1
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
2
|
Collis DWP, Yilmaz G, Yuan Y, Monaco A, Ochbaum G, Shi Y, O'Malley C, Uzunova V, Napier R, Bitton R, Becer CR, Azevedo HS. Hyaluronan (HA)-inspired glycopolymers as molecular tools for studying HA functions. RSC Chem Biol 2021; 2:568-576. [PMID: 34458800 PMCID: PMC8341579 DOI: 10.1039/d0cb00223b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA), the only non-sulphated glycosaminoglycan, serves numerous structural and biological functions in the human body, from providing viscoelasticity in tissues to creating hydrated environments for cell migration and proliferation. HA is also involved in the regulation of morphogenesis, inflammation and tumorigenesis through interactions with specific HA-binding proteins. Whilst the physicochemical and biological properties of HA have been widely studied for decades, the exact mechanisms by which HA exerts its multiple functions are not completely understood. Glycopolymers offer a simple and precise synthetic platform for the preparation of glycan analogues, being an alternative to the demanding synthetic chemical glycosylation. A library of homo, statistical and alternating HA glycopolymers were synthesised by reversible addition-fragmentation chain transfer polymerisation and post-modification utilising copper alkyne-azide cycloaddition to graft orthogonal pendant HA monosaccharides (N-acetyl glucosamine: GlcNAc and glucuronic acid: GlcA) onto the polymer. Using surface plasmon resonance, the binding of the glycopolymers to known HA-binding peptides and proteins (CD44, hyaluronidase) was assessed and compared to carbohydrate-binding proteins (lectins). These studies revealed potential structure-binding relationships between HA monosaccharides and HA receptors and novel HA binders, such as Dectin-1 and DEC-205 lectins. The inhibitory effect of HA glycopolymers on hyaluronidase (HAase) activity was also investigated suggesting GlcNAc- and GlcA-based glycopolymers as potential HAase inhibitors.
Collapse
Affiliation(s)
- Dominic W P Collis
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
| | - Gokhan Yilmaz
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Department of Chemistry, University of Warwick CV4 7AL UK
| | - Yichen Yuan
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
| | - Alessandra Monaco
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Department of Chemistry, University of Warwick CV4 7AL UK
| | - Guy Ochbaum
- Department of Chemical Engineering and the Ilza Katz, Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Yejiao Shi
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
| | - Clare O'Malley
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Institute of Bioengineering, Queen Mary University of London London E1 4NS UK
| | | | - Richard Napier
- School of Life Sciences, University of Warwick CV4 7AL UK
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilza Katz, Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - C Remzi Becer
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Department of Chemistry, University of Warwick CV4 7AL UK
| | - Helena S Azevedo
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
- Institute of Bioengineering, Queen Mary University of London London E1 4NS UK
| |
Collapse
|
3
|
Wang H, Liu Z, An C, Li H, Hu F, Dong S. Self-Assembling Glycopeptide Conjugate as a Versatile Platform for Mimicking Complex Polysaccharides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001264. [PMID: 32832369 PMCID: PMC7435236 DOI: 10.1002/advs.202001264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Polysaccharides are a class of carbohydrates that play pivotal roles in living systems such as being chemical messengers in many vital biological pathways. However, the complexity and heterogeneity of these natural structures have posed daunting challenges on their production, characterization, evaluation, and applications. While there have been various types of synthetic skeletons that could mimic some biological aspects of polysaccharides, a safer and more easily accessed system is still desired to avoid the unnatural components and difficulties in modifying the structures. In this work, conveniently accessible self-assembling glycopeptide conjugates are developed, where the natural O-glycosidic linkages and phosphoryl modifications assist the self-assembly and concurrently reduce the risk of toxicity. The generated nanoparticles in aqueous solution offer a multivalent display of structurally controllable carbohydrates as mimics of polysaccharides, among which a mannosylated version exhibits immunostimulatory effects in both cellular assays and vaccination of mice. The obtained results demonstrate the potential of this glycopeptide conjugate-derived platform in exploiting the intriguing properties of carbohydrates in a more structurally maneuverable fashion.
