1
|
Thümmler JF, Binder WH. Compartmentalised single-chain nanoparticles and their function. Chem Commun (Camb) 2024; 60:14332-14345. [PMID: 39575550 DOI: 10.1039/d4cc04387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Single-chain nanoparticles (SCNPs) are generated by intramolecular collapse and crosslinking of single polymer chains, thus conceptually resembling the structures of folded proteins. Their chemical flexibility and ability to form compartmentalised nanostructures sized ∼1 nm make them perfect candidates for numerous applications, such as in catalysis and drug delivery. In this review we discuss principles for the design, synthesis and analysis of SCNPs, with a focus on their compartmentalised structures, highlighting our own previous work. As such compartments offer the potential to generate a specific nanoenvironment e.g. for the covalent and non-covalent encapsulation of catalysts or drugs, they represent a novel, exciting, and expanding research area. Starting from the architectural and chemical design of the starting copolymers by controlling their amphiphilic profile, the embedding of blocks-, or secondary-structure-mimetic arrangements, we discuss design principles to form internal compartments inside the SCNPs. While the generation of compartments inside SCNPs is straightforward, their analysis is still challenging and often demands special techniques. We finally discuss applications of SCNPs, also linked to the compartment formation, predicting a bright future for these special nanoobjects.
Collapse
Affiliation(s)
- Justus F Thümmler
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| | - Wolfgang H Binder
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| |
Collapse
|
2
|
Zeroug-Metz L, Lee S. Biodynamers: applications of dynamic covalent chemistry in single-chain polymer nanoparticles. Drug Deliv Transl Res 2024; 14:3599-3607. [PMID: 39009930 PMCID: PMC11499429 DOI: 10.1007/s13346-024-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/17/2024]
Abstract
Dynamic Covalent Chemistry (DCC) enables the development of responsive molecular systems through the integration of reversible bonds at the molecular level. These systems are thermodynamically stable and capable of undergoing various molecular assemblies and transformations, allowing them to adapt to changes in environmental conditions like temperature and pH. Introducing DCC into the field of polymer science has led to the design of Single-Chain Nanoparticles (SCNPs), which are formed by self-folding via intramolecular crosslinking mechanisms. Defined by their adaptability, SCNPs mimic biopolymers in size and functionality. Biodynamers, a subclass of SCNPs, are specifically designed for their stimuli-responsive and tunable, dynamic properties. Mimicking complex biological structures, their scope of application includes target-specific and pH-responsive drug delivery, enhanced cellular uptake and endosomal escape. In this manuscript, we discuss the integration of DCC for the design of SCNPs, focusing particularly on the characteristics of biodynamers and their biomedical and pharmaceutical applications. By underlining their potential, we highlight the factors driving the growing interest in SCNPs, providing an overview of recent developments and future perspectives in this research field.
Collapse
Affiliation(s)
- Lena Zeroug-Metz
- Department of Pharmacy, Saarland University, Campus C 4.1, 66123, Saarbrücken, Germany
| | - Sangeun Lee
- Department of Pharmacy, Saarland University, Campus C 4.1, 66123, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
3
|
Vo Y, Raveendran R, Cao C, Lai RY, Lossa M, Foster H, Stenzel MH. Solvent Choice during Flow Assembly of Photocross-Linked Single-Chain Nanoparticles and Micelles Affects Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59833-59848. [PMID: 39450994 DOI: 10.1021/acsami.4c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Polymeric micelles have widely been used as drug delivery carriers, and recently, single-chain nanoparticles (SCNPs) emerged as potential, smaller-sized, alternatives. In this work, we are comparing both NPs side by side and evaluate their ability to be internalized by breast cancer cells (MCF-7) and macrophages (RAW 264.7). To be able to generate these NPs on demand, the polymers were assembled by flow, followed by the stabilization of the structures by photocross-linking using blue light. The central aim of this work is to evaluate how the type of solvent affects self-assembly and ultimately the structure of the final NP. Therefore, a library of copolymers with different sequences, including block copolymers (AB, ABA, BAB), and statistical copolymers (rAB and rAC) was synthesized using PET-RAFT with A denoting poly(ethylene glycol) methyl ether acrylate (PEGMEA), B as 2-hydroxyethyl acrylate (HEA), and C as 4-hydroxybutyl acrylate (HBA). The polymers were conjugated with a quinoline derivative to enable the formation of cross-linked structures by photocross-linking during flow assembly. Using water as the dispersant for photocross-linking led to the preassembly of these amphiphilic polymers into compact SCNPs and cross-linked micelles, resulting in a quick photoreaction. In contrast, acetonitrile led to fully dissolved polymers but a low rate of the photoreaction. These intramolecularly cross-linked polymers were then placed in water to result in more dynamic micelles and looser SCNPs. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and size exclusion chromatography (SEC) coupled with a viscosity detector show that cross-linking in acetonitrile results in better-defined NPs with a shell rich in PEGMEA. Cross-linking in acetonitrile led to NPs with significantly higher cellular uptake. Interestingly, passive transport was identified as the main pathway for the delivery of our NPs on MCF-7 cells, confirmed by the uptake of NPs on cells treated with inhibitors and by red blood cells. This work underscored the importance of the polymer precursor's structure and the choice of solvent during intramolecular cross-linking in determining the drug delivery efficiency and biological behavior of SCNPs.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miriam Lossa
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Henry Foster
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Verma VS, Pandey A, Jha AK, Badwaik HKR, Alexander A, Ajazuddin. Polyethylene Glycol-Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Appl Biochem Biotechnol 2024; 196:7325-7361. [PMID: 38519751 DOI: 10.1007/s12010-024-04895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Due to their potential to enhance therapeutic results and enable targeted drug administration, polymer-drug conjugates that use polyethylene glycol (PEG) as both the polymer and the linker for drug conjugation have attracted much research. This study seeks to investigate recent developments in the design and synthesis of PEG-based polymer-drug conjugates, emphasizing fresh ideas that fill in existing knowledge gaps and satisfy the increasing need for more potent drug delivery methods. Through an extensive review of the existing literature, this study identifies key challenges and proposes innovative strategies for future investigations. The paper presents a comprehensive framework for designing and synthesizing PEG-based polymer-drug conjugates, including rational molecular design, linker selection, conjugation methods, and characterization techniques. To further emphasize the importance and adaptability of PEG-based polymer-drug conjugates, prospective applications are highlighted, including cancer treatment, infectious disorders, and chronic ailments.
