1
|
Ge S, Wang E, Li J, Tang BZ. Aggregation-Induced Emission Boosting the Study of Polymer Science. Macromol Rapid Commun 2022; 43:e2200080. [PMID: 35320607 DOI: 10.1002/marc.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Indexed: 11/07/2022]
Abstract
The past one hundred years witness the great development of polymer science. The advancement of polymer science is closely related with the developing of characterization techniques and methods, from viscometry in molecular weight determination to advanced techniques including differential scanning calorimetry, nuclear magnetic resonance and scanning electron microscopy. However, these techniques are normally constrained to tedious sample preparation, high cost, harsh experimental condition, or ex-situ characterization. Fluorescence technology has the merits of high sensitivity and direct visualization. Contrary to conventional aggregation-causing quenching fluorophores, those dyes with aggregation-induced emission characteristic show high emission efficiency in aggregate states. Based on the restriction of intramolecular motions for AIE properties, the AIE materials are very sensitive to the surrounding microenvironments owing to the twisted propeller-like structures and therefore reveal great potentials in polymer's study. The AIE concept has been successfully used in polymer's study and provides us a deeper understanding on polymer structure and properties. In this review, the applications of AIEgens in polymer science for visualizing polymerization, glass transition, dissolution, crystallization, gelation, self-assembly, phase separation, cracking and self-healing were exemplified and summarized. Lastly, the challenges and perspectives in the study of polymer science using AIEgens are addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sheng Ge
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Erjing Wang
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Jinhua Li
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Ben Zhong Tang
- Prof. B. Z. Tang, Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
2
|
Ji S, Lin M, Li Z, Xu L, Fu X, Chen G, Li Z, Sun J. Tunable Aggregation -Induced Emission Fluorophore with the Assistance of the Self -Assembly of Block Copolymers by Controlling the Morphology and Secondary Conformation for Bioimaging. Biomacromolecules 2022; 23:798-807. [PMID: 35041401 DOI: 10.1021/acs.biomac.1c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aggregation-induced emission (AIE) luminogens with highly tunable properties show great potential for many applications. In this study, we synthesized a new family of AIE-type poly(ethylene glycol)-block-poly(9-anthrylmethyl lysine) (PEG-b-PLys-An) diblock copolymers by taking advantage of amphiphilic self-assembly and rigid helical backbones. These copolymers can self-assemble into various assemblies through nanoprecipitation methods. The micelles using N,N-dimethylformamide (DMF) as a cosolvent present brighter fluorescence than the vesicles prepared from tetrahydrofuran (THF). We demonstrate that the decreased solubility of copolymers in DMF results in the formation of more compact micelles with more excimer formation during the self-assembly process, while better solvent THF favors the formation of vesicles with stretched core chains. In addition, the secondary conformation of the polypeptide block shows pronounced effects on the fluorescence property. We further show the internalization of the assemblies using two types of cells by cellular uptake experiments. By the delicate design of the block copolymer, we successfully prepare the morphology- and conformation-dependent AIE materials for potential biomedical applications.
Collapse
Affiliation(s)
- Sifan Ji
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zenghao Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lili Xu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Fan L, Jiang J, Sun Q, Hong K, Cornel EJ, Zhu Y, Du J. Fluorescent homopolypeptide toroids. Polym Chem 2022. [DOI: 10.1039/d1py01691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Toroids are important ring-like nanostructures in living systems; intrinsically luminogenic toroids are promising in bioimaging but it is challenging to synthesize such nanoparticles. Herein, we report a fluorescent toroid that...