Collapse
Affiliation(s)
- Hanxuan Wang
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Zhichao Liu
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Fanlei Hu
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)Beijing100044China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| |
Collapse
|
4
|
Beyer VP, Monaco A, Napier R, Yilmaz G, Becer CR. Bottlebrush Glycopolymers from 2-Oxazolines and Acrylamides for Targeting Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin and Mannose-Binding Lectin. Biomacromolecules 2020; 21:2298-2308. [PMID: 32320219 DOI: 10.1021/acs.biomac.0c00246] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lectins are omnipresent carbohydrate binding proteins that are involved in a multitude of biological processes. Unearthing their binding properties is a powerful tool toward the understanding and modification of their functions in biological applications. Herein, we present the synthesis of glycopolymers with a brush architecture via a "grafting from" methodology. The use of a versatile 2-oxazoline inimer was demonstrated to open avenues for a wide range of 2-oxazoline/acrylamide bottle brush polymers utilizing aqueous Cu-mediated reversible deactivation radical polymerization (Cu-RDRP). The polymers in the obtained library were assessed for their thermal properties in aqueous solution and their binding toward the C-type animal lectins dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and mannose-binding lectin (MBL) via surface plasmon resonance spectrometry. The encapsulation properties of a hydrophobic drug-mimicking compound demonstrated the potential use of glyco brush copolymers in biological applications.
Collapse
Affiliation(s)
- Valentin P Beyer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Shamout F, Monaco A, Yilmaz G, Becer CR, Hartmann L. Synthesis of Brush‐Like Glycopolymers with Monodisperse, Sequence‐Defined Side Chains and Their Interactions with Plant and Animal Lectins. Macromol Rapid Commun 2019; 41:e1900459. [DOI: 10.1002/marc.201900459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Fadi Shamout
- Department for Organic Chemistry and Macromolecular ChemistryHeinrich Heine University DuesseldorfUniversitätsstraße 1 Düsseldorf 40225 Germany
| | | | - Gokhan Yilmaz
- School of PharmacyUniversity of Nottingham Nottingham NG2 2RD UK
| | | | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular ChemistryHeinrich Heine University DuesseldorfUniversitätsstraße 1 Düsseldorf 40225 Germany
| |
Collapse
|
6
|
Ordanini S, Celentano W, Bernardi A, Cellesi F. Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2192-2206. [PMID: 31807405 PMCID: PMC6880840 DOI: 10.3762/bjnano.10.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A class of linear and four-arm mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) is presented here. The synthesis through ring-opening and atom transfer radical polymerizations provided high control over molecular weight and functionality. A post-polymerization azide-alkyne cycloaddition allowed for the formation of glycopolymers with different mannose valencies (1, 2, 4, and 8). In aqueous media, these macromolecules formed nanoparticles that were able to bind lectins, as investigated by concanavalin A binding assay. The results indicate that carbohydrate-lectin interactions can be tuned by the macromolecular architecture and functionality, hence the importance of these macromolecular properties in the design of targeted anti-pathogenic nanomaterials.
Collapse
Affiliation(s)
- Stefania Ordanini
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Wanda Celentano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
- Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milano 20089, Italy
| | - Anna Bernardi
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
7
|
Pawar SV, Upadhyay PK, Burade S, Kumbhar N, Patil R, Dhavale DD. Synthesis and anti-leishmanial activity of TRIS-glycine-β-alanine dipeptidic triazole dendron coated with nonameric mannoside glycocluster. Carbohydr Res 2019; 485:107815. [DOI: 10.1016/j.carres.2019.107815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
|
8
|
de Castro CE, Ribeiro CAS, da Silva MCC, Gonçalves Dal-Bó A, Giacomelli FC. Sweetness Reduces Cytotoxicity and Enables Faster Cellular Uptake of Sub-30 nm Amphiphilic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8060-8067. [PMID: 31117721 DOI: 10.1021/acs.langmuir.8b04200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycoconjugates are versatile entities used for the manufacturing of targeted drug delivery nanocontainers because of their outstanding capability to bind to lectins, which are proteins that can be found overexpressed in the membranes of unhealthy cells. The assisted attachment to pathological cells can further enable a more efficient intracellular delivery of loaded active agents, thereby reducing side effects that commonly compromise chemotherapies. In this framework, azide-terminated polyethylene oxide (PEO) chains coupled to a 22-carbon chain were synthesized (azide-PEO900-docosanoate). The resulting amphiphile was further functionalized by introducing different sugar moieties to the PEO chains via the click chemistry approach. Sub-30 nm, negatively charged, and spherical nanoparticles were prepared in water by self-assembly of the synthesized molecules using the straightforward nanoprecipitation protocol. The produced entities do not induce hemolysis in red blood cells at c ≤ 200 μg mL-1, and they are not cytotoxic to healthy cells [telomerase immortalized rhesus fibroblasts (Telo-RF)] at c ≤ 50 μg mL-1. The sugar-decorated nanoparticles are less cytotoxic compared with their naked counterparts at the concentration range assessed. The kinetics of cellular uptake of both entities into normal (Telo-RF) and tumor (HeLa) cells were monitored via fluorescence microscopy and flow cytometry. The nanoparticles are internalized faster in cancer cells than in normal cells, regardless of functionalization. Moreover, the functionalized nanoparticles are internalized faster in HeLa cells, while the reverse was observed in healthy Telo-RF cells. The distinct surface characteristics of the assemblies create an opportunity to expedite the uptake of nanoparticles particularly by tumor cells, and this accordingly can lead to a more effective intracellular delivery of therapeutic molecules loaded into nanoparticle's reservoirs.
