator: Cyanide Sensing, Phase‐Selective Gelation in Oil Spill Recovery and Dye Adsorption. ChemistrySelect 2020. [DOI: 10.1002/slct.202002868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Atanu Panja
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | - Rameez Raza
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | - Kumaresh Ghosh
- Department of Chemistry University of Kalyani Kalyani 741235 India
| |
Collapse
|
5
|
Yin W, Zhang S, Yang Z, Shah I, Li Z, Zhang S, Zhang B, Yang Y, Lv J, Ma H. Supramolecular Polymerizations via AIE-Active Monomers: Synthesis, Self-Assembly Mechanism Study, and Explosive Detection. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weidong Yin
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Shaoxiong Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zengming Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Imran Shah
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhao Li
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Shengjun Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bo Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jiawei Lv
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
6
|
Liu Y, Liu L, Zhang L, Lv X, Che G. A monopyrrolotetrathiafulvalene based naphthalimide tailored organogelator with stimuli responsive properties and absorption for rhodamine B. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Guo J, Yu X, Zhang Z, Li Y. Self-healing gels triggered by ultrasound with color-tunable emission based on ion recognition. J Colloid Interface Sci 2019; 540:134-141. [PMID: 30639660 DOI: 10.1016/j.jcis.2019.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/13/2018] [Accepted: 01/04/2019] [Indexed: 02/04/2023]
Abstract
Herein, O-substituted terpyridine motif was used as both rigid fluorescent π core and ion binding site, in order to construct an novel amphiphilic organogelator TEC containing cholesterol unit. We demonstrated a ultrasound induced reversible sol-gel transition approach driven by adjusted non covalent interactions and the resulted gels showed self-healing properties and tunable emission color when incorporating inorganic ions into the gel matrices. By heating-cooling process, the gel transformed to sol again. Simultaneously, the vesicle-tube morphology transition controlled by sonication and heating-cooling was also observed, together with aggregation induced emission enhancement (AIE) property of the gel. The results suggested that ultrasound promoted the J aggregations of terpyridine motifs and enhanced the hydrogen bonding interactions of TEC molecules, leading to the gelation process.
Collapse
Affiliation(s)
- Jiangbo Guo
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | - Zheng Zhang
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajuan Li
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| |
Collapse
|
8
|
Pang X, Ge J, Yu X, Li Y, Shen F, Wang Y, Ren J. An “off–on” fluorescent naphthalimide-based sensor for anions: its application in visual F− and AcO− discrimination in a self-assembled gel state. NEW J CHEM 2019. [DOI: 10.1039/c9nj01687b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, we report a novel fluorescent organogelator that could discriminate F− from AcO− in both solution and gel systems.
Collapse
Affiliation(s)
- Xuelei Pang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Junqi Ge
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Xudong Yu
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Yajuan Li
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Fengjuan Shen
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Yanqiu Wang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| | - Jujie Ren
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering
- Hebei University of Science and Technology
- Shijiazhuang 050080
- P. R. China
| |
Collapse
|
9
|
Albuquerque HMT, Santos CMM, Silva AMS. Cholesterol-Based Compounds: Recent Advances in Synthesis and Applications. Molecules 2018; 24:E116. [PMID: 30597999 PMCID: PMC6337470 DOI: 10.3390/molecules24010116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 01/31/2023] Open
Abstract
This review reports on the latest developments (since 2014) in the chemistry of cholesterol and its applications in different research fields. These applications range from drug delivery or bioimaging applications to cholesterol-based liquid crystals and gelators. A brief overview of the most recent synthetic procedures to obtain new cholesterol derivatives is also provided, as well as the latest anticancer, antimicrobial, and antioxidant new cholesterol-based derivatives. This review discusses not only the synthetic details of the preparation of new cholesterol derivatives or conjugates, but also gives a short summary concerning the specific application of such compounds.
