1
|
Chen Y, Cai J, Xia Z, Chen C, Liu Y, Jayasinghe L, Wang X, Zhou X. New Bioactive Polyketides from the Mangrove-Derived Fungus Penicillium sp. SCSIO 41411. Mar Drugs 2024; 22:384. [PMID: 39330265 PMCID: PMC11433107 DOI: 10.3390/md22090384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Three new polyketides, including three ester derivatives (1, 3, and 5) and a new natural product, which was a benzoquinone derivative, embelin A (4), together with nine known ones (2 and 6-13), were isolated from the mangrove-derived fungus Penicillium sp. SCSIO 41411. Their structures were determined by detailed NMR and MS spectroscopic analyses. The X-ray single-crystal diffraction analysis of 4 was described for the first time. Compound 9 displayed obvious inhibition against PDE4 with an inhibitory ratio of 40.78% at 10 μM. Compound 12 showed DPPH radical scavenging activity, with an EC50 of 16.21 µg/mL, compared to the positive control (ascorbic acid, EC50, 11.22 µg/mL). Furthermore, compound 4 exhibited cytotoxicity against PC-3 and LNCaP with IC50 values of 18.69 and 31.62 µM, respectively.
Collapse
Affiliation(s)
- Yi Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwei Xia
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Institute of Traditional Chinese and Zhuang Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Institute of Traditional Chinese and Zhuang Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lalith Jayasinghe
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- National Institute of Fundamental Studies, Hantana Road, Kandy 200000, Sri Lanka
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Institute of Traditional Chinese and Zhuang Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wu J, Wang W, Yang Y, Shah M, Peng J, Zhou L, Zhang G, Che Q, Li J, Zhu T, Li D. Phenylhydrazone Alkaloids from the Deep-Sea Cold Seep Derived Fungus Talaromyces amestolkiae HDN21-0307. JOURNAL OF NATURAL PRODUCTS 2024; 87:1407-1415. [PMID: 38662578 DOI: 10.1021/acs.jnatprod.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 μM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 μg/mL.
Collapse
Affiliation(s)
- Jiajin Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Wenxue Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yuhuan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mudassir Shah
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Luning Zhou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jing Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| |
Collapse
|
3
|
Jiang S, Wang W, Mou C, Zou J, Jin Z, Hao G, Chi YR. Facile access to benzofuran derivatives through radical reactions with heteroatom-centered super-electron-donors. Nat Commun 2023; 14:7381. [PMID: 37968279 PMCID: PMC10651860 DOI: 10.1038/s41467-023-43198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
The development of suitable electron donors is critical to single-electron-transfer (SET) processes. The use of heteroatom-centered anions as super-electron-donors (SEDs) for direct SET reactions has rarely been studied. Here we show that heteroatom anions can be applied as SEDs to initiate radical reactions for facile synthesis of 3-substituted benzofurans. Phosphines, thiols and anilines bearing different substitution patterns work well in this inter-molecular radical coupling reaction and the 3-functionalized benzofuran products bearing heteroatomic functionalities are given in moderate to excellent yields. The reaction mechanism is elucidated via control experiments and computational methods. The afforded products show promising applications in both organic synthesis and pesticide development.
Collapse
Affiliation(s)
- Shichun Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Juan Zou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
4
|
Job N, Sarasan M, Philip R. Mangrove-associated endomycota: diversity and functional significance as a source of novel drug leads. Arch Microbiol 2023; 205:349. [PMID: 37789248 DOI: 10.1007/s00203-023-03679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Endophytic fungi are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the unexplored fungal diversity associated with mangroves, emphasizing their biodiversity, distribution, and methodological approaches targeting isolation, and identification. Also highlights the bioactive compounds reported from the mangrove fungal endophytes. The compounds are categorized according to their reported biological activities including antimicrobial, antioxidant and cytotoxic property. In addition, protein kinase, α-glucosidase, acetylcholinesterase, tyrosinase inhibition, antiangiogenic, DNA-binding affinity, and calcium/potassium channel blocking activity are also reported. Exploration of these endophytes as a source of pharmacologically important compounds will be highly promising in the wake of emerging antibiotic resistance among pathogens. Thus, the aim of this review is to present a detailed report of mangrove derived endophytic fungi and to open an avenue for researchers to discover the possibilities of exploring these hidden mycota in developing novel drug leads.
Collapse
Affiliation(s)
- Neema Job
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, Kerala, India
| | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
5
|
Tang J, Wu L, Tang XF, Liu WB, Chen C, Li JL, Long YH. A new alkaloid from Thespesia populnea endophytic fungus Penicillium sp. TM-Y1-1. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:905-911. [PMID: 36583379 DOI: 10.1080/10286020.2022.2162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A new alkaloid (3), together with three known compounds, were isolated from the Thespesia populnea endophytic fungus TM-Y1-1. Their structures were elucidated by extensive spectroscopic methods. The absolute configuration of compound 3 was determined for the first time by ECD calculation and DP4+ analysis. All compounds were evaluated for antimicrobial activity. The results showed that compounds 1 and 2 both exhibited moderate inhibitory activity against banana Colletotrichum gloeosporioides with MIC value of 31.25 μg/ml.
Collapse
Affiliation(s)
- Jing Tang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Li Wu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Xin-Fan Tang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Wen-Bin Liu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Chen Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Jia-Lin Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| | - Yu-Hua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510000, China
| |
Collapse
|
6
|
Cheesman MJ, Alcorn SR, White A, Cock IE. Hamamelis virginiana L. Leaf Extracts Inhibit the Growth of Antibiotic-Resistant Gram-Positive and Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1195. [PMID: 37508291 PMCID: PMC10376399 DOI: 10.3390/antibiotics12071195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Virginian witch hazel (WH; Hamamelis virginiana L.; family: Hamamelidaceae) is a North American plant that is used traditionally to treat a variety of ailments, including bacterial infections. Solvents of varying polarity (water, methanol, ethyl acetate, hexane and chloroform) were used to prepare extracts from this plant. Resuspensions of each extract in an aqueous solution were tested for growth-inhibitory activity against a panel of bacteria (including three antibiotic-resistant strains) using agar disc diffusion and broth microdilution assays. The ethyl acetate, hexane and chloroform extracts were completely ineffective. However, the water and methanolic extracts were good inhibitors of E. coli, ESBL E. coli, S. aureus, MRSA, K. pneumoniae and ESBL K. pneumoniae growth, with the methanolic extract generally displaying substantially greater potency than the other extracts. Combining the active extracts with selected conventional antibiotics potentiated the bacterial growth inhibition of some combinations, whilst other combinations remained non-interactive. No synergistic or antagonistic interactions were observed for any WH extracts/antibiotic combinations. Gas chromatography-mass spectrometry analysis of the extracts identified three molecules of interest that may contribute to the activities observed, including phthalane and two 1,3-dioxolane compounds. Putative modes of action of the active WH extracts and these molecules of interest are discussed herein.