Collapse
Affiliation(s)
- Carlos E de Castro
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 Santo André , São Paulo , Brazil
| | - Caroline A S Ribeiro
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 Santo André , São Paulo , Brazil
| | - Maria C C da Silva
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 Santo André , São Paulo , Brazil
| | - Alexandre Gonçalves Dal-Bó
- Universidade do Extremo Sul Catarinense-UNESC , Av. Universitária 1105 , 88806-000 Criciúma , Santa Catarina , Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , 09210-580 Santo André , São Paulo , Brazil
| |
Collapse
|
9
|
Lunn AM, Perrier S. Synthesis of Sub-100 nm Glycosylated Nanoparticles via a One Step, Free Radical, and Surfactant Free Emulsion Polymerization. Macromol Rapid Commun 2018; 39:e1800122. [PMID: 29722103 DOI: 10.1002/marc.201800122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/09/2018] [Indexed: 01/21/2023]
Abstract
The facile synthesis of sub-100 nm glyco nanoparticles is presented via a one-step, free radical, and surfactant free emulsion polymerization. It is shown that by using sterically large, hydrophilic glycomonomers such as a lactose acrylamide with the charged azo initiator 4,4'-azobis(4-cyanovaleric acid), growing particles are stabilized enough to reproducibly produce well defined (PDi ≤ 0.1) glycoparticles with diameters below 100 nm.
Collapse
Affiliation(s)
- Andrew M Lunn
- Department of Chemistry, The University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Quan J, Shen FW, Cai H, Zhang YN, Wu H. Galactose-Functionalized Double-Hydrophilic Block Glycopolymers and Their Thermoresponsive Self-Assembly Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10721-10731. [PMID: 30113172 DOI: 10.1021/acs.langmuir.8b01516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycopolymers with large galactose units are attractive in biological processes because of their ability to selectively recognize lectin proteins. Recently, thermoresponsive double-hydrophilic block glycopolymers (TDHBGs) have been designed, which allow sugar residues to expose or hide via the lower critical solution temperature (LCST)-type phase transition. In this work, we first synthesize a new type of TDHBGs, composed of a thermoresponsive poly(di(ethylene glycol)methyl ether methacrylate) block and a galactose-functionalized, poly(6- O-vinyladipoyl-d-galactose) (POVNG) block. The LCST can be tuned by varying the size of the POVNG block. Then, we have systematically investigated their thermoresponsive self-assembly behavior, using static and dynamic light scattering techniques, combined with transmission electron microscopy (TEM) imaging. It is found that the TDHBGs possess both micellization and LCST-type transition, and there exist strong interactions between them, depending on the concentration and structure of the TDHBGs. It is particularly interesting that for the same type of TDHBGs under different conditions, such interactions result in rich morphologies of the formed micelles (or nanoparticles) such as spheres, hollow spheres, prolate ellipsoids, crystal-like, and so on, thus potentially enriching their biological applications by noting that they are hepatoma-targeting glycopolymers.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Fa-Wei Shen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hao Cai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Yi-Na Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hua Wu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
11
|
Yilmaz G, Uzunova V, Napier R, Becer CR. Single-Chain Glycopolymer Folding via Host–Guest Interactions and Its Unprecedented Effect on DC-SIGN Binding. Biomacromolecules 2018; 19:3040-3047. [DOI: 10.1021/acs.biomac.8b00600] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gokhan Yilmaz
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary, University of London, E1 4NS, London, United Kingdom
| | - Veselina Uzunova
- Life Sciences, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Richard Napier
- Life Sciences, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - C. Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary, University of London, E1 4NS, London, United Kingdom
| |
Collapse
|
12
|
Bensabeh N, Ronda JC, Galià M, Cádiz V, Lligadas G, Percec V. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Joan C. Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
13
|