Collapse
|
4
|
Bao Y. Controlling Molecular Aggregation-Induced Emission by Controlled Polymerization. Molecules 2021; 26:6267. [PMID: 34684848 PMCID: PMC8540238 DOI: 10.3390/molecules26206267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
In last twenty years, the significant development of AIE materials has been witnessed. A number of small molecules, polymers and composites with AIE activity have been synthesized, with some of these exhibiting great potential in optoelectronics and biomedical applications. Compared to AIE small molecules, macromolecular systems-especially well-defined AIE polymers-have been studied relatively less. Controlled polymerization methods provide the efficient synthesis of well-defined AIE polymers with varied monomers, tunable chain lengths and narrow dispersity. In particular, the preparation of single-fluorophore polymers through AIE molecule-initiated polymerization enables the systematic investigation of the structure-property relationships of AIE polymeric systems. Here, the main polymerization techniques involved in these polymers are summarized and the key parameters that affect their photophysical properties are analyzed. The author endeavored to collect meaningful information from the descriptions of AIE polymer systems in the literature, to find connections by comparing different representative examples, and hopes eventually to provide a set of general guidelines for AIE polymer design, along with personal perspectives on the direction of future research.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Tao M, Liang X, Guo J, Zheng S, Qi Q, Cao Z, Mi Y, Zhao Z. Dynamic Photochromic Polymer Nanoparticles Based on Matrix-Dependent Förster Resonance Energy Transfer and Aggregation-Induced Emission Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33574-33583. [PMID: 34247480 DOI: 10.1021/acsami.1c09677] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamic color-tunable fluorescent materials are sought-after materials in many applications. Here, we report a polymeric matrix-regulated fluorescence strategy via synergistically modulating aggregation-induced emission (AIE) properties and the Förster resonance energy transfer (FRET) process, which leads to tunable dynamic variation of color and photoluminescence (PL) intensity of fluorescent polymeric nanoparticles (FRET-PNPs) driven by photoirradiation. The FRET-PNPs were prepared via a facile one-pot miniemulsion copolymerization with the tetraphenyletheyl (TPE) and spiropyran (SP) units chemically bonded to the polymer matrix. The FRET-PNPs exhibited dynamic variation of fluorescence properties (colors and PL intensity) under photoirradiation on the timescale of minutes. The variation of the polymer matrix composition could deliberately influence the AIE property of TPE units and the isomerization process of SP to merocyanine units, which further affect the FRET efficiency of FRET-PNPs and, eventually, lead to versatile dynamic fluorescence variation. The dynamic fluorescence property as well as the excellent processability and film formation ability of FRET-PNPs allowed for diverse applications, such as warning labels, dynamic decorative painting, and multiple information encryption. Without sophisticated molecular design or tedious preparation processes, a new perspective for the design, fabrication, and performance optimization of fluorescent nanomaterials for innovative applications was proposed.
Collapse
Affiliation(s)
- Meng Tao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoqin Liang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Province Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qi Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifang Mi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Province Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Wang M, Xu L, Lin M, Li Z, Sun J. Fabrication of reversible pH-responsive aggregation-induced emission luminogens assisted by a block copolymer via a dynamic covalent bond. Polym Chem 2021. [DOI: 10.1039/d1py00312g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aggregated induced emission (AIE) molecules with stimuli-responsive properties have attracted increasing attention for many applications.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Lili Xu
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Min Lin
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
| |
Collapse
|
7
|
The Location-influenced Fluorescence of AIEgens in the Microphase-separated Structures. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2333-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Ge P, Zhou Y, Wu J, Zhu F, Ge M, Liang G. Self-Amplified Fluorescent Nanoparticles for Rapid and Visual Detection of Xylene in Aqueous Media. ACS Sens 2019; 4:2536-2545. [PMID: 31503452 DOI: 10.1021/acssensors.9b01402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pollutant detection is of great importance for quality control of drinking water and environmental protection. The common methods of pollutant detection suffer from time-consuming procedures, bulky and expensive instruments, and complicated sample pretreatment. Herein, a type of conceptually new self-amplified fluorescent nanoparticle (SAFN) is constructed based on aggregation-induced emission (AIE) luminogens for rapid and visual detection of xylene in aqueous media. AIE luminogens are self-assembled into SAFNs in aqueous media, which emit efficiently due to the aggregation of luminogen molecules. The SAFNs of AIE luminogens stick xylene molecules from aqueous media through multiple interactions including hydrophobic and π-π interactions. Upon capturing xylene, SAFNs swell, which quench the fluorescence of the whole SAFNs, showing the self-amplification effect. Such a self-amplification effect is entirely different from that of conjugated polymers in the literature. Importantly, fluorescence quenching of SAFNs by xylene can be readily observed by the naked eye, which enables visual xylene sensing. The SAFNs enable rapid and visual detection of xylene in aqueous media with a low detection limit (5 μg/L) in the order of seconds. Given high sensitivity, rapid response, simple and easy operation, and low cost, SAFNs of AIE luminogens present a promising platform for visual detection of organic pollutants in aqueous media.
