1
|
Bergunde L, Steudte-Schmiedgen S, Karl M, Jaramillo I, Gao W, von Soest T, Garthus-Niegel S. Stability and inter-family associations of hair endocannabinoid and N-acylethanolamines across the perinatal period in mothers, fathers, and children. Sci Rep 2024; 14:9459. [PMID: 38658668 PMCID: PMC11043453 DOI: 10.1038/s41598-024-59818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Analysis of endocannabinoids (ECs) and N-acylethanolamines (NAEs) in hair is assumed to retrospectively assess long-term EC/NAE concentrations. To inform their use, this study investigated stability of EC/NAE hair concentrations in mothers, fathers, and their children across the perinatal period as well as associations between family members. In a prospective cohort study, EC (AEA, 1-AG/2-AG) and NAE (SEA, PEA, OEA) levels were quantified in hair samples taken four times in mothers (n = 336) and their partners (n = 225) from pregnancy to two years postpartum and in offspring (n = 319) from shortly after birth to two years postpartum. Across the perinatal period, maternal and paternal hair ECs/NAEs showed poor multiple-test consistency (16-36%) and variable relative stability, as well as inconsistent absolute stability for mothers. Regarding children, hair ECs/NAEs evidenced poor multiple-test consistency (4-19%), no absolute stability, and either no or variable relative stability. Hair ECs/NAEs showed small to medium significant associations across the perinatal period within couples and parent-child dyads. Findings suggest hair ECs/NAEs during the perinatal period possess variable stability in adults, albeit more stability in fathers than mothers in this time. This highlights the need to further investigate factors associated with changes in hair ECs/NAEs across time. The first two years of life may be a dynamic phase for the endocannabinoid system in children, potentially characterized by complex within-family correspondence that requires further systematic investigation.
Collapse
Affiliation(s)
- L Bergunde
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| | - S Steudte-Schmiedgen
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - M Karl
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - I Jaramillo
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - W Gao
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - T von Soest
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - S Garthus-Niegel
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Systems Medicine (ISM), Faculty of Medicine, Medical School Hamburg MSH, Hamburg, Germany
- Department of Childhood and Families, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
2
|
Slominski RM, Chen JY, Raman C, Slominski AT. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc Natl Acad Sci U S A 2024; 121:e2308374121. [PMID: 38489380 PMCID: PMC10998607 DOI: 10.1073/pnas.2308374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Departments of Genetics, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Jake Y. Chen
- Department of Biomedical Informatics and Data Science, the University of Alabama at Birmingham, Birmingham, AL35294
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Andrzej T. Slominski
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
- Veteran Administration Medical Center, Birmingham, AL35294
| |
Collapse
|
3
|
Barba SV, Kirschbaum C, Gao W. Endocannabinoid and perceived stress: Association analysis of endocannabinoid levels in hair versus levels in plasma and urine. Biol Psychol 2023; 178:108541. [PMID: 36918140 DOI: 10.1016/j.biopsycho.2023.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
The endocannabinoid system is considered to play a role in a wide range of functions, including stress. Hair analysis of endocannabinoids presents a promising methodological advancement for the retrospective assessment of long-term cumulative endocannabinoid secretion. Despite promising pilot study results suggesting the usefulness of hair endocannabinoid assessments, it remains unclear whether hair endocannabinoid levels mirror systemic endocannabinoid levels accurately. Two independent studies were conducted to investigate to what extent hair endocannabinoid and N-Acylethanolamine levels reflect the systemic levels retrospectively. Endocannabinoid and N-Acylethanolamine levels were measured in 3 cm and 1 cm hair segments respectively, and compared with the averaged levels in multiple plasma samples collected during three months (Study I), and in multiple 24-hour urine samples collected over a month (Study II). In addition, the Perceived Stress Scale was used to assess the perceived stress throughout the studies. Against our hypothesis, no association was found between the endocannabinoid or N-Acylethanolamine levels in hair and plasma or urine. However, hair palmitoylethanolamide (PEA), oleoylethanolamide (OEA), and stearoylethanolamide (SEA) levels were positively correlated with perceived stress in Study I. The current findings suggest that hair endocannabinoid or N-Acylethanolamine levels might not accurately reflect the levels of peripheral circulating endocannabinoid or N-Acylethanolamine. Nevertheless, hair N-Acylethanolamine levels might emerge as a useful strategy in the study of some psychological phenotypes, such as stress.