Collapse
Affiliation(s)
- Matthew J Cheesman
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Sean R Alcorn
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Alan White
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia
| | - Ian E Cock
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia
| |
Collapse
|
7
|
Nicoletti R, Bellavita R, Falanga A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023; 13:1021. [PMID: 37509057 PMCID: PMC10377321 DOI: 10.3390/biom13071021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Fungi in the genus Talaromyces occur in every environment in both terrestrial and marine contexts, where they have been quite frequently found in association with plants and animals. The relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabolites, and Talaromyces species represent a prolific source of these compounds. This review highlights the biosynthetic potential of marine-derived Talaromyces strains, using accounts from the literature published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these isolates and about 45% of them were identified as new products, representing a various assortment of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones, phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and the broad range of biological properties that have been disclosed in preliminary assays qualify these fungi as a valuable source of products to be exploited for manifold biotechnological applications.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples Federico II, 80100 Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
8
|
Petcu AS, Lázaro-Milla C, Rodríguez FJ, Iriepa I, Bautista-Aguilera ÓM, Aragoncillo C, Alonso JM, Almendros P. Straightforward Synthesis of Bis[(trifluoromethyl)sulfonyl]ethylated Isocoumarins from 2-Ethynylbenzoates. J Org Chem 2023. [PMID: 37133251 DOI: 10.1021/acs.joc.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Herein, we report a facile isocoumarin and isoquinolone preparation by taking advantage of an initial bis(triflyl)ethylation [triflyl = (trifluoromethyl)sulfonyl] reaction, followed by heterocyclization, which contrasts with our previous results on cyclobutene formation. The efficiency of the catalyst- and irradiation-free heterocyclization/bis(triflyl)ethylation sequence showed exquisite dependence on the electronic nature of the substituents at the 2-ethynylbenzoate(benzamide) precursors. Molecular docking of model bis(triflyl)ethylated isocoumarins on human acetylcholinesterase (hAChE) revealed promising biological activities through selective coordination on both the catalytic active site and peripheral active site.
Collapse
Affiliation(s)
- A Sonia Petcu
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carlos Lázaro-Milla
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - F Javier Rodríguez
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel Iriepa
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Óscar M Bautista-Aguilera
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Cristina Aragoncillo
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M Alonso
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
9
|
Tammam MA, Gamal El-Din MI, Abood A, El-Demerdash A. Recent advances in the discovery, biosynthesis, and therapeutic potential of isocoumarins derived from fungi: a comprehensive update. RSC Adv 2023; 13:8049-8089. [PMID: 36909763 PMCID: PMC9999372 DOI: 10.1039/d2ra08245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
Microorganisms still remain the main hotspots in the global drug discovery avenue. In particular, fungi are highly prolific producers of vast structurally diverse specialized secondary metabolites, which have displayed a myriad of biomedical potentials. Intriguingly, isocoumarins is one distinctive class of fungal natural products polyketides, which demonstrated numerous remarkable biological and pharmacological activities. This review article provides a comprehensive state-of-the-art over the period 2000-2022 about the discovery, isolation, classifications, and therapeutic potentials of isocoumarins exclusively reported from fungi. Indeed, a comprehensive list of 351 structurally diverse isocoumarins were documented and classified according to their fungal sources [16 order/28 family/55 genera] where they have been originally discovered along with their reported pharmacological activities wherever applicable. Also, recent insights around their proposed and experimentally proven biosynthetic pathways are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University Fayoum 63514 Egypt
| | - Mariam I Gamal El-Din
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Amira Abood
- Chemistry of Natural and Microbial Products Department, National Research Center Dokki Cairo Egypt
- School of Bioscience, University of Kent Canterbury UK
| | - Amr El-Demerdash
- Organic Chemistry Division, Department of Chemistry, Faculty of Sciences, Mansoura University Mansoura 35516 Egypt
- Department of Biochemistry and Metabolism, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
10
|
Tanney JB, Di Stefano J, Miller JD, McMullin DR. Natural products from the Picea foliar endophytes Niesslia endophytica sp. nov. and Strasseria geniculata. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
11
|
Huang LJ, Li XA, Jin MY, Guo WX, Lei LR, Liu R, Zhang MZ, Guo DL, Wang D, Zhou Y, Deng Y, Zhang JG. Two previously undescribed phthalides from Talaromyces amestolkiae, a symbiotic fungus of Syngnathus acus. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:147-155. [PMID: 35582859 DOI: 10.1080/10286020.2022.2075738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Amestolkins A (1) and B (2), two previously undescribed phthalides sharing the same planar structure of (1, 5-dihydroxyhexyl)-7-hydroxyisobenzofuran-1(3H)-one were isolated from Talaromyces amestolkiae. Their absolute configurations were elucidated by comprehensive analyses of spectroscopic evidences in high-resolution electrospray mass spectra (HRESIMS) and nuclear magnetic resonance (NMR) combined with electronic circular dichroism (ECD) and NMR calculations. 1 and 2 showed anti-neuroinflammatory activity by inhibiting the gene expressions of proinflammatory factors including C-C motif chemokine ligand 2 (CCL-2), tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), as well as attenuating the excretion of inducible nitric oxide synthase (iNOS) in BV-2 microglial cells at the concentration of 30 μM.