de Castro CE, Ribeiro CAS, Alavarse AC, Albuquerque LJC, da Silva MCC, Jäger E, Surman F, Schmidt V, Giacomelli C, Giacomelli FC. Nanoparticle-Cell Interactions: Surface Chemistry Effects on the Cellular Uptake of Biocompatible Block Copolymer Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2180-2188. [PMID: 29338258 DOI: 10.1021/acs.langmuir.7b04040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of nanovehicles for intracellular drug delivery is strongly bound to the understating and control of nanoparticles cellular uptake process, which in turn is governed by surface chemistry. In this study, we explored the synthesis, characterization, and cellular uptake of block copolymer assemblies consisting of a pH-responsive poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) core stabilized by three different biocompatible hydrophilic shells (a zwitterionic type poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer, a highly hydrated poly(ethylene oxide) (PEO) layer with stealth effect, and an also proven nontoxic and nonimmunogenic poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) layer). All particles had a spherical core-shell structure. The largest particles with the thickest hydrophilic stabilizing shell obtained from PMPC40-b-PDPA70 were internalized to a higher level than those smaller in size and stabilized by PEO or PHPMA and produced from PEO122-b-PDPA43 or PHPMA64-b-PDPA72, respectively. Such a behavior was confirmed among different cell lines, with assemblies being internalized to a higher degree in cancer (HeLa) as compared to healthy (Telo-RF) cells. This fact was mainly attributed to the stronger binding of PMPC to cell membranes. Therefore, cellular uptake of nanoparticles at the sub-100 nm size range may be chiefly governed by the chemical nature of the stabilizing layer rather than particles size and/or shell thickness.
Collapse
Affiliation(s)
- Carlos E de Castro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André, Brazil
| | - Caroline A S Ribeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André, Brazil
| | - Alex C Alavarse
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André, Brazil
| | | | - Maria C C da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André, Brazil
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - František Surman
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Vanessa Schmidt
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, RS, Brazil
| | - Cristiano Giacomelli
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, RS, Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Santo André, Brazil
| |
Collapse
|
14
|
Madeira do O J, Mastrotto F, Francini N, Allen S, van der Walle CF, Stolnik S, Mantovani G. Synthetic glycopolymers as modulators of protein aggregation: influences of chemical composition, topology and concentration. J Mater Chem B 2018; 6:1044-1054. [DOI: 10.1039/c7tb02720f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthetic glycopolymers with a variable macromolecular architecture and carbohydrate moieties are utilised to modulate stress-induced aggregation of monoclonal antibodies.
Collapse
Affiliation(s)
- J. Madeira do O
- Molecular Therapeutics and Formulation Division
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
| | - F. Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| | - N. Francini
- Molecular Therapeutics and Formulation Division
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
| | - S. Allen
- Molecular Therapeutics and Formulation Division
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
| | | | - S. Stolnik
- Molecular Therapeutics and Formulation Division
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
| | - G. Mantovani
- Molecular Therapeutics and Formulation Division
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
| |
Collapse
|
15
|
Yilmaz G, Uzunova V, Hartweg M, Beyer V, Napier R, Becer CR. The effect of linker length on ConA and DC-SIGN binding of S-glucosyl functionalized poly(2-oxazoline)s. Polym Chem 2018. [DOI: 10.1039/c7py01939d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of poly(2-oxazoline) based glycopolymers with different linkers were prepared via thiol–ene click reaction and cationic ring opening reaction. The binding of these polymers to lectins were studied.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Department of Chemistry
- University of Warwick
- CV4 7AL, Coventry
- UK
- Department of Basic Sciences
| | | | - Manuel Hartweg
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary
- University of London
- E1 4NS, London
| | - Valentin Beyer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary
- University of London
- E1 4NS, London
| | | | - C. Remzi Becer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary
- University of London
- E1 4NS, London
| |
Collapse
|
16
|
Lligadas G, Grama S, Percec V. Single-Electron Transfer Living Radical Polymerization Platform to Practice, Develop, and Invent. Biomacromolecules 2017; 18:2981-3008. [DOI: 10.1021/acs.biomac.7b01131] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
17
|
Sequence and Architectural Control in Glycopolymer Synthesis. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700212] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/21/2017] [Indexed: 01/10/2023]
|
18
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
19
|
Du AW, Lu H, Stenzel MH. Cationic glycopolymers through controlled polymerisation of a glucosamine-based monomer mimicking the behaviour of chitosan. Polym Chem 2017. [DOI: 10.1039/c7py00082k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly synthesised glucosamine-based monomer was able to undergo controlled polymerisation and retain amine functionality. The resulting polymer had mucoadhesive properties similar to chitosan.
Collapse
Affiliation(s)
- Alice W. Du
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|