Collapse
Affiliation(s)
- Vinay Sagar Verma
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India
| | - Aakansha Pandey
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Arvind Kumar Jha
- Shri Shankaracharya Professional University, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Hemant Kumar Ramchandra Badwaik
- Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, Chhattisgarh, India.
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India.
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Ministry of Chemical and Fertilizers, Guwahati, 781101, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India.
| |
Collapse
|
5
|
Pinacho-Olaciregui J, Verde-Sesto E, Taton D, Pomposo JA. Lanthanide-Based Single-Chain Nanoparticles as "Visual" Pass/Fail Sensors of Maximum Permissible Concentration of Cu 2+ Ions in Drinking Water. Macromol Rapid Commun 2024; 45:e2400116. [PMID: 38558468 DOI: 10.1002/marc.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Indexed: 04/04/2024]
Abstract
The maximum permissible concentration (m.p.c.) of Cu2+ ions in drinking water, as set by the World Health Organization (WHO) is m.p.c. (Cu2+)WHO = 30 × 10-6 m, whereas the US Environmental Protection Agency (EPA) establishes a more restrictive value of m.p.c. (Cu2+)EPA = 20 × 10-6 m. Herein, for the first time ever, a family of m.p.c. (Cu2+) "visual" pass/fail sensors is developed based on water-soluble lanthanide-containing single-chain nanoparticles (SCNPs) exhibiting an average hydrodynamic diameter less than 10 nm. Both europium (Eu)- and terbium (Tb)-based SCNPs allow excessive Cu2+ to be readily detected in water, as indicated by the red-to-transparent and green-to-transparent changes, respectively, under UV light irradiation, occurring at 30 × 10-6 m Cu2+ in both cases. Complementary, dysprosium (Dy)-based SCNPs show a yellow color-to-transparent transition under UV light irradiation at ≈15 × 10-6 m Cu2+. Eu-, Tb-, and Dy-containing SCNPs prove to be selective for Cu2+ ions as they do not respond against other metal ions, such as Fe2+, Ag+, Co2+, Ba2+, Ni2+, Hg2+, Pb2+, Zn2+, Fe3+, Ca2+, Mn2+, Mg2+, or Cr3+. These new m.p.c. (Cu2+) "visual" pass/fail sensors are thoroughly characterized by a combination of techniques, including size exclusion chromatography, dynamic light scattering, inductively coupled plasma-mass spectrometry, as well as infrared, UV, and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Jokin Pinacho-Olaciregui
- Centro de Física de Materiales (CSIC - UPV/EHU) - Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, E-20018, Spain
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux INP-ENSCBP, 16 av. Pey Berland, Pessac cedex, 33607, France
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC - UPV/EHU) - Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, E-20018, Spain
- IKERBASQUE - Basque Foundation for Science, Plaza Euskadi 5, Bilbao, E-48009, Spain
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux INP-ENSCBP, 16 av. Pey Berland, Pessac cedex, 33607, France
| | - José A Pomposo
- Centro de Física de Materiales (CSIC - UPV/EHU) - Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, E-20018, Spain
- IKERBASQUE - Basque Foundation for Science, Plaza Euskadi 5, Bilbao, E-48009, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 3, Donostia, E-20800, Spain
| |
Collapse
|
6
|
Thümmler JF, Maragani R, Schmitt FJ, Tang G, Rahmanlou SM, Laufer J, Lucas H, Mäder K, Binder WH. Thermoresponsive swelling of photoacoustic single-chain nanoparticles. Chem Commun (Camb) 2023; 59:11373-11376. [PMID: 37665625 DOI: 10.1039/d3cc03851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
NIR-fluorescent LCST-type single-chain nanoparticles (SCNPs) change their photophysical behaviour upon heating, caused by depletion of water from the swollen SCNP interiors. This thermoresponsive effect leads to a fluctuating photoacoustic (PA) signal which can be used as a contrast mechanism for PA imaging.
Collapse
Affiliation(s)
- Justus F Thümmler
- Institute of Chemistry, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany.
| | - Ramesh Maragani
- Institute of Chemistry, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany.
| | - Franz-Josef Schmitt
- Institute of Physics, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, Halle D-06120, Germany
| | - Guo Tang
- Institute of Physics, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, Halle D-06120, Germany
| | - Samira Mahmoudi Rahmanlou
- Institute of Physics, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, Halle D-06120, Germany
| | - Jan Laufer
- Institute of Physics, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, Halle D-06120, Germany
| | - Henrike Lucas
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle D-06120, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle D-06120, Germany
| | - Wolfgang H Binder
- Institute of Chemistry, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany.
| |
Collapse
|
7
|
Hamelmann NM, Paulusse JMJ. Single-chain polymer nanoparticles in biomedical applications. J Control Release 2023; 356:26-42. [PMID: 36804328 DOI: 10.1016/j.jconrel.2023.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Single-chain polymer nanoparticles (SCNPs) are a well-defined and uniquely sized class of polymer nanoparticles. The advances in polymer science over the past decades have enabled the development of a variety of intramolecular crosslinking systems, leading to particles in the 5-20 nm size regime. Which is aligned with the size regime of proteins and therefore making SCNPs an interesting class of NPs for biomedical applications. The high modularity of SCNP design and the ease of their functionalization have led to growing research interest. In this review, we describe different crosslinking systems, as well as the preparation of functional SCNPs and the variety of biomedical applications that have been explored.