Collapse
Affiliation(s)
- Li-Jun Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin-Ai Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng-Ying Jin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wen-Xiu Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Rong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ran Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Da-Le Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | | |
Collapse
|
12
|
New Meroterpenoid and Isocoumarins from the Fungus Talaromyces amestolkiae MST1-15 Collected from Coal Area. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238223. [PMID: 36500326 PMCID: PMC9741378 DOI: 10.3390/molecules27238223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Three new compounds including a meroterpenoid (1) and two isocoumarins (8 and 9), together with thirteen known compounds (2-7, 10-16) were isolated from the metabolites of Talaromyces amestolkiae MST1-15. Their structures were identified by a combination of spectroscopic analysis. The absolute configuration of compound 1 was elucidated on the basis of experimental and electronic circular dichroism calculation, and compounds 8 and 9 were determined by Mo2(OAc)4-induced circular dichroism experiments. Compounds 7-16 showed weak antibacterial activities against Stenotrophomonas maltophilia with MIC values ranging from 128 to 512 μg/mL (MICs of ceftriaxone sodium and levofloxacin were 128 and 0.25 μg/mL, respectively).
Collapse
|
13
|
Li S, Chi S, Lin C, Cai C, Yang L, Peng K, Huang X, Liu J. Combination of biochar and AMF promotes phosphorus utilization by stimulating rhizosphere microbial co-occurrence networks and lipid metabolites of Phragmites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157339. [PMID: 35842155 DOI: 10.1016/j.scitotenv.2022.157339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Agricultural biochar and arbuscular mycorrhizal fungi were used to promote the growth of Phragmites in the structural damaged and nutritional imbalanced littoral zone soils. Wheat straw biochar played a significant role in improving soil porosity and supplementing available phosphorus to 79.20 ± 3.20 mg/kg, compared with CK at 17.50 ± 0.88 mg/kg. The addition of Diversispora versiformis improved the plant net photosynthetic rate reaching up to 25.66 ± 0.65 μmol·m-2·s-1, which was 36.60 % higher than CK. The combination of biochar and fungi contributed to the whole plant dry weight biomass of 32.30 % and 234.00 % higher than the single biochar or AMF amendment groups, respectively. Meanwhile, the analysis of microbial co-occurrence networks showed the most relevant networks node species were mainly Talaromyces, Chaetomiacea and Gemmatimonadetes etc. Root lipid metabolite of Glycerophospholines further proved that phosphorus utilization was also enhanced endogenously in the rhizosphere soil. These results indicate that the combination of biochar and arbuscular mycorrhizal fungi play synergic role in enhancing phosphorus utilization endogenously and exogenously.
Collapse
Affiliation(s)
- Shuangqiang Li
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Shanqing Chi
- Fuzhou Urban and Rural Construction Group Co. Ltd, Fuzhou 350007, China
| | - Caiqiang Lin
- Fuzhou Urban and Rural Construction Group Co. Ltd, Fuzhou 350007, China
| | - Chen Cai
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Liheng Yang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China.
| |
Collapse
|
14
|
Miller N, Joubert E. Critical Assessment of In Vitro Screening of α-Glucosidase Inhibitors from Plants with Acarbose as a Reference Standard. PLANTA MEDICA 2022; 88:1078-1091. [PMID: 34662924 DOI: 10.1055/a-1557-7379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Postprandial hyperglycemia is treated with the oral antidiabetic drug acarbose, an intestinal α-glucosidase inhibitor. Side effects of acarbose motivated a growing number of screening studies to identify novel α-glucosidase inhibitors derived from plant extracts and other natural sources. As "gold standard", acarbose is frequently included as the reference standard to assess the potency of these candidate α-glucosidase inhibitors, with many outperforming acarbose by several orders of magnitude. The results are subsequently used to identify suitable compounds/products with strong potential for in vivo efficacy. However, most α-glucosidase inhibitor screening studies use enzyme preparations obtained from nonmammalian sources (typically Saccharomyces cerevisiae), despite strong evidence that inhibition data obtained using nonmammalian α-glucosidase may hold limited value in terms of identifying α-glucosidase inhibitors with actual in vivo hypoglycemic potential. The aim was to critically discuss the screening of novel α-glucosidase inhibitors from plant sources, emphasizing inconsistencies and pitfalls, specifically where acarbose was included as the reference standard. An assessment of the available literature emphasized the cruciality of stating the biological source of α-glucosidase in such screening studies to allow for unambiguous and rational interpretation of the data. The review also highlights the lack of a universally adopted screening assay for novel α-glucosidase inhibitors and the commercial availability of a standardized preparation of mammalian α-glucosidase.
Collapse
Affiliation(s)
- Neil Miller
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Elizabeth Joubert
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| |
Collapse
|
15
|
Cai J, Zhu XC, Zeng WN, Wang B, Luo YP, Liu J, Chen MJ, Li GY, Huang GL, Chen GY, Xu J, Zheng CJ. Talaromarins A-F: Six New Isocoumarins from Mangrove-Derived Fungus Talaromyces flavus TGGP35. Mar Drugs 2022; 20:361. [PMID: 35736164 PMCID: PMC9229493 DOI: 10.3390/md20060361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Six new isocoumarin derivative talaromarins A-F (1-6), along with 17 known analogues (7-23), were isolated from the mangrove-derived fungus Talaromyces flavus (Eurotiales: Trichocomaceae) TGGP35. Their structures were identified by detailed IR, UV, 1D/2D NMR and HR-ESI-MS spectra. The absolute configurations of new compounds were determined by the modified Mosher's method and a comparison of their CD spectra with dihydroisocoumarins described in the literature. The antioxidant, antibacterial, anti-phytopathogenic and inhibitory activity against α-glucosidase of all the isolated compounds were tested. Compounds 6-11, 17-19 and 21-22 showed similar or better antioxidant activity than the IC50 values ranging from 0.009 to 0.27 mM, compared with the positive control trolox (IC50 = 0.29 mM). Compounds 10, 18, 21 and 23 exhibited strong inhibitory activities against α-glucosidase with IC50 values ranging from 0.10 to 0.62 mM, while the positive control acarbose had an IC50 value of 0.5 mM. All compounds showed no antibacterial or anti-phytopathogenic activity at the concentrations of 50 μg/mL and 1 mg/mL, respectively. These results indicated that isocoumarins will be useful to developing antioxidants and as diabetes control agents.