Collapse
Affiliation(s)
- Sonia Valdivieso Barba
- Faculty of Psychology, Chair of Biological Psychology, Technische Universität Dresden, Dresden, Germany
| | - Clemens Kirschbaum
- Faculty of Psychology, Chair of Biological Psychology, Technische Universität Dresden, Dresden, Germany
| | - Wei Gao
- Faculty of Psychology, Chair of Biological Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Gao W, Schmidt K, Enge S, Kirschbaum C. Intra-individual stability of hair endocannabinoid and N-acylethanolamine concentrations. Psychoneuroendocrinology 2021; 133:105395. [PMID: 34482257 DOI: 10.1016/j.psyneuen.2021.105395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Hair analysis of endocannabinoids and N-acylethanolamines presents a promising methodological advancement for the retrospective assessment of long-term cumulative endocannabinoids and N-acylethanolamines secretion over extended periods of time. A main assumption of this method application that hair endocannabinoid and N-acylethanolamine concentrations show intra-individual stability has not been confirmed yet. Thus, in the current study hair endocannabinoid and N-acylethanolamine levels were measured over a period of two and a half years with six months between each hair sample collection in 100 female participants. We found strong test-retest associations of hair endocannabinoid and N-acylethanolamine levels with intraclass correlation coefficients between 0.79 and 0.92. Furthermore, no correlations between perceived stress and hair endocannabinoids or N-acylethanolamines was observed. The current findings support the notion that endocannabinoids and N-acylethanolamines in hair are rather trait biomarkers that are stable over a considerable period of time rather than rapidly changing state markers.
Collapse
Affiliation(s)
- Wei Gao
- Faculty of Psychology, Chair of Biological Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Kornelius Schmidt
- Faculty of Psychology, Chair of Biological Psychology, Technische Universität Dresden, Dresden, Germany
| | - Sören Enge
- Faculty of Natural Sciences, Department of Psychology, Medical School Berlin, Berlin, Germany
| | - Clemens Kirschbaum
- Faculty of Psychology, Chair of Biological Psychology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Gao W, Walther A, Wekenborg M, Penz M, Kirschbaum C. Determination of endocannabinoids and N-acylethanolamines in human hair with LC-MS/MS and their relation to symptoms of depression, burnout, and anxiety. Talanta 2020; 217:121006. [DOI: 10.1016/j.talanta.2020.121006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023]
|
6
|
Graier T, Fink-Puches R, Porkert S, Lang R, Pöchlauer S, Ratzinger G, Tanew A, Selhofer S, Sator PG, Hofer A, Gruber-Wackernagel A, Legat FJ, Vieyra-Garcia PA, Quehenberger F, Wolf P. Quality of Life, Anxiety, and Depression in Patients With Early-Stage Mycosis Fungoides and the Effect of Oral Psoralen Plus UV-A (PUVA) Photochemotherapy on it. Front Med (Lausanne) 2020; 7:330. [PMID: 32850876 PMCID: PMC7419471 DOI: 10.3389/fmed.2020.00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Little is known about psychological discomfort and quality of life (QoL) in early stage mycosis fungoides (MF) and the effect of psoralen plus UV-A (PUVA) on it. Objective: To evaluate QoL, anxiety, and depression with validated instruments in early stage MF patients and whether PUVA treatment improves it. Methods: Patients with stage IA to IIA MF were treated with PUVA twice weekly for 12–24 weeks, followed by maintenance treatment or not, in a prospective randomized clinical trial. Patients completed a questionnaire on DLQI as well as the Hospital Anxiety and Depression Scale (HADS) prior to therapy, after their last PUVA exposure, and after the PUVA maintenance or observance phase. Results: For 24 patients with early stage MF, completed questionnaires were available and analyzed. Prior to treatment, 17% reported strong (DLQI > 10) and 29% moderate impairment (DLQI 6–10) in QoL; 33% of patients reported HADS scores indicating anxiety, and 21% reported scores indicating depression. PUVA significantly improved overall QoL by reducing mean DLQI scores by 58.6% (p = 0.003), HADS-A by 30% (p = 0.045), and HADS-D by 44% (p = 0.002). Improvements in QoL and psychological well-being seemed to be sustained, irrespective of maintenance treatment or not. Limitations: Small sample size. Conclusions: PUVA sustainably improves QoL and psychological well-being in patients with early stage MF. Clinical trial registration:ClinicalTrials.gov identifier: NCT01686594.