Collapse
Affiliation(s)
- Ping Ge
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yusheng Zhou
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jialong Wu
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fangming Zhu
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mingliang Ge
- Key Laboratory of Polymer Processing Engineering, South China University of Technology, Ministry of Education, Guangzhou, 510640, China
| | - Guodong Liang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
9
|
Yang Y, Zhang S, Zhang X, Gao L, Wei Y, Ji Y. Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat Commun 2019; 10:3165. [PMID: 31320646 PMCID: PMC6639363 DOI: 10.1038/s41467-019-11144-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/25/2019] [Indexed: 11/21/2022] Open
Abstract
Vitrimers are one kind of covalently crosslinked polymers that can be reprocessed. Topology freezing transition temperature (Tv) is vitrimer's upper limit temperature for service and lower temperature for recycle. However, there has been no proper method to detect the intrinsic Tv till now. Even worse, current testing methods may lead to a misunderstanding of vitrimers. Here we provide a sensitive and universal method by doping or swelling aggregation-induced-emission (AIE) luminogens into vitrimers. The fluorescence of AIE-luminogens changes dramatically below and over Tv, providing an accurate method to measure Tv without the interference of external force. Moreover, according to this method, Tv is independent of catalyst loading. The opposite idea has been kept for a long time. This method not only is helpful for the practical application of vitrimers so as to reduce white wastes, but also may facilitate deep understanding of vitrimers and further development of functional polymer materials.
Collapse
Affiliation(s)
- Yang Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Shuai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xiqi Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Longcheng Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, 32023, Chung-Li, Taiwan, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
10
|
Zhou Y, Gao H, Zhu F, Ge M, Liang G. Sensitive and rapid detection of aliphatic amines in water using self-stabilized micelles of fluorescent block copolymers. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:630-637. [PMID: 30721858 DOI: 10.1016/j.jhazmat.2019.01.097] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
A kind of self-stabilized micelles of fluorescent block copolymers are constructed for rapid and sensitive detection of aliphatic amines in water based on capture-report strategy. An amphiphilic triblock copolymer functionalized with aggregation induced emission (AIE) chromophores self assembles into micelles with core-shell structures in aqueous solution. Hydrophobic AIE chromophores organize into cores, where hydrophobic interaction among the AIE chromophores inhibits the micelles from disassembling. The cores of AIE chromophores are surrounded by a corona of water-soluble polymer segments, endowing the micelles with superior dispersibility in water. Water-soluble polymer segments capture organic amines in water due to preferential hydrophobic interactions between them. The enriched amines in the corona subsequently diffuse into hydrophobic cores of micelles, quenching fluorescence of the AIE chromophores. The fluorescent micelles allow rapid detection of aliphatic amines in the order of seconds at a concentration as low as 8 μg/L.
Collapse
Affiliation(s)
- Yusheng Zhou
- PCFM and GDHPPC Labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haiyang Gao
- PCFM and GDHPPC Labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fangming Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mingliang Ge
- Key Laboratory of Polymer Processing Engineering, South China University of Technology, Ministry of Education, Guangzhou, 510640, China
| | - Guodong Liang
- PCFM and GDHPPC Labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Polymer Processing Engineering, South China University of Technology, Ministry of Education, Guangzhou, 510640, China.
| |
Collapse
|
11
|
Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2201-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Liu L, Wang M, Guo LX, Sun Y, Zhang XQ, Lin BP, Yang H. Aggregation-Induced Emission Luminogen-Functionalized Liquid Crystal Elastomer Soft Actuators. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00677] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Li Liu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Ling-Xiang Guo
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Ying Sun
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Xue-Qin Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Bao-Ping Lin
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| |
Collapse
|
13
|
Pramanik A, Haldar D. Packing-induced solid-state fluorescence and thermochromic behavior of peptidic luminophores. RSC Adv 2017. [DOI: 10.1039/c6ra24799g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In spite of its coumarin chromophore, supramolecular packing has an effect on the solid state fluorescent propensities of the peptidic luminophores.
Collapse
Affiliation(s)
- Apurba Pramanik
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| |
Collapse
|
14
|
Liang G, Ren F, Gao H, Wu Q, Zhu F, Tang BZ. Bioinspired Fluorescent Nanosheets for Rapid and Sensitive Detection of Organic Pollutants in Water. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00530] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Guodong Liang
- PCFM
and GDHPPC Lab, School of Materials Science and Engineering, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng Ren
- PCFM
and GDHPPC Lab, School of Materials Science and Engineering, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- PCFM
and GDHPPC Lab, School of Materials Science and Engineering, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing Wu
- PCFM
and GDHPPC Lab, School of Materials Science and Engineering, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangming Zhu
- PCFM
and GDHPPC Lab, School of Materials Science and Engineering, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ben Zhong Tang
- Department
of Chemistry, Institute for Advanced Study, Division of Biomedical
Engineering, State Key Laboratory of Molecular, Neuroscience and Institute
of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|