Collapse
Affiliation(s)
- Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
8
|
Wu Y, Chen S, Zhu J. Hydrogen Bond-Mediated Supramolecular Polymeric Nanomedicine with pH/Light-Responsive Methotrexate Release and Synergistic Chemo-/Photothermal Therapy. Biomacromolecules 2022; 23:4230-4240. [PMID: 36074998 DOI: 10.1021/acs.biomac.2c00717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complete cancer cure and healing are still difficult, owing to its complexity and heterogeneity. Integration of supramolecular forces, for example, hydrogen bonds (H-bonds), to anti-cancer nanomedicine affords new scaffolds for biomedical material decoration, featuring the advantages of dynamic property and easier processability. Here, we target the construction of H-bond-mediated supramolecular polymer micelles, loaded with a chemotherapeutic drug along with a photothermal agent for synergistic chemo-/photothermal therapies (CT/PTT). To do so, we design and synthesize an amphiphilic ABA-type triblock copolymer, bearing H-bonding moiety (barbiturate, Ba) within the middle hydrophobic B block. The presence of pendant Ba moieties within the hydrophobic core promotes the loading capability of methotrexate (MTX) and transportation stability, benefitting from the formation of specific Ba/MTX H-bonding interactions. IR780, a photothermal agent, concomitantly encapsulated via hydrophobic interactions, facilitates the development of a synergistic CT/PTT modalities, where MTX can be released on demand owing to the dissociation of Ba/MTX H-bonding interactions induced by elevated temperature. Such H-bonding nanomedicine possesses enhanced drug loading capacity and transport performance and can also trigger stimuli-responsive drug release in the tumor zone. We believe that H-bonded nanomedicines provide a fine toolbox that is conducive to attaining biomedical requirements with remarkable values in theranostics that are highly promising in clinical applications.
Collapse
Affiliation(s)
- Yanggui Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
9
|
Chen S, Wu Y, Lortie F, Bernard J, Binder WH, Zhu J. Hydrogen-Bonds Mediated Nanomedicine: Design, Synthesis and Applications. Macromol Rapid Commun 2022; 43:e2200168. [PMID: 35609317 DOI: 10.1002/marc.202200168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/30/2022] [Indexed: 11/08/2022]
Abstract
Among the various challenges in medicine, diagnosis, complete cure and healing of cancers remain difficult given the heterogeneity and complexity of such disease. Differing from conventional platforms with often unsatisfactory theranostic capabilities, the contribution of supramolecular interactions, such as hydrogen-bonds (H-bonds), to cancer nanotheranostics opens new perspectives for the design of biomedical materials, exhibiting remarkable properties and easier processability. Thanks to their dynamic characteristics, a feature generally observed for non-covalent interactions, H-bonding (macro)molecules can be used as supramolecular motifs for yielding drug- and diagnostic carriers that possess attractive features, arising from the combination of assembled nanoplatforms and the responsiveness of H-bonds. Thus H-bonded nanomedicine provides a rich toolbox that is useful to fulfill biomedical needs with unique advantages in early-stage diagnosis and therapy, demonstrating the promising potential in clinical translations and applications. We here summarize the design and synthetic routes towards H-bonded nanomedicines, focus on the growing understanding of the structure-function relationship for efficient cancer treatment. We propose a guidance for designing new H-bonded intelligent theranostic agents, to inspire more successful explorations of cancer nanotheranostics and finally to promote potential clinical translations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yanggui Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Frédéric Lortie
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, Villeurbanne Cedex, F-69621, France
| | - Julien Bernard
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, Villeurbanne Cedex, F-69621, France
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
10
|
Calosi M, Guazzelli E, Braccini S, Lessi M, Bellina F, Galli G, Martinelli E. Self-Assembled Amphiphilic Fluorinated Random Copolymers for the Encapsulation and Release of the Hydrophobic Combretastatin A-4 Drug. Polymers (Basel) 2022; 14:774. [PMID: 35215686 PMCID: PMC8880340 DOI: 10.3390/polym14040774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 02/07/2023] Open
Abstract
Water-soluble amphiphilic random copolymers composed of tri(ethylene glycol) methacrylate (TEGMA) or poly(ethylene glycol) methyl ether methacrylate (PEGMA) and perfluorohexylethyl acrylate (FA) were synthesized by ARGET-ATRP, and their self-assembling and thermoresponsive behavior in water was studied by dynamic light scattering (DLS) and UV-vis spectroscopy. The copolymer ability to self-fold in single-chain nano-sized structures (unimer micelles) in aqueous solutions was exploited to encapsulate Combretastatin A-4 (CA-4), which is a very hydrophobic anticancer drug. The cloud point temperature (Tcp) was found to linearly decrease with increasing drug concentration in the drug/copolymer system. Moreover, while CA-4 was preferentially incorporated into the unimer micelles of TEGMA-ran-FA, the drug was found to induce multi-chain, submicro-sized aggregation of PEGMA-ran-FA. Anyway, the encapsulation efficiency was very high (≥81%) for both copolymers. The drug release was evaluated in PBS aqueous solutions both below and above Tcp for TEGMA-ran-FA copolymer and below Tcp, but at two different drug loadings, for PEGMA-ran-FA copolymer. In any case, the release kinetics presented similar profiles, characterized by linear trends up to ≈10-13 h and ≈7 h for TEGMA-ran-FA and PEGMA-ran-FA, respectively. Then, the release rate decreased, reaching a plateau. The release from TEGMA-ran-FA was moderately faster above Tcp than below Tcp, suggesting that copolymer thermoresponsiveness increased the release rate, which occurred anyway by diffusion below Tcp. Cytotoxicity tests were carried out on copolymer solutions in a wide concentration range (5-60 mg/mL) at 37 °C by using Balb/3T3 clone A31 cells. Interestingly, it was found that the concentration-dependent micro-sized aggregation of the amphiphilic random copolymers above Tcp caused a sort of "cellular asphyxiation" with a loss of cell viability clearly visible for TEGMA-ran-FA solutions (Tcp below 37 °C) with higher copolymer concentrations. On the other hand, cells in contact with the analogous PEGMA-ran-FA (Tcp above 37 °C) presented a very good viability (≥75%) with respect to the control at any given concentration.