Collapse
Affiliation(s)
- Thomas Graier
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Regina Fink-Puches
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Stephanie Porkert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Roland Lang
- Department of Dermatology and Allergology, Paracelsus Medical University, Salzburg, Austria
| | | | - Gudrun Ratzinger
- Department of Dermatology Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adrian Tanew
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Selhofer
- Department of Dermatology and Allergology, Paracelsus Medical University, Salzburg, Austria
| | | | - Angelika Hofer
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Alexandra Gruber-Wackernagel
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Franz J Legat
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Pablo Augusto Vieyra-Garcia
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12:E1795. [PMID: 32560310 PMCID: PMC7353315 DOI: 10.3390/nu12061795] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| | - Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Dermatology, Besançon University Hospital, 25000 Besancon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
8
|
Cucchi D, Camacho-Muñoz D, Certo M, Niven J, Smith J, Nicolaou A, Mauro C. Omega-3 polyunsaturated fatty acids impinge on CD4+ T cell motility and adipose tissue distribution via direct and lipid mediator-dependent effects. Cardiovasc Res 2020; 116:1006-1020. [PMID: 31399738 DOI: 10.1093/cvr/cvz208] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Adaptive immunity contributes to the pathogenesis of cardiovascular metabolic disorders (CVMD). The omega-3 polyunsaturated fatty acids (n-3PUFA) are beneficial for cardiovascular health, with potential to improve the dysregulated adaptive immune responses associated with metabolic imbalance. We aimed to explore the mechanisms through which n-3PUFA may alter T cell motility and tissue distribution to promote a less inflammatory environment and improve lymphocyte function in CVMD. METHODS AND RESULTS Using mass spectrometry lipidomics, cellular, biochemical, and in vivo and ex vivo analyses, we investigated how eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main n-3PUFA, modify the trafficking patterns of activated CD4+ T cells. In mice subjected to allogeneic immunization, a 3-week n-3PUFA-enriched diet reduced the number of effector memory CD4+ T cells found in adipose tissue, and changed the profiles of eicosanoids, octadecanoids, docosanoids, endocannabinoids, 2-monoacylglycerols, N-acyl ethanolamines, and ceramides, in plasma, lymphoid organs, and fat tissues. These bioactive lipids exhibited differing chemotactic properties when tested in chemotaxis assays with activated CD4+ T cells in vitro. Furthermore, CD4+ T cells treated with EPA and DHA showed a significant reduction in chemokinesis, as assessed by trans-endothelial migration assays, and, when implanted in recipient mice, demonstrated less efficient migration to the inflamed peritoneum. Finally, EPA and DHA treatments reduced the number of polarized CD4+ T cells in vitro, altered the phospholipid composition of membrane microdomains and decreased the activity of small Rho GTPases, Rhoα, and Rac1 instrumental in cytoskeletal dynamics. CONCLUSIONS Our findings suggest that EPA and DHA affect the motility of CD4+ T cells and modify their ability to reach target tissues by interfering with the cytoskeletal rearrangements required for cell migration. This can explain, at least in part, the anti-inflammatory effects of n-3PUFA supporting their potential use in interventions aiming to address adipocyte low-grade inflammation associated with cardiovascular metabolic disease.
Collapse
Affiliation(s)
- Danilo Cucchi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Jennifer Niven
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Joanne Smith
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| |
Collapse
|
9
|
Pharmacological tools to mobilise mesenchymal stromal cells into the blood promote bone formation after surgery. NPJ Regen Med 2020; 5:3. [PMID: 32133156 PMCID: PMC7035363 DOI: 10.1038/s41536-020-0088-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic approaches requiring the intravenous injection of autologous or allogeneic mesenchymal stromal cells (MSCs) are currently being evaluated for treatment of a range of diseases, including orthopaedic injuries. An alternative approach would be to mobilise endogenous MSCs into the blood, thereby reducing costs and obviating regulatory and technical hurdles associated with development of cell therapies. However, pharmacological tools for MSC mobilisation are currently lacking. Here we show that β3 adrenergic agonists (β3AR) in combination with a CXCR4 antagonist, AMD3100/Plerixafor, can mobilise MSCs into the blood in mice and rats. Mechanistically we show that reversal of the CXCL12 gradient across the bone marrow endothelium and local generation of endocannabinoids may both play a role in this process. Using a spine fusion model we provide evidence that this pharmacological strategy for MSC mobilisation enhances bone formation.