Collapse
Affiliation(s)
- Hélio M T Albuquerque
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Clementina M M Santos
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Sun J, Qian C, Xu S, Jia X, Zhai L, Zhao J, Lu R. H- and J-aggregates formed from a nontraditional π-gelator depending on the solvent polarity for the detection of amine vapors. Org Biomol Chem 2018; 16:7438-7445. [PMID: 30264839 DOI: 10.1039/c8ob01596a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A tert-butyl carbazole-modified difluoroboron β-diketonate complex (TCbzB) has been synthesized. Although no traditional gelation group was involved in TCbzB, it could form organogels in the mixed solvents of o-dichlorobenzene/cyclohexane (v/v = 1/5 or 1/2), toluene/cyclohexane (v/v = 1/2) and chlorobenzene/cyclohexane (v/v = 1/2). Interestingly, an orange organogel was obtained in o-dichlorobenzene/cyclohexane (v/v = 1/2) with relatively high polarity and red organogels were gained in the other three mixed solvents with relatively low polarity. TCbzB self-assembled into H-aggregates and J-aggregates in orange and red organogels, respectively, and the corresponding xerogels emitted yellow and red light, respectively, under UV illumination. The red emission of the xerogel-based film could be quenched significantly by gaseous n-propylamine and aniline because of the decomplexation of the difluoroboron β-diketonate complex by n-propylamine and the weak interactions between aniline and boron difluoride units.
Collapse
Affiliation(s)
- Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Pang X, Li L, Wei Y, Yu X, Li Y. Novel luminescent lanthanide(iii) hybrid materials: fluorescence sensing of fluoride ions and N,N-dimethylformamide. Dalton Trans 2018; 47:11530-11538. [PMID: 30079916 DOI: 10.1039/c8dt02404a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two novel luminescent organic-inorganic hybrid materials, Ln(L-SBA15)3phen (Ln = Eu, Tb), were designed and synthesized. The organic ligand phenylurea was modified by the silane coupling agent 3-(triethoxysilyl)propyl isocyanate (TESPIC) to form a precursor (L), which was covalently bonded onto a mesoporous SBA-15 backbone to form mesoporous L-SBA15 through co-hydrolysis and co-condensation reactions. 1,10-Phenanthroline monohydrate (phen) was selected as the second ligand to improve the luminescence of the final products, and the two mesoporous hybrid materials Ln(L-SBA15)3phen were obtained after the coordination reaction between the organic ligands (phen and L-SBA15) and Ln(iii) ions. Both the mesoporous hybrid materials were examined by Fourier transform infrared spectroscopy, transmission electron microscopy, small-angle X-ray diffraction, N2 adsorption-desorption curves, and photoluminescence spectroscopy. The results show that both the hybrid materials showed highly ordered mesoporous structures, high surface areas, and excellent photophysical properties (long luminescence lifetimes and high quantum efficiencies). Furthermore, the fluorescence sensing properties of the materials were investigated systematically, and the hybrid materials were revealed to be promising examples of dual functional materials with good ability to sense fluoride ions and a small organic molecule N,N-dimethylformamide.
Collapse
Affiliation(s)
- Xuelei Pang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | | | | | | | | |
Collapse
|
12
|
Wang H, Zhao J, Yang G, Zhang F, Sun J, Lu R. Diarylethene-based xerogels: the fabrication of more entangled networks driven by isomerization and acidofluorochromism. Org Biomol Chem 2018; 16:2114-2124. [DOI: 10.1039/c8ob00113h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The organogels were formed from fully-conjugated styrylbenzoxazoles and styrylbenzothiazoles without traditional gelation groups.
Collapse
Affiliation(s)
- Haoran Wang
- Sate Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Jinyu Zhao
- Sate Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Guojian Yang
- Sate Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Fushuang Zhang
- Sate Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Jingbo Sun
- Sate Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Ran Lu
- Sate Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| |
Collapse
|
13
|
Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1683-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|