Collapse
Affiliation(s)
| | | | | | | | | | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (M.C.); (E.G.); (S.B.); (M.L.); (F.B.); (E.M.)
| | | |
Collapse
|
11
|
Wu Y, Wang H, Liu Q, lortie F, Bernard J, Binder WH, Chen S, Zhu J. Hydrogen-Bonded Supramolecular Polymer Micelles with pH/Photothermal-Responsive Carmofur Release and Combined Chemo-Photothermal Therapy. Polym Chem 2022. [DOI: 10.1039/d1py01634b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrating biomedical applications (e.g., drug delivery) into supramolecular chemistry is a promising strategy. This work targets the construction of hydrogen-bonded (H-bonded) supramolecular polymeric micelles loaded with chemotherapy drugs (carmofur) and...
Collapse
|
12
|
Han W, Xiang W, Li Q, Zhang H, Yang Y, Shi J, Ji Y, Wang S, Ji X, Khashab NM, Sessler JL. Water compatible supramolecular polymers: recent progress. Chem Soc Rev 2021; 50:10025-10043. [PMID: 34346444 DOI: 10.1039/d1cs00187f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Water compatible supramolecular polymers (WCSPs) combine aqueous compatibility with the reversibility and environmental responsiveness of supramolecular polymers. WCSPs have seen application across a number of fields, including stimuli-responsive materials, healable materials, and drug delivery, and are attracting increasing attention from the design, synthesis, and materials perspectives. In this review, we summarize the chemistry of WCSPs from 2016 to mid-2021. For the sake of discussion, we divide WCSPs into five categories based on the core supramolecular approaches at play, namely hydrogen-bonding arrays, electrostatic interactions, large π-conjugated subunits, host-guest interactions, and peptide-based systems, respectively. We discuss both synthesis and polymer structure, as well as the underlying design expectations. The goal of this overview is to deepen our understanding of the strategies that have been exploited to prepare WCSPs, as well as their properties and uses. Thus, a section devoted to potential applications is included in this review.
Collapse
Affiliation(s)
- Weiwei Han
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Dianzi 2nd Road Dongduan#18, Xi'an, Shaanxi 710065, China.
| | - Wei Xiang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Dianzi 2nd Road Dongduan#18, Xi'an, Shaanxi 710065, China.
| | - Qingyun Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hanwei Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yabi Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun Shi
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Dianzi 2nd Road Dongduan#18, Xi'an, Shaanxi 710065, China.
| | - Yue Ji
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Dianzi 2nd Road Dongduan#18, Xi'an, Shaanxi 710065, China.
| | - Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Dianzi 2nd Road Dongduan#18, Xi'an, Shaanxi 710065, China.
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Amin MU, Ali S, Ali MY, Tariq I, Nasrullah U, Pinnapreddy SR, Wölk C, Bakowsky U, Brüßler J. Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. Eur J Pharm Biopharm 2021; 165:31-40. [PMID: 33962002 DOI: 10.1016/j.ejpb.2021.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023]
Abstract
The exposure of cancer cells to subtherapeutic drug concentrations results in multidrug resistance (MDR). The uniqueness of mesoporous silica nanoparticles (MSNPs) with larger surface area for higher drug loading can solve the issue by delivering higher amounts of chemotherapeutics to the cancer cells. However, premature drug release and lower biocompatibility remain challenging. Lipid coating of MSNPs at the same time, can enhance the stability and biocompatibility of nanocarriers. Furthermore, the lipid coating can reduce the systemic drug release and deliver higher amounts to the tumor site. Herein, lipid coated MSNPs were prepared by utilizing cationic liposomes and further investigations were made. Our studies have shown the higher entrapment of doxorubicin (Dox) to MSNPs due to availability of porous structure. Lipid coating could provide a barrier to sustain the release of drug along with reduced premature leakage. In addition, the biocompatibility and enhanced interaction of cationic liposomes to cell membranes resulted in better cellular uptake. Lipid coated silica nanoparticles have shown higher cellular toxicity as compared to non-lipid coated particles. The increase in cytotoxicity with time supports the hypothesis of sustained release of drug from lipid coated MSNPs. We propose the Lip-Dox-MSNPs as an effective approach to treat cancer by delivering and maintaining effective concentration of drugs to the tumor site without systemic side effects.
Collapse
Affiliation(s)
- Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany; Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany; Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Yasir Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany; Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany; Punnjab University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt am Main, Germany
| | | | - Christian Wölk
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine Leipzig University, Leipzig, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany.
| |
Collapse
|
14
|
Hoffmann JF, Roos AH, Schmitt FJ, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single-Chain Nanoparticles: Core-Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021; 60:7820-7827. [PMID: 33373475 PMCID: PMC8048794 DOI: 10.1002/anie.202015179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/13/2020] [Indexed: 12/20/2022]
Abstract
Single-chain nanoparticles (SCNPs) are highly versatile structures resembling proteins, able to function as catalysts or biomedical delivery systems. Based on their synthesis by single-chain collapse into nanoparticular systems, their internal structure is complex, resulting in nanosized domains preformed during the crosslinking process. In this study we present proof of such nanocompartments within SCNPs via a combination of electron paramagnetic resonance (EPR) and fluorescence spectroscopy. A novel strategy to encapsulate labels within these water dispersible SCNPs with hydrodynamic radii of ≈5 nm is presented, based on amphiphilic polymers with additional covalently bound labels, attached via the copper catalyzed azide/alkyne "click" reaction (CuAAC). A detailed profile of the interior of the SCNPs and the labels' microenvironment was obtained via electron paramagnetic resonance (EPR) experiments, followed by an assessment of their photophysical properties.
Collapse
Affiliation(s)
- Justus F Hoffmann
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Andreas H Roos
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Franz-Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Dariush Hinderberger
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| |
Collapse
|
15
|
Hoffmann JF, Roos AH, Schmitt F, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single‐Chain Nanoparticles: Core–Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justus F. Hoffmann
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Andreas H. Roos
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Franz‐Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 3 06120 Halle Germany
| | - Dariush Hinderberger
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Wolfgang H. Binder
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| |
Collapse
|
16
|
Joseph JP, Miglani C, Bhatt A, Ray D, Singh A, Gupta D, Ali ME, Aswal VK, Pal A. Delineating synchronized control of dynamic covalent and non-covalent interactions for polymer chain collapse towards cargo localization and delivery. Polym Chem 2021. [DOI: 10.1039/d0py01551b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synergistic control of photo-responsive dynamic covalent and non-covalent interaction over the chain collapse of single chain thermo-responsive polymers towards cargo localization and augmented release.