Collapse
|
10
|
Kendall AC, Pilkington SM, Murphy SA, Del Carratore F, Sunarwidhi AL, Kiezel-Tsugunova M, Urquhart P, Watson REB, Breitling R, Rhodes LE, Nicolaou A. Dynamics of the human skin mediator lipidome in response to dietary ω-3 fatty acid supplementation. FASEB J 2019; 33:13014-13027. [PMID: 31518521 PMCID: PMC6902719 DOI: 10.1096/fj.201901501r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nutritional supplementation with fish oil or ω-3 (n-3) polyunsaturated fatty acids (PUFAs) has potential benefits for skin inflammation. Although the differential metabolism of the main n-3PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) could lead to distinct activities, there are no clinical studies comparing their relative efficacy in human skin. Following a 10-wk oral supplementation of healthy volunteers and using mass spectrometry-based lipidomics, we found that n-3PUFA mainly affected the epidermal mediator lipidome. EPA was more efficient than DHA in reducing production of arachidonic acid–derived lipids, and both n-3PUFA lowered N-acyl ethanolamines. In UV radiation–challenged skin (3 times the minimum erythemal dose), EPA attenuated the production of proinflammatory lipids, whereas DHA abrogated the migration of Langerhans cells, as assessed by immunohistochemistry. Interestingly, n-3PUFA increased the infiltration of CD4+ and CD8+ T cells but did not alter the erythemal response, either the sunburn threshold or the resolution of erythema, as assessed by spectrophotometric hemoglobin index readings. As EPA and DHA differentially impact cutaneous inflammation through changes in the network of epidermal lipids and dendritic and infiltrating immune cells, they should be considered separately when designing interventions for cutaneous disease.—Kendall, A. C., Pilkington, S. M., Murphy, S. A., Del Carratore, F., Sunarwidhi, A. L., Kiezel-Tsugunova, M., Urquhart, P., Watson, R. E. B., Breitling, R., Rhodes, L. E., Nicolaou, A. Dynamics of the human skin mediator lipidome in response to dietary ω-3 fatty acid supplementation.
Collapse
Affiliation(s)
- Alexandra C Kendall
- Division of Pharmacy and Optometry, Laboratory for Lipidomics and Lipid Biology, School of Heath Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Suzanne M Pilkington
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom.,Salford Royal National Health Service (NHS) Foundation Trust, Centre for Dermatology Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Sharon A Murphy
- Division of Pharmacy and Optometry, Laboratory for Lipidomics and Lipid Biology, School of Heath Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Francesco Del Carratore
- School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Anggit L Sunarwidhi
- Division of Pharmacy and Optometry, Laboratory for Lipidomics and Lipid Biology, School of Heath Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Magdalena Kiezel-Tsugunova
- Division of Pharmacy and Optometry, Laboratory for Lipidomics and Lipid Biology, School of Heath Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Paula Urquhart
- Division of Pharmacy and Optometry, Laboratory for Lipidomics and Lipid Biology, School of Heath Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rachel E B Watson
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom.,Salford Royal National Health Service (NHS) Foundation Trust, Centre for Dermatology Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom.,National Institute of Health Research Manchester Biomedical Research Centre, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rainer Breitling
- School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Lesley E Rhodes
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom.,Salford Royal National Health Service (NHS) Foundation Trust, Centre for Dermatology Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom.,National Institute of Health Research Manchester Biomedical Research Centre, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Anna Nicolaou
- Division of Pharmacy and Optometry, Laboratory for Lipidomics and Lipid Biology, School of Heath Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom.,National Institute of Health Research Manchester Biomedical Research Centre, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
11
|
Di Marzo V, Silvestri C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients 2019; 11:nu11081956. [PMID: 31434293 PMCID: PMC6722643 DOI: 10.3390/nu11081956] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle is a well-known environmental factor that plays a major role in facilitating the development of metabolic syndrome or eventually exacerbating its consequences. Various lifestyle factors, especially changes in dietary habits, extreme temperatures, unusual light-dark cycles, substance abuse, and other stressful factors, are also established modifiers of the endocannabinoid system and its extended version, the endocannabinoidome. The endocannabinoidome is a complex lipid signaling system composed of a plethora (>100) of fatty acid-derived mediators and their receptors and anabolic and catabolic enzymes (>50 proteins) which are deeply involved in the control of energy metabolism and its pathological deviations. A strong link between the endocannabinoidome and another major player in metabolism and dysmetabolism, the gut microbiome, is also emerging. Here, we review several examples of how lifestyle modifications (westernized diets, lack or presence of certain nutritional factors, physical exercise, and the use of cannabis) can modulate the propensity to develop metabolic syndrome by modifying the crosstalk between the endocannabinoidome and the gut microbiome and, hence, how lifestyle interventions can provide new therapies against cardiometabolic risk by ensuring correct functioning of both these systems.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Cristoforo Silvestri
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada.