Collapse
Affiliation(s)
- Jin Cai
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Xiao-Chen Zhu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China;
| | - Wei-Nv Zeng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Bin Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - You-Ping Luo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jing Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Min-Jing Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Gao-Yu Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guo-Lei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jing Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China;
| | - Cai-Juan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.C.); (W.-N.Z.); (B.W.); (Y.-P.L.); (J.L.); (M.-J.C.); (G.-Y.L.); (G.-L.H.); (G.-Y.C.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
16
|
Yue Y, Jiang M, Hu H, Wu J, Sun H, Jin H, Hou T, Tao K. Isolation, Identification and Insecticidal Activity of the Secondary Metabolites of Talaromyces purpureogenus BS5. J Fungi (Basel) 2022; 8:jof8030288. [PMID: 35330290 PMCID: PMC8949156 DOI: 10.3390/jof8030288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
The fungal strain BS5 was isolated from a soil sample collected in the Tibetan Plateau, which displayed good insecticidal activity and was identified as Talaromyces purpureogenus based on morphological and molecular analysis. This study aimed to evaluate the insecticidal activity and identify the active compound of the strain BS5 against the locust Locusta migratoria manilensis. The insecticidal activity of the fermented broth of BS5 was at 100% after 7 days against locusts. We extracted the fermented broth of BS5 and then evaluated the insecticidal activity of the extracts against locusts. The ethyl acetate extract exhibited promising activity levels with an LC50 value of 1077.94 μg/mL and was separated through silica gel column chromatography. The UPLC-Q-Exactive Orbitrap/MS system was employed to analyze the active fraction Fr2.2.2 (with an LC50 value of 674.87 μg/mL), and two compounds were identified: phellamurin and rubratoxin B.
Collapse
|
17
|
He Y, White M, Gang W, Yan S. A Brief Talk on the Design of Biopharmaceutical Separation and Purification Technology Course. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9728071. [PMID: 35087652 PMCID: PMC8789454 DOI: 10.1155/2022/9728071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
Biological separation and purification technology is the basic technology of modern biotechnology, which is widely used in the pharmaceutical industry, especially the biopharmaceutical industry. In recent years, the biopharmaceutical industry has had a lot of room for development in the development of science and technology in South Korea, and the research on biopharmaceutical equipment and pharmaceutical technology has also achieved good research results. This article proposes a brief discussion on the design of biopharmaceutical separation and purification technology courses. In this study, by analyzing the synthesis potential of the secondary metabolites of the strain, using the α-glucosidase inhibition rate as an inspection indicator, the fermentation medium of the strain was optimized, and batch fermentation was carried out, and then, the metabolites were separated and purified, and the following conclusion was obtained: the α-glucosidase inhibition rate of the crude extract of the strain in the optimized fermentation medium is 35% higher than that of the initial medium.
Collapse
Affiliation(s)
- Ying He
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vacational Institute of Engineering, Changzhou, Jiangsu 213164, China
| | - Marvin White
- Department of Information Engineering, Southern University and A&M College, Baton Rouge, LA, USA
| | - Wu Gang
- Langfang Health Vocational College, Langfang, Hebei, China
| | - Song Yan
- Beijing Sports University, Beijing, China
| |
Collapse
|
18
|
Rondilla RRL, dela Cruz TEE, Chang FR, Nonato MG. <i>Annulohypoxylon stygium</i>, a <i>Pandanus simplex-</i>associated fungal endophyte with α-glucosidase inhibitory activity. STUDIES IN FUNGI 2022. [DOI: 10.48130/sif-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
19
|
Chen S, Cai R, Liu Z, Cui H, She Z. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 2021; 39:560-595. [PMID: 34623363 DOI: 10.1039/d1np00041a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering 1989 to 2020The mangrove forests are a complex ecosystem occurring at tropical and subtropical intertidal estuarine zones and nourish a diverse group of microorganisms including fungi, actinomycetes, bacteria, cyanobacteria, algae, and protozoa. Among the mangrove microbial community, mangrove associated fungi, as the second-largest ecological group of the marine fungi, not only play an essential role in creating and maintaining this biosphere but also represent a rich source of structurally unique and diverse bioactive secondary metabolites, attracting significant attention of organic chemists and pharmacologists. This review summarizes the discovery relating to the source and characteristics of metabolic products isolated from mangrove-associated fungi over the past thirty years (1989-2020). Its emphasis included 1387 new metabolites from 451 papers, focusing on bioactivity and the unique chemical diversity of these natural products.
Collapse
Affiliation(s)
- Senhua Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,College of Science, Shantou University, Shantou 515063, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Cui
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Guo H, Wu Q, Chen D, Jiang M, Chen B, Lu Y, Li J, Liu L, Chen S. Absolute configuration of polypropionate derivatives: Decempyrones A-J and their MptpA inhibition and anti-inflammatory activities. Bioorg Chem 2021; 115:105156. [PMID: 34314917 DOI: 10.1016/j.bioorg.2021.105156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Under guidance of 1H NMR, ten new polypropionate derivatives, decempyrones A-J (1-10) along with two known analogues (11 and 12), were isolated from the marine-derived fungusFusarium decemcellulare SYSU-MS6716. The planar structures were elucidated on the basis of extensive spectroscopic analyses (1D and 2D NMR, and HR-ESIMS). The absolute configuration of the chiral centers in the side chain is a major obstacle for the structure identification of natural polypropionate derivatives. Herein, the J-based configurational analysis (JBCA), chemical degradation, geminal proton rule, and the modified Mosher's method were adopted to fix their absolute configurations in the side chain. Compounds 3 and 10 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide with IC50values 22.4 ± 1.8 and 21.7 ± 1.1 μM. In addition, compounds 3 and 10 displayed MptpA inhibitory activity with an IC50 value of 19.2 ± 0.9 and 33.1 ± 2.9 µM. Structure-activity relationships of the polypropionate derivatives were discussed.