Collapse
Affiliation(s)
- Jojo P. Joseph
- Chemical Biology Unit
- Institute of Nano Science and Technology
- Mohali
- India
| | - Chirag Miglani
- Chemical Biology Unit
- Institute of Nano Science and Technology
- Mohali
- India
| | - Aashish Bhatt
- Quantum Materials and Devices
- Institute of Nano Science and Technology
- Mohali
- India
| | - Debes Ray
- Solid State Physics Division
- BARC
- Mumbai – 400085
- India
| | - Ashmeet Singh
- Chemical Biology Unit
- Institute of Nano Science and Technology
- Mohali
- India
| | - Deepika Gupta
- Chemical Biology Unit
- Institute of Nano Science and Technology
- Mohali
- India
| | - Md. Ehesan Ali
- Quantum Materials and Devices
- Institute of Nano Science and Technology
- Mohali
- India
| | | | - Asish Pal
- Chemical Biology Unit
- Institute of Nano Science and Technology
- Mohali
- India
| |
Collapse
|
17
|
Reith MA, Kardas S, Mertens C, Fossépré M, Surin M, Steinkoenig J, Du Prez FE. Using nickel to fold discrete synthetic macromolecules into single-chain nanoparticles. Polym Chem 2021. [DOI: 10.1039/d1py00229e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sequence-defined macromolecules were prepared with a thiolactone-based platform whereby ligand functionalities were introduced along the backbone enabling a nickel induced formation of single-chain nanoparticles.
Collapse
Affiliation(s)
- Melissa A. Reith
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Sinan Kardas
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Chiel Mertens
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Mathieu Fossépré
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Mathieu Surin
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Jan Steinkoenig
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| |
Collapse
|
18
|
Cheng CC, Sun YT, Lee AW, Huang SY, Fan WL, Chiao YH, Tsai HC, Lai JY. Self-Assembled Supramolecular Micelles with pH-Responsive Properties for More Effective Cancer Chemotherapy. ACS Biomater Sci Eng 2020; 6:4096-4105. [PMID: 33463316 DOI: 10.1021/acsbiomaterials.0c00644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
pH-Responsive hydrogen-bonded supramolecular micelles, composed of a water-soluble poly(ethylene glycol) polymer with two terminal sextuple hydrogen bonding groups, can spontaneously organize in aqueous media to give well-defined, uniformly sized spherical micelles. The supramolecular micelles exhibit a number of unique physical characteristics, such as interesting amphiphilic behavior, desirable micellar size and nanospherical morphology, excellent biocompatibility, tailorable drug-loading capacities, and high structural stability in media containing serum or red blood cells. In addition, the drug release kinetics of drug-loaded micelles can be easily manipulated to achieve the desired release profile by regulating the environmental pH, thus these micelles are highly attractive candidates as an intelligent drug carrier system for cancer therapy. Cytotoxicity assays showed that the drug-loaded micelles induced pH-dependent intracellular drug release and exerted strong antiproliferative and cytotoxic activities toward cancer cells. Importantly, cellular uptake and flow cytometric analyses confirmed that a mildly acidic intracellular environment significantly increased cellular internalization of the drug-loaded micelles and subsequent drug release in the cytoplasm and nucleus of cancer cells, resulting in more effective induction of apoptotic cell death. Thus, this system may provide an efficient route toward achieving the fundamental properties and practical realization of pH-sensitive drug-delivery systems for chemotherapy.
Collapse
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ya-Ting Sun
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wen-Lu Fan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Hsuan Chiao
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| |
Collapse
|
19
|
Bintang Ilhami F, Huang SY, Chen JK, Kao CY, Cheng CC. Multifunctional adenine-functionalized supramolecular micelles for highly selective and effective cancer chemotherapy. Polym Chem 2020. [DOI: 10.1039/c9py01557d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenine-functionalized supramolecular micelles are rapidly endocytosed by cancer cells and enable selective induction of tumor cell death, without harming normal cells.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
- Graduate Institute of Biomedical Engineering
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Chen-Yu Kao
- Graduate Institute of Biomedical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
- Advanced Membrane Materials Research Center
| |
Collapse
|
20
|
Nitsche T, Blanksby SJ, Blinco JP, Barner-Kowollik C. Pushing the limits of single chain compaction analysis by observing specific size reductions via high resolution mass spectrometry. Polym Chem 2020. [DOI: 10.1039/c9py01910c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we push the limits of single chain nanoparticle analysis to directly observe the specific compaction of defined single chains dependent on the number of compaction steps.
Collapse
Affiliation(s)
- Tobias Nitsche
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Stephen J. Blanksby
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Central Analytical Research Facility
| | - James P. Blinco
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| |
Collapse
|
21
|
Cheng CC, Fan WL, Wu CY, Chang YH. Supramolecular Polymer Network-Mediated Structural Phase Transitions within Polymeric Micelles in Aliphatic Alcohols. ACS Macro Lett 2019; 8:1541-1545. [PMID: 35619401 DOI: 10.1021/acsmacrolett.9b00781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Self-complementary supramolecular polymers (SCSPs), an efficient combination of sextuple hydrogen-bonded dimer moieties and a temperature-responsive polymer, can promote the construction of stable supramolecular polymer networks (SPNs) that enable the formation of well-defined nanospherical micelles in aliphatic alcohols. These micelles undergo tailorable, thermoresponsive phase transitions at the upper critical solution temperature (UCST) and have a desirable spherical morphology and size ranges, thus, are potential candidates for applications in interfacial engineering and biomedical fields. Moreover, concentration-dependent UCST measurements and variable-temperature experiments indicated that the hydrogen-bonded complexes are strong enough to form stable intermolecularly entangled SPNs within the micelles, even above the UCST or at low concentrations in solution, which enables the micelles to undergo reversible temperature-dependent conformational changes between insoluble and soluble globules without significant changes in particle size or size distribution. Thus, this newly discovered system offers a new approach toward the development of next-generation temperature-responsive SCSPs with the desired structural stability that undergoes UCST transitions.