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
12
|
Poolman TM, Gibbs J, Walker AL, Dickson S, Farrell L, Hensman J, Kendall AC, Maidstone R, Warwood S, Loudon A, Rattray M, Bruce IN, Nicolaou A, Ray DW. Rheumatoid arthritis reprograms circadian output pathways. Arthritis Res Ther 2019; 21:47. [PMID: 30728072 PMCID: PMC6366099 DOI: 10.1186/s13075-019-1825-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We applied systems biology approaches to investigate circadian rhythmicity in rheumatoid arthritis (RA). METHODS We recruited adults (age 16-80 years old) with a clinical diagnosis of RA (active disease [DAS28 > 3.2]). Sleep profiles were determined before inpatient measurements of saliva, serum, and peripheral blood mononuclear leukocytes (PBML). Transcriptome and proteome analyses were carried out by RNA-SEQ and LC-MS/MS. Serum samples were analysed by targeted lipidomics, along with serum from mouse collagen induced-arthritis (CIA). Bioinformatic analysis identified RA-specific gene networks and rhythmic processes differing between healthy and RA. RESULTS RA caused greater time-of-day variation in PBML gene expression, and ex vivo stimulation identified a time-of-day-specific RA transcriptome. We found increased phospho-STAT3 in RA patients, and some targets, including phospho-ATF2, acquired time-of-day variation in RA. Serum ceramides also gained circadian rhythmicity in RA, which was also seen in mouse experimental arthritis, resulting from gain in circadian rhythmicity of hepatic ceramide synthases. CONCLUSION RA drives a gain in circadian rhythmicity, both in immune cells, and systemically. The coupling of distant timing information to ceramide synthesis and joint inflammation points to a systemic re-wiring of the circadian repertoire. Circadian reprogramming in response to chronic inflammation has implications for inflammatory co-morbidities and time-of-day therapeutics.
Collapse
Affiliation(s)
- Toryn M Poolman
- Division of Digestion, Endocrinology and Metabolism, The University of Manchester, Manchester, M13 9PT, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX37LE, UK
| | - Julie Gibbs
- Division of Digestion, Endocrinology and Metabolism, The University of Manchester, Manchester, M13 9PT, UK
| | - Amy L Walker
- Division of Digestion, Endocrinology and Metabolism, The University of Manchester, Manchester, M13 9PT, UK
| | - Suzanna Dickson
- Division of Digestion, Endocrinology and Metabolism, The University of Manchester, Manchester, M13 9PT, UK
| | - Laura Farrell
- Division of Digestion, Endocrinology and Metabolism, The University of Manchester, Manchester, M13 9PT, UK
| | | | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK.,Specialist Medicine, Central Manchester Foundation Trust, Manchester, M13 9PL, UK
| | - Robert Maidstone
- Division of Digestion, Endocrinology and Metabolism, The University of Manchester, Manchester, M13 9PT, UK
| | - Stacey Warwood
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew Loudon
- Division of Digestion, Endocrinology and Metabolism, The University of Manchester, Manchester, M13 9PT, UK
| | - Magnus Rattray
- Division of Digestion, Endocrinology and Metabolism, The University of Manchester, Manchester, M13 9PT, UK
| | - Ian N Bruce
- Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK. .,Specialist Medicine, Central Manchester Foundation Trust, Manchester, M13 9PL, UK.
| | - David W Ray
- Division of Digestion, Endocrinology and Metabolism, The University of Manchester, Manchester, M13 9PT, UK. .,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX37LE, UK.