Collapse
Affiliation(s)
- Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qilin Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongni Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bin Chen
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China.
| |
Collapse
|
21
|
New Diterpenoids and Isocoumarin Derivatives from the Mangrove-Derived Fungus Hypoxylon sp. Mar Drugs 2021; 19:md19070362. [PMID: 34202523 PMCID: PMC8305793 DOI: 10.3390/md19070362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023] Open
Abstract
Two new diterpenoids, hypoxyterpoids A (1) and B (2), and four new isocoumarin derivatives, hypoxymarins A–D (4–7), together, with seven known metabolites (3 and 8–13) were obtained from the crude extract of the mangrove-derived fungus Hypoxylon sp. The structures of the new compounds were elucidated on the basis of 1- and 2-dimensional (1D/2D) nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric analysis. The absolute configurations of compounds 1, 2, 4, 5, and 7 were determined by comparison of experimental and calculated electronic circular dichroism (ECD) spectra, and the absolute configurations of C-4′ in 6 and C-9 in 7 were determined by [Rh2(OCOCF3)4]-induced ECD spectra. Compound 1 showed moderate α-glucosidase inhibitory activities with IC50 values of 741.5 ± 2.83 μM. Compounds 6 and 11 exhibited DPPH scavenging activities with IC50 values of 15.36 ± 0.24 and 3.69 ± 0.07 μM, respectively.
Collapse
|
22
|
Zhu X, Liu Y, Hu Y, Lv X, Shi Z, Yu Y, Jiang X, Feng F, Xu J. Neuroprotective Activities of Constituents from Phyllosticta capitalensis, an Endophyte Fungus of Loropetalum chinense var. rubrum. Chem Biodivers 2021; 18:e2100314. [PMID: 34101351 DOI: 10.1002/cbdv.202100314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
One new dioxolanone derivative, guignardianone G (1) and twelve known compounds (2-13) were isolated from the 95 % ethanol extract of the plant endophytic fungus Phyllosticta capitalensis cultured in rice medium. Among these known compounds, isoaltenuene (3), brassicasterol (7), 5,6-epoxyergosterol (8), citreoanthrasteroid A (9), demethylincisterol A (10), and chaxine C (11) were reported from Phyllosticta sp. for the first time. The structure of 1 was elucidated by 1D- and 2D-NMR experiments and HR-ESI-MS data analysis, and its absolute configuration was established through the comprehensive use of the methods of modified Mosher methods, calculations of ECD spectra and optical rotation values. The neuroprotective activity of compounds (1-9, 11-13) were evaluated on PC12 cells damage induced by glutamate, and compounds 9 and 12 showed potential neuroprotective activities with half effective concentration (EC50 ) of 24.2 and 33.9 μM, respectively.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ying Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yunwei Hu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xin Lv
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Zhaoxia Shi
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuanyuan Yu
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.,Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, P. R. China
| | - Jian Xu
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
23
|
Cai Y, Rao L, Zou Y. Genome Mining Discovery of a C 4-Alkylated Dihydroisocoumarin Pathway in Fungi. Org Lett 2021; 23:2337-2341. [PMID: 33688736 DOI: 10.1021/acs.orglett.1c00458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fungal C4-alkylated dihydroisocoumarin pathway was discovered and elucidated. This pathway includes the following (1) a nonreducing polyketide synthase and a P450 collaboratively synthesize hydroxylated C3-methylated isocoumarin 3; (2) a methyltransferase methylates 3 to 8; and (3) importantly, an esterase specifically catalyzes a ring reconstruction process of 8 to C4-alkylated dihydroisocoumarin 10. Our discovery fills the gap in the enzymatic transformation process of natural C4-alkylated isocoumarin derivates.
Collapse
Affiliation(s)
- Yun Cai
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Li Rao
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Yi Zou
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Song HC, Qin D, Liu HY, Dong JY, You C, Wang YM. Resorcylic Acid Lactones Produced by an Endophytic Penicillium ochrochloron Strain from Kadsura angustifolia. PLANTA MEDICA 2021; 87:225-235. [PMID: 33348408 DOI: 10.1055/a-1326-2600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Four new β-resorcylic acid lactones, including penochrochlactone A (2: ), 4-O-desmethyl-aigialomycin B (4: ), and penochrochlactones C and D (5: and 6: ), two compounds isolated from a natural source for the first time, 5α, 6β-acetonide-aigialomycin B (1: ) and penochrochlactone B (3: ), together with six known compounds, aigialomycin F (7: ), aigialomycins A, B, and D (8: -10: ), zeaenol (11: ), and oxozeaenol (12: ), were isolated from a mycelial solid culture of the endophytic fungus Penicillium ochrochloron SWUKD4.1850 from the medicinal plant Kadsura angustifolia by sequential purification over silica gel, Sephadex LH-20 column chromatography, and preparative HPLC. Their structures were elucidated by extensive spectroscopic analysis and chemical conversions. In addition, all the new compounds were evaluated for their cytotoxic and antibacterial activities in vitro. Penochrochlactone C (5: ) displayed moderate cytotoxicity against the HeLa tumor cell line with an IC50 value of 9.70 µM. In the antibacterial assays, compounds 4: - 6: exhibited moderate activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa with MIC values between 9.7 and 32.0 µg/mL.
Collapse
Affiliation(s)
- Hong Chuan Song
- School of Energy and Environment Science, Yunnan Normal University, Kunming, People's Republic of China
| | - Dan Qin
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region of Ministry of Education, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Hai Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Jin Yan Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region of Ministry of Education, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chuan You
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region of Ministry of Education, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Yu Meng Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region of Ministry of Education, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
25
|
Kalenga T, Ndoile MM, Atilaw Y, Gilissen PJ, Munissi JJE, Rudenko A, Bourgard C, Sunnerhagen P, Nyandoro SS, Erdelyi M. Biflavanones, Chalconoids, and Flavonoid Analogues from the Stem Bark of Ochna holstii. JOURNAL OF NATURAL PRODUCTS 2021; 84:364-372. [PMID: 33511842 PMCID: PMC7923207 DOI: 10.1021/acs.jnatprod.0c01017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 05/20/2023]
Abstract
Two new biflavanones (1 and 2), three new bichalconoids (3-5), and 11 known flavonoid analogues (6-16) were isolated from the stem bark extract (CH3OH-CH2Cl2, 7:3, v/v) of Ochna holstii. The structures of the isolated metabolites were elucidated by NMR spectroscopic and mass spectrometric analyses. The crude extract and the isolated metabolites were evaluated for antibacterial activity against Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) as well as for cytotoxicity against the MCF-7 human breast cancer cell line. The crude extract and holstiinone A (1) exhibited moderate antibacterial activity against B. subtilis with MIC values of 9.1 μg/mL and 14 μM, respectively. The crude extract and lophirone F (14) showed cytotoxicity against MCF-7 with EC50 values of 11 μg/mL and 24 μM, respectively. The other isolated metabolites showed no significant antibacterial activities (MIC > 250 μM) and cytotoxicities (EC50 ≥ 350 μM).
Collapse
Affiliation(s)
- Thobias
M. Kalenga
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Monica M. Ndoile
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Yoseph Atilaw
- Department
of Chemistry − BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Pieter J. Gilissen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joan J. E. Munissi
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Anastasia Rudenko
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Gothenburg, Sweden
- Centre
for Antibiotic Resistance Research (CARe) at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Catarina Bourgard
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Gothenburg, Sweden
- Centre
for Antibiotic Resistance Research (CARe) at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Per Sunnerhagen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Gothenburg, Sweden
- Centre
for Antibiotic Resistance Research (CARe) at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Stephen S. Nyandoro
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Mate Erdelyi
- Department
of Chemistry − BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
26
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
27
|
Qiu P, Cai RL, Li L, She ZG. Three new isocoumarin derivatives from the mangrove endophytic fungus Penicillium sp. YYSJ-3. Chin J Nat Med 2021; 18:256-260. [PMID: 32402401 DOI: 10.1016/s1875-5364(20)30031-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 10/24/2022]
Abstract
Three new isocoumarin derivatives, (S)-6,8-dihydroxy-5-(methoxymethyl)-3,7-dimethylisochroman-1-one (1), (S)-6,8-dihydroxy-3,5,7-trimethyl-isochroman-1-one (2) and (R)-2-chloro-3-(8-hydroxy-6-methoxy-1-oxo-1H-isochromen-3-yl) propyl acetate (3), along with four known compounds (4-7) were isolated from a mangrove endophytic fungus Penicillium sp. YYSJ-3. Their structures were established on the basis of the extensive spectroscopic data and HR-ESI-MS analysis. The absolute configurations of 1-3 were further determined by X-ray diffraction analysis and optical rotations. Compounds 3, 6 and 7 showed promising inhibitory activity against α-glucosidase, which were stronger than that of the positive control 1-deoxynojirimycin (IC50 141.2 μmol·L-1).
Collapse
Affiliation(s)
- Pei Qiu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Run-Lin Cai
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lin Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhi-Gang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China.
| |
Collapse
|
28
|
Shabir G, Saeed A, El-Seedi HR. Natural isocoumarins: Structural styles and biological activities, the revelations carry on …. PHYTOCHEMISTRY 2021; 181:112568. [PMID: 33166749 DOI: 10.1016/j.phytochem.2020.112568] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Isocoumarins and dihydroisocoumarins are lactonic phytochemicals plentiful in microbes and higher plants. These are an amazing small scaffolds consecrated with all types of pharmacological applications. Our previous review covered the period 2000-2016, documenting the then known natural products of this class; the current article is a critical account of discovery of known as well as undescribed structural types and pharmacological activities reported in the course of 2016-2020. The classification revealed in our previous review based on the biogenetic origin is further buttressed by discovery of new members of each class and some new structural types hitherto unknown have also been identified. Similarly, the biological activities and SAR conclusions identified were found to be valid as well, nonetheless with new accompaniments. The most recent available literature on the structural diversity and biological activity of these natural products has been included. The information documented in this article are collected from scientific journals, books, electronic search engines and scientific databases.
Collapse
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Hesham R El-Seedi
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Al-Rayan Colleges, Medina, 42541, Saudi Arabia
| |
Collapse
|
29
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Antibiotics from Extremophilic Micromycetes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020; 46:903-971. [PMID: 33390684 PMCID: PMC7768999 DOI: 10.1134/s1068162020060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022]
Abstract
Extremophilic microorganisms, which are capable of functioning normally at extremely high or low temperatures, pressure, and in other environmental conditions, have been in the focus of microbiologists' attention for several decades due to the biotechnological potential of enzymes inherent in extremophiles. These enzymes (also called extremozymes) are used in the production of food and detergents and other industries. At the same time, the inhabitants of extreme econiches remained almost unexplored for a long time in terms of the chemistry of natural compounds. In recent years, the emergence of new antibiotic-resistant strains of pathogens, which affect humans and animals has become a global problem. The problem is compounded by a strong slowdown in the development of new antibiotics. In search of new active substances and scaffolds for medical chemistry, researchers turn to unexplored natural sources. In recent years, there has been a sharp increase in the number of studies on secondary metabolites produced by extremophiles. From the discovery of penicillin to the present day, micromycetes, along with actinobacteria, are one of the most productive sources of antibiotic compounds for medicine and agriculture. Many authors consider extremophilic micromycetes as a promising source of small molecules with an unusual mechanism of action or significant structural novelty. This review summarizes the latest (for 2018-2019) experimental data on antibiotic compounds, which are produced by extremophilic micromycetes with various types of adaptation. Active metabolites are classified by the type of structure and biosynthetic origin. The data on the biological activity of the isolated metabolites are summarized.
Collapse
Affiliation(s)
- A. A. Baranova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - V. A. Alferova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - V. A. Korshun
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - A. P. Tyurin
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
30
|
Secondary metabolites produced by mangrove endophytic fungus Aspergillus fumigatus HQD24 with immunosuppressive activity. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Fu Y, Li C, Zhu J, Zhang L, Wang Y, Chen Q, Xu L, Zhang S, Fang Y, Liu T. A new meroterpenoid from endophytic fungus Talaromyces amestolkiae CS-O-1. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Lin X, Fang Z, Zeng C, Zhu C, Pang X, Liu C, He W, Duan J, Qin N, Guo K. Continuous Electrochemical Synthesis of Iso-Coumarin Derivatives from o-(1-Alkynyl) Benzoates under Metal- and Oxidant-Free. Chemistry 2020; 26:13738-13742. [PMID: 32460407 DOI: 10.1002/chem.202001766] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/17/2020] [Indexed: 11/06/2022]
Abstract
A non-oxidant and metal-free strategy for synthesizing iso-coumarin by using a continuous electrochemical microreactor to initiate an oxidative cyclization reaction of o-(1-alkynyl) benzoate and radicals. This efficient and clean continuous electrosynthesis method not only avoids the complicated gas protection operation and production of by-products in the batch processes, but also help to overcome the difficulty that batch metal catalysis and electrocatalysis are difficult to scale up, and has the potential for pilot-scale experiment.
Collapse
Affiliation(s)
- Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Cuilian Zeng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Chenlong Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Xinyan Pang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Ning Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P. R. China
| |
Collapse
|
33
|
Feng LX, Zhang BY, Zhu HJ, Pan L, Cao F. Bioactive Metabolites from Talaromyces purpureogenus, an Endophytic Fungus from Panax notoginseng. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03206-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Lan D, Wu B. Chemistry and Bioactivities of Secondary Metabolites from the Genus Talaromyces. Chem Biodivers 2020; 17:e2000229. [PMID: 32432837 DOI: 10.1002/cbdv.202000229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Fungi have especially captured the interest and fascination of natural product chemists in that they produce a dizzying array of natural organic molecules with many unique functional groups and atom arrangements. In this review, we focus on the genus Talaromyces (Trichocomaceae) which has been a hot spot of natural product studies over the last three decades. This review summarized the discovery, structures, and bioactivities of various classes of 151 compounds isolated from both terrestrial and marine derived fungal strains of the genus Talaromyces reported from 1994 to 2019.
Collapse
Affiliation(s)
- Donghe Lan
- Ocean College, Zhejiang University, Zhoushan, 316021, P. R. China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 316021, P. R. China
| |
Collapse
|
35
|
Luo G, Chen S, Yu J, Yuan J, Zheng L, Liu L, Chen B, Li J. Naphthalenones and Naphthols Isolated from the Saussurea laniceps Endophytic Fungus Didymella glomerata X223. Chem Biodivers 2020; 17:e2000315. [PMID: 32472579 DOI: 10.1002/cbdv.202000315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/29/2020] [Indexed: 11/11/2022]
Abstract
One new naphthalenone, didymelol A, and three new naphthols, didymelol B-D, together with three known naphthalenones, (3S,4R)-3,4,6-trihydroxy-3,4-dihydronaphthalen-1(2H)-one, (4S)-4,6-dihydroxy-3,4-dihydronaphthalen-1(2H)-one, (4S)-4-hydroxy-3,4-dihydronaphthalen-1(2H)-one, were isolated from the Saussurea laniceps endophytic fungus Didymella glomerata X223. The structures of the isolates were elucidated based on extensive spectroscopic data analysis. The absolute configuration of didymelol A was established through single-crystal X-ray diffraction data and didymelols B-D were identified through comparisons of experimental and calculated ECD spectra. All compounds were evaluated for cytotoxic activity against human non-small cell lung cancer A549 cells and human breast carcinoma MDA-MB-435 cells.
Collapse
Affiliation(s)
- Gangyuan Luo
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jianchen Yu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Jie Yuan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Li Zheng
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Southern Marine Science, Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, P. R. China
| | - Bin Chen
- Southern Marine Science, Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, P. R. China
| | - Jing Li
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
36
|
Akbarzadeh P, Koukabi N. Magnetic carbon nanotube as a highly stable support for the heterogenization of InCl
3
and its application in the synthesis of isochromeno[4,3‐
c
]pyrazole‐5(1
H
)‐one derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Parisa Akbarzadeh
- Department of ChemistrySemnan University P.O. Box 35195‐363 Semnan Iran
| | - Nadiya Koukabi
- Department of ChemistrySemnan University P.O. Box 35195‐363 Semnan Iran
| |
Collapse
|
37
|
Yang W, Chen Y, Cai R, Zou G, Wang B, She Z. Benzopyran Derivatives and an Aliphatic Compound from a Mangrove Endophytic Fungus Penicillium citrinum QJF-22. Chem Biodivers 2020; 17:e2000192. [PMID: 32267070 DOI: 10.1002/cbdv.202000192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Two new benzopyran derivatives, (2R,4S)-5-methoxy-2-methyl-3,4-dihydro-2H-1-benzopyran-4-ol and (2S,4R,2'S,4'R)-4,4'-oxybis(5-methoxy-2-methyl-3,4-dihydro-2H-1-benzopyran), and a new aliphatic compound, (3E,5Z,8S,10E)-8-hydroxytrideca-3,5,10,12-tetraen-2-one, together with three known benzopyran derivatives, were obtained from a mangrove endophytic fungus Penicillium citrinum QJF-22 collected in Hainan island. Their structures were determined by analysis of spectroscopic data and the relative configuration of (2R,4S)-5-methoxy-2-methyl-3,4-dihydro-2H-1-benzopyran-4-ol was also confirmed by single-crystal X-ray diffraction. The absolute configurations of four compounds were established by comparison of ECD spectra to calculations. The configuration of (3E,5Z,8S,10E)-8-hydroxytrideca-3,5,10,12-tetraen-2-one was confirmed by comparison of optical value to the similar compound. The configurations of the compounds (2S,4S)-5-methoxy-2-methyl-3,4-dihydro-2H-1-benzopyran-4-ol and (2R,4R)-5-methoxy-2-methyl-3,4-dihydro-2H-1-benzopyran-4-ol were first determined. (3R,4S)-3,4,8-Trihydroxy-3,4-dihydronaphthalen-1(2H)-one exhibited moderate inhibitory effects on LPS-induced NO production in RAW264.7 cells with IC50 of 44.7 μM, and without cytotoxicity to RAW264.7 cells within 50 μM.
Collapse
Affiliation(s)
- Wencong Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Runlin Cai
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ge Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Bo Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
38
|
Luo G, Lang J, She Z, Yan S, Tian G, Li J, Liu L. Nitrogen-Containing Compounds From Mangrove-Derived Fungus Aspergillus sp. 87. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20915314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nine nitrogen-containing compounds including 1 new alkaloid, aspergilamide A (1), and 8 known alkaloids and dipeptides, pseurotin A (2), fumigaclavine C (3), isochaetominine (4), cyclo(L-Pro-L-tyr) (5), cyclo- trans-4-OH-(L)-Pro-(L)-Phe (6), brevianamide F (7), and spirotryprostatins A and B (8 and 9), were obtained from the mangrove-derived fungus Aspergillus sp. 87. Their structures were identified by extensive spectroscopic analyses. All compounds did not show significant antibacterial activities.
Collapse
Affiliation(s)
- Guangyuan Luo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Lang
- School of Chemistry, Sun Yat-sen University, Guangdong, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangdong, China
| | - Sujun Yan
- Instrument Analysis & Research Center, Sun Yat-sen University, Guangdong, China
| | - Guobao Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
39
|
Noor AO, Almasri DM, Bagalagel AA, Abdallah HM, Mohamed SGA, Mohamed GA, Ibrahim SRM. Naturally Occurring Isocoumarins Derivatives from Endophytic Fungi: Sources, Isolation, Structural Characterization, Biosynthesis, and Biological Activities. Molecules 2020; 25:molecules25020395. [PMID: 31963586 PMCID: PMC7024277 DOI: 10.3390/molecules25020395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, the metabolites separated from endophytes have attracted significant attention, as many of them have a unique structure and appealing pharmacological and biological potentials. Isocoumarins represent one of the most interesting classes of metabolites, which are coumarins isomers with a reversed lactone moiety. They are produced by plants, microbes, marine organisms, bacteria, insects, liverworts, and fungi and possessed a wide array of bioactivities. This review gives an overview of isocoumarins derivatives from endophytic fungi and their source, isolation, structural characterization, biosynthesis, and bioactivities, concentrating on the period from 2000 to 2019. Overall, 307 metabolites and more than 120 references are conferred. This is the first review on these multi-facetted metabolites from endophytic fungi.
Collapse
Affiliation(s)
- Ahmad Omar Noor
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.); (A.A.B.)
| | - Diena Mohammedallam Almasri
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.); (A.A.B.)
| | - Alaa Abdullah Bagalagel
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.); (A.A.B.)
| | - Hossam Mohamed Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (G.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Gamal Abdallah Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (G.A.M.)
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Sabrin Ragab Mohamed Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30078, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-581183034
| |
Collapse
|
40
|
Yan Z, Huang C, Guo H, Zheng S, He J, Lin J, Long Y. Isobenzofuranone monomer and dimer derivatives from the mangrove endophytic fungus Epicoccum nigrum SCNU-F0002 possess α-glucosidase inhibitory and antioxidant activity. Bioorg Chem 2020; 94:103407. [DOI: 10.1016/j.bioorg.2019.103407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022]
|
41
|
Yan Z, Li J, Ye G, Chen T, Li M, Liang Y, Long Y. Fused multicyclic polyketides with a two-spiro-carbon skeleton from mangrove-derived endophytic fungus Epicoccum nigrum SCNU-F0002. RSC Adv 2020; 10:28560-28566. [PMID: 35520073 PMCID: PMC9055859 DOI: 10.1039/d0ra05532h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 02/03/2023] Open
Abstract
A pair of uncommon fused multicyclic polyketides, (±)-isoepicolactone and one new isobenzofuranone monomer, together with four other known biosynthetically related compounds were isolated from the fermentation of fungus Epicoccum nigrum SCNU-F0002.
Collapse
Affiliation(s)
- Zhangyuan Yan
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Jialin Li
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Geting Ye
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Tao Chen
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Meimei Li
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Yanmin Liang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| | - Yuhua Long
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine
- School of Chemistry
- South China Normal University
- Guangzhou 510006
- China
| |
Collapse
|
42
|
Huang L, Ding L, Li X, Wang N, Cui W, Wang X, Naman CB, Lazaro JEH, Yan X, He S. New Dihydroisocoumarin Root Growth Inhibitors From the Sponge-Derived Fungus Aspergillus sp. NBUF87. Front Microbiol 2019; 10:2846. [PMID: 31921029 PMCID: PMC6914834 DOI: 10.3389/fmicb.2019.02846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Six new dihydroisocoumarins, aspergimarins A-F (1-6), were discovered together with five known analogs (7-11) from a monoculture of the sponge-derived fungus Aspergillus sp. NBUF87. The structures of these compounds were elucidated through comprehensive spectroscopic methods, and absolute configurations were assigned after X-ray crystallography, use of the modified Mosher's method, and comparison of electronic circular dichroism (ECD) data with literature values for previously reported analogs. Compounds 1-11 were evaluated in a variety of bioassays, and at 100 μM, both 1 and 5 showed significant inhibitory effects on the lateral root growth of Arabidopsis thaliana Columbia-0 (Col-0). Moreover, at 100 μM, 5 also possessed notable inhibition against the primary root growth of Col-0. Meanwhile, 1-11 were all found to be inactive in vitro against acetylcholinesterase (AChE) (IC50 > 100 μM), four different types of human-derived cancer cell lines (IC50 > 50 μM), as well as methicillin-resistant Staphylococcus aureus and Escherichia coli (MIC > 50 μg/mL), and Plasmodium falciparum W2 (EC50 > 100 μg/mL), in phenotypic tests.
Collapse
Affiliation(s)
- Liming Huang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaohui Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiao Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - C. Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - J. Enrico H. Lazaro
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon, Philippines
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
43
|
Lopéz D, Cherigo L, Mejia LC, Loza-Mejía MA, Martínez-Luis S. α-Glucosidase inhibitors from a mangrove associated fungus, Zasmidium sp. strain EM5-10. BMC Chem 2019; 13:22. [PMID: 31384771 PMCID: PMC6661824 DOI: 10.1186/s13065-019-0540-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/29/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mangroves plants and their endophytes represent a natural source of novel and bioactive compounds. In our ongoing research on mangrove endophytes from the Panamanian Pacific Coast, we have identified several bioactive endophytic fungi. From these organisms, an isolate belonging to the genus Zasmidium (Mycosphaerellaceae) showed 91.3% of inhibition against α-glucosidase enzyme in vitro. RESULTS Zasmidium sp. strain EM5-10 was isolated from mature leaves of Laguncularia racemosa, and its crude extract showed good inhibition against α-glucosidase enzyme (91.