Collapse
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wen-Lu Fan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Cheng-You Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yi-Hsuan Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
22
|
Klonos PA, Patelis N, Glynos E, Sakellariou G, Kyritsis A. Molecular Dynamics in Polystyrene Single-Chain Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Nikolaos Patelis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografrou, 15771 Athens, Greece
| | - Emmanouil Glynos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O.
Box 1385, Heraklion, 711 10 Crete, Greece
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografrou, 15771 Athens, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
23
|
Oberdisse J, González-Burgos M, Mendia A, Arbe A, Moreno AJ, Pomposo JA, Radulescu A, Colmenero J. Effect of Molecular Crowding on Conformation and Interactions of Single-Chain Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Julian Oberdisse
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Marina González-Burgos
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Ander Mendia
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Arantxa Arbe
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Angel J. Moreno
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - José A. Pomposo
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastian, Spain
- IKERBASQUE—Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ, 85748 Garching, Germany
| | - Juan Colmenero
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastian, Spain
| |
Collapse
|
24
|
Nitsche T, Steinkoenig J, De Bruycker K, Bloesser FR, Blanksby SJ, Blinco JP, Barner-Kowollik C. Mapping the Compaction of Discrete Polymer Chains by Size Exclusion Chromatography Coupled to High-Resolution Mass Spectrometry. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Jan Steinkoenig
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Ghent, Belgium
| | | | | | | | | | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
25
|
Rubio-Cervilla J, Malo de Molina P, Robles-Hernández B, Arbe A, Moreno AJ, Alegría A, Colmenero J, Pomposo JA. Facile Access to Completely Deuterated Single-Chain Nanoparticles Enabled by Intramolecular Azide Photodecomposition. Macromol Rapid Commun 2019; 40:e1900046. [PMID: 30801882 DOI: 10.1002/marc.201900046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/14/2023]
Abstract
Access to completely deuterated single-chain nanoparticles (dSCNPs) has remained an unresolved issue. Herein, the first facile and efficient procedure to produce dSCNPs is reported, which comprises: i) the use of commercially available perdeuterated cyclic ether monomers as starting reagents, ii) a ring-opening copolymerization process performed in bulk to produce a neat dSCNP precursor, iii) a standard azidation reaction to decorate this precursor with azide moieties, and iv) a facile intramolecular azide photodecomposition step carried out under UV irradiation at high dilution providing with highly valuable, completely deuterated soft nano-objects from the precursor. dSCNPs are used to investigate by means of neutron-scattering measurements the form factor (radius of gyration, scaling exponent) of polyethylene oxide (PEO) chains in nanocomposites with different amounts of dSCNPs. Moreover, to illustrate the possibilities offered by the synthetic route disclosed in this communication for potential applications, the significant reduction in viscosity observed in a pure melt of polyether-based single-chain nanoparticles when compared to a melt of the corresponding linear polymer chains is shown.
Collapse
Affiliation(s)
- Jon Rubio-Cervilla
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain
| | - Paula Malo de Molina
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain
| | - Beatriz Robles-Hernández
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain
| | - Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain
| | - Angel Alegría
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastian, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastian, Spain.,Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastian, Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU)-MPC Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018, San Sebastian, Spain.,Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastian, Spain.,IKERBASQUE-Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
26
|
Gebeyehu BT, Lee AW, Huang SY, Muhabie AA, Lai JY, Lee DJ, Cheng CC. Highly stable photosensitive supramolecular micelles for tunable, efficient controlled drug release. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Bilgi M, Karaca Balta D, Temel BA, Temel G. Single-Chain Folding Nanoparticles as Carbon Nanotube Catchers. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mesut Bilgi
- Department of Chemistry; Yildiz Technical University; Istanbul 34220 Turkey
| | - Demet Karaca Balta
- Department of Chemistry; Yildiz Technical University; Istanbul 34220 Turkey
| | - Binnur Aydogan Temel
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy, Bezmialem Vakif University; Fatih, Istanbul, 34093 Turkey
| | - Gokhan Temel
- Department of Polymer Engineering; Faculty of Engineering,Yalova University; Yalova 77200 Turkey
| |
Collapse
|
28
|
Aharonovich S, Diesendruck CE. Single chain polymer nanoparticles as shear-resilient viscosity modifiers for lubricating oils. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Kröger APP, Paulusse JMJ. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. J Control Release 2018; 286:326-347. [PMID: 30077737 DOI: 10.1016/j.jconrel.2018.07.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022]
Abstract
As a relatively new class of materials, single-chain polymer nanoparticles (SCNPs) just entered the field of (biomedical) applications, with recent advances in polymer science enabling the formation of bio-inspired nanosized architectures. Exclusive intramolecular collapse of individual polymer chains results in individual nanoparticles. With sizes an order of magnitude smaller than conventional polymer nanoparticles, SCNPs are in the size regime of many proteins and viruses (1-20 nm). Multifaceted syntheses and design strategies give access to a wide set of highly modular SCNP materials. This review describes how SCNPs have been rendered water-soluble and highlights ongoing research efforts towards biocompatible SCNPs with tunable properties for controlled drug delivery, targeted imaging and protein mimicry.
Collapse
Affiliation(s)
- A Pia P Kröger
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M J Paulusse
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
30
|
Liao ZS, Huang SY, Huang JJ, Chen JK, Lee AW, Lai JY, Lee DJ, Cheng CC. Self-Assembled pH-Responsive Polymeric Micelles for Highly Efficient, Noncytotoxic Delivery of Doxorubicin Chemotherapy To Inhibit Macrophage Activation: In Vitro Investigation. Biomacromolecules 2018; 19:2772-2781. [PMID: 29677448 DOI: 10.1021/acs.biomac.8b00380] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-assembled pH-responsive polymeric micelles, a combination of hydrophilic poly(ethylene glycol) segments and hydrogen bonding interactions within a biocompatible polyurethane substrate, can spontaneously self-assemble into highly controlled, nanosized micelles in aqueous solution. These newly developed micelles exhibit excellent pH-responsive behavior and biocompatibility, highly controlled drug (doxorubicin; DOX) release behavior, and high drug encapsulation stability in different aqueous environments, making the micelles highly attractive potential candidates for safer, more effective drug delivery in applications such as cancer chemotherapy. In addition, in vitro cell studies revealed the drug-loaded micelles possessed excellent drug entrapment stability and low cytotoxicity toward macrophages under normal physiological conditions (pH 7.4, 37 °C). When the pH of the culture media was reduced to 6.0 to mimic the acidic tumor microenvironment, the drug-loaded micelles triggered rapid release of DOX within the cells, which induced potent antiproliferative and cytotoxic effects in vitro. Importantly, fluorescent imaging and flow cytometric analyses confirmed the DOX-loaded micelles were efficiently delivered into the cytoplasm of the cells via endocytosis and then subsequently gradually translocated into the nucleus. Therefore, these multifunctional micelles could serve as delivery vehicles for precise, effective, controlled drug release to prevent accumulation and activation of tumor-promoting tumor-associated macrophages in cancer tissues. Thus, this unique system may offer a potential route toward the practical realization of next-generation pH-responsive therapeutic delivery systems.
Collapse
Affiliation(s)
- Zhi-Sheng Liao
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Jyun-Jie Huang
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine , Taipei Medical University , Taipei 11031 , Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan.,Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan.,R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli, Taoyuan 32043 , Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan.,Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan.,R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli, Taoyuan 32043 , Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| |
Collapse
|
31
|
Gracia R, Marradi M, Salerno G, Pérez-Nicado R, Pérez-San Vicente A, Dupin D, Rodriguez J, Loinaz I, Chiodo F, Nativi C. Biocompatible single-chain polymer nanoparticles loaded with an antigen mimetic as potential anticancer vaccine. ACS Macro Lett 2018; 7:196-200. [PMID: 35610892 DOI: 10.1021/acsmacrolett.8b00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "pancarcinoma" Tn antigen (αGalNAc-O-Ser/Thr) is a tumor-associated carbohydrate antigen (TACA) overexpressed on the surface of cancer cells and suitable target for anticancer vaccines. However, TACAs commonly show weak immunogenicity, low in vivo stability, and poor bioavailability. To address these issues, the development of physiologically stable TACA synthetic mimetics and novel nanocarriers for multivalent display are object of intense research. Nanomaterials represent suitable scaffolds to multimerize antigens, but absence of toxicity, easy functionalization and capability to incorporate biomolecules are compulsory characteristics for vaccine nanocarriers. Here, we report on the conjugation of a synthetic Tn-antigen mimetic to biocompatible and water-dispersible dextran-based single-chain nanoparticles (DXT-SCPNs). In vitro stimulation of PBMCs and analysis of interleukins production indicated a specific innate immune modulation mediated by the multivalent presentation of the Tn mimetic at the nanoparticle surface. These preliminary results pave the way for the development of Tn-mimetic clusters on biocompatible DXT-SCPN for TACA-based vaccines.
Collapse
Affiliation(s)
- Raquel Gracia
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Marco Marradi
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Gianluca Salerno
- Department
of Chemistry, University of Florence, via della Lastruccia, 13, I-50019 Sesto F.no (FI), Italy
| | | | - Adrián Pérez-San Vicente
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Damien Dupin
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Javier Rodriguez
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Iraida Loinaz
- CIDETEC Nanomedicine, Parque Cientı́fico y Tecnológico de Guipúzcoa, P° Miramón, 196, 20014 Donostia-San Sebastián, Spain
| | - Fabrizio Chiodo
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
- Department
of Parasiolgy, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Cristina Nativi
- Department
of Chemistry, University of Florence, via della Lastruccia, 13, I-50019 Sesto F.no (FI), Italy
| |
Collapse
|
32
|
Gebeyehu BT, Huang SY, Lee AW, Chen JK, Lai JY, Lee DJ, Cheng CC. Dual Stimuli-Responsive Nucleobase-Functionalized Polymeric Systems as Efficient Tools for Manipulating Micellar Self-Assembly Behavior. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Ai-Wei Lee
- Department
of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Juin-Yih Lai
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| | - Duu-Jong Lee
- Department
of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| | | |
Collapse
|
33
|
Zhou Y, Qu Y, Yu Q, Chen H, Zhang Z, Zhu X. Controlled synthesis of diverse single-chain polymeric nanoparticles using polymers bearing furan-protected maleimide moieties. Polym Chem 2018. [DOI: 10.1039/c8py00481a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study is devoted to the control fabrication of SCNPs from the same precursor and exploring the surface properties of SCNP-made films.
Collapse
Affiliation(s)
- Yu Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
34
|
Heiler C, Bastian S, Lederhose P, Blinco JP, Blasco E, Barner-Kowollik C. Folding polymer chains with visible light. Chem Commun (Camb) 2018; 54:3476-3479. [DOI: 10.1039/c8cc01054d] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A simple and versatile tool for generating fluorescent single chain polymer nanoparticles with visible light.
Collapse
Affiliation(s)
- Carolin Heiler
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Simon Bastian
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Paul Lederhose
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - James P. Blinco
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Eva Blasco
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| |
Collapse
|
35
|
Cheng CC, Lee DJ, Chen JK. Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation. Acta Biomater 2017; 50:476-483. [PMID: 28003144 DOI: 10.1016/j.actbio.2016.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/21/2023]
Abstract
Self-assembled supramolecular scaffolds, a combination of noncovalent interactions within a biocompatible polymer substrate, can be used for efficient construction of highly-controlled self-organizing hierarchical structures; these newly-developed biomaterials exhibit excellent mechanical properties, tunable surface hydrophilicity, low cytotoxicity and high biodegradability, making them highly attractive for tissue engineering and regenerative medicine applications. Herein, we demonstrate a novel supramolecular poly(ε-caprolactone) (PCL) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties, which undergoes spontaneous self-assembly to form supramolecular polymer networks. Inclusion of various U-DPy contents enhanced the mechanical strength and viscosities of the resulting materials by up to two orders of magnitude compared to control PCL. Surface wettability and morphological studies confirmed physically-crosslinked films can be readily tailored to provide the desired surface properties. Cell viability assays indicated the excellent in vitro biocompatibility of U-DPy-functionalized substrates and indicate the potential of these materials for various biomedical applications. More importantly, mouse fibroblast NIH/3T3 cells cultured on these substrates displayed a more elongated cell morphology and had substantially higher cell densities than cells seeded on control PCL substrate, which indicates that introduction of U-DPy moieties into polymer matrixes could be used to create tissue culture surfaces that enhance cell attachment and proliferation. This new system is suggested as a potential route towards the practical realization of next-generation tissue-engineering scaffolds. STATEMENT OF SIGNIFICANCE In this study, we report a significant breakthrough in development of self-assembled supramolecular polymers to form well-defined scaffolds through self-complementary hydrogen-bonding interactions. These newly developed materials exhibited extremely good mechanical properties, fine-tunable hydrophilic characteristics and excellent biocompatibility due to hydrogen-bond-induced physical cross-linking. Importantly, cell adhesion and proliferation assays indicated that these substrates efficiently promoted the growth of mouse embryonic fibroblasts NIH/3T3 cells in vitro. Thus, this finding provides a simple and effective route for the development of next-generation tissue-engineering scaffolds that have improved mechanical properties, increased surface hydrophilicity and can enhance the growth and biological activity of adherent cells.
Collapse
|
36
|
Cheng CC, Chuang WT, Lee DJ, Xin Z, Chiu CW. Supramolecular Polymer Network-Mediated Self-Assembly of Semicrystalline Polymers with Excellent Crystalline Performance. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/07/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center; Hsinchu 30076 Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering; National Taiwan University; Taipei 10617 Taiwan
- Department of Chemical Engineering; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
- R&D Center for Membrane Technology; Chung Yuan Christian University; Chungli Taoyuan 32043 Taiwan
| | - Zhong Xin
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering; National Taiwan University of Science and Technology; Taipei 10607 Taiwan
| |
Collapse
|
37
|
Heiler C, Offenloch JT, Blasco E, Barner-Kowollik C. Photochemically Induced Folding of Single Chain Polymer Nanoparticles in Water. ACS Macro Lett 2017; 6:56-61. [PMID: 35651105 DOI: 10.1021/acsmacrolett.6b00858] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We pioneer the synthesis of fluorescent single chain nanoparticles (SCNPs) via UV-light induced folding based on tetrazole chemistry directly in pure water. Water-soluble photoreactive precursor polymers based on poly(acrylic acid) (PAA) bearing tetrazole, alkene and tetraethylene glycol monomethyl ether moieties, (PAAn(Tet/p-Mal/TEG)), or simply tetrazoles moieties, PAAn(Tet), were generated via RAFT polymerization. While tetrazole, ene, and acrylic acid containing polymers fold via dual nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) as well as nitrile imine-carboxylic acid ligation (NICAL), tetrazole and acrylic acid only functional prepolymers fold exclusively via NICAL. A detailed study of the underpinning photochemistry of NITEC and NICAL is also included. The resulting water-soluble SCNPs were carefully characterized via analytical techniques such as NMR, UV-vis, and fluorescence spectroscopy, as well as SEC and DLS.
Collapse
Affiliation(s)
- Carolin Heiler
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Janin T. Offenloch
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Eva Blasco
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
38
|
Cui Z, Cao H, Ding Y, Gao P, Lu X, Cai Y. Compartmentalization of an ABC triblock copolymer single-chain nanoparticle via coordination-driven orthogonal self-assembly. Polym Chem 2017. [DOI: 10.1039/c7py00582b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present coordination-driven intramolecular orthogonal self-assembly of ABC triblock copolymer into protein-like compartmentalized SCNP, whose sub-10 nm ultrafine subdomains are discrete and can respond to aqueous surroundings individually.
Collapse
Affiliation(s)
- Zhigang Cui
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Hui Cao
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yi Ding
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Pan Gao
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
39
|
Cheng CC, Huang JJ, Muhable AA, Liao ZS, Huang SY, Lee SC, Chiu CW, Lee DJ. Supramolecular fluorescent nanoparticles functionalized with controllable physical properties and temperature-responsive release behavior. Polym Chem 2017. [DOI: 10.1039/c7py00276a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supramolecular polymers can encapsulate chromophoric pyrene to form multifunctional pyrene-loaded micelles for efficient controlled pyrene release.
Collapse
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Jyun-Jie Huang
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Adem Ali Muhable
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Zhi-Sheng Liao
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Shun-Chieh Lee
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Department of Chemical Engineering
| |
Collapse
|
40
|
Gracia R, Marradi M, Cossío U, Benito A, Pérez-San Vicente A, Gómez-Vallejo V, Grande HJ, Llop J, Loinaz I. Synthesis and functionalization of dextran-based single-chain nanoparticles in aqueous media. J Mater Chem B 2017; 5:1143-1147. [DOI: 10.1039/c6tb02773c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water-dispersible dextran-based single-chain polymer nanoparticles (SCPNs) were prepared in aqueous media and under mild conditions.
Collapse
Affiliation(s)
- R. Gracia
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| | - M. Marradi
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| | - U. Cossío
- Radiochemistry and Nuclear Imaging Group
- CIC biomaGUNE
- Donostia-San Sebastián
- Spain
| | - A. Benito
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| | | | - V. Gómez-Vallejo
- Radiochemistry and Nuclear Imaging Group
- CIC biomaGUNE
- Donostia-San Sebastián
- Spain
| | - H.-J. Grande
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| | - J. Llop
- Radiochemistry and Nuclear Imaging Group
- CIC biomaGUNE
- Donostia-San Sebastián
- Spain
| | - I. Loinaz
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| |
Collapse
|