| |
Collapse
|
13
|
Tanning dependence and seasonal affective disorder are frequent among sunbathers but are not associated. Psychiatry Res 2019; 272:387-391. [PMID: 30605797 DOI: 10.1016/j.psychres.2018.12.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022]
Abstract
Ultraviolet radiation (UVR) is a known risk factor for skin cancers. Those who are tanning dependent seek out UVR exposure. Many tanners have expressed symptoms of seasonal affective disorder (SAD), but conclusive evidence of a connection with tanning dependence is lacking. We evaluated the frequency of tanning dependence or abuse and symptoms of SAD among Finnish sunbathers and analysed whether phenomena are associated which could indicate a common biological mechanism. Sunbathing related tanning dependence/abuse among Finnish sunbathers were assessed using the Structured Interview for Tanning Abuse and Dependence measure (SITAD), and symptoms of SAD were assessed with the Seasonal Pattern Assessment Questionnaire (SPAQ). Of 229 sunbathers, 8% (n = 18) were classified as tanning-dependent, and 26% (n = 59) were classified as tanning abusers. Additionally, 16% (n = 37) met the criteria for SAD, and 26% (n = 60) met the criteria for subsyndromal seasonal affective disorder (S-SAD), but there was no significant association between tanning dependence or abuse and SAD or S-SAD. Sunbathing dependence or abuse and SAD/S-SAD were frequent among sunbathers, and they may promote sun-seeking risk behaviour. However, within this sample, tanning dependence and SAD/S-SAD were not associated.
Collapse
|
14
|
Kift R, Rhodes LE, Farrar MD, Webb AR. Is Sunlight Exposure Enough to Avoid Wintertime Vitamin D Deficiency in United Kingdom Population Groups? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1624. [PMID: 30071636 PMCID: PMC6121420 DOI: 10.3390/ijerph15081624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 11/17/2022]
Abstract
Solar ultraviolet radiation (UVR) is required for cutaneous vitamin D synthesis, and experimental studies have indicated the levels of sun exposure required to avoid a vitamin D deficient status. Our objectives are to examine the sun exposure behaviours of different United Kingdom sectors and to identify if their exposure is enough to maintain winter circulating 25-hydroxyvitamin D above deficiency (>25 nmol/L). Data are from a series of human studies involving >500 volunteers and performed using the same protocols in Greater Manchester, UK (53.5° N) in healthy white Caucasian adolescents and working-age adults (skin type I⁻IV), healthy South Asian working-age adults (skin type V), and adults with photodermatoses (skin conditions caused or aggravated by cutaneous sun exposure). Long-term monitoring of the spectral ambient UVR of the Manchester metropolitan area facilitates data interpretation. The healthy white populations are exposed to 3% ambient UVR, contrasting with ~1% in South Asians. South Asians and those with photodermatoses wear clothing exposing smaller skin surface area, and South Asians have the lowest oral vitamin D intake of all groups. Sun exposure levels prevent winter vitamin D deficiency in 95% of healthy white adults and 83% of adolescents, while 32% of the photodermatoses group and >90% of the healthy South Asians were deficient. The latter require increased oral vitamin D, whilst their sun exposure provides a tangible contribution and might convey other health benefits.
Collapse
Affiliation(s)
- Richard Kift
- School of Earth and Environmental Science, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK.
| | - Lesley E Rhodes
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M6 8HD, UK.
| | - Mark D Farrar
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M6 8HD, UK.
| | - Ann R Webb
- School of Earth and Environmental Science, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
15
|
Koenig AM, Gao W, Umlauft M, Schury K, Reister F, Kirschbaum C, Karabatsiakis A, Kolassa IT. Altered hair endocannabinoid levels in mothers with childhood maltreatment and their newborns. Biol Psychol 2018; 135:93-101. [DOI: 10.1016/j.biopsycho.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
|
16
|
Fatty acids and related lipid mediators in the regulation of cutaneous inflammation. Biochem Soc Trans 2018; 46:119-129. [PMID: 29330355 DOI: 10.1042/bst20160469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Human skin has a distinct profile of fatty acids and related bioactive lipid mediators that regulate many aspects of epidermal and dermal homeostasis, including immune and inflammatory reactions. Sebum lipids act as effective antimicrobial agents, shape immune cell communications and contribute to the epidermal lipidome. The essential fatty acid linoleic acid is crucial for the structure of the epidermal barrier, while polyunsaturated fatty acids act as precursors to eicosanoids, octadecanoids and docosanoids through cyclooxygenase, lipoxygenase and cytochrome P450 monooxygenase-mediated reactions, and endocannabinoids and N-acyl ethanolamines. Cross-communication between these families of bioactive lipids suggests that their cutaneous activities should be considered as part of a wider metabolic network that can be targeted to maintain skin health, control inflammation and improve skin pathologies.
Collapse
|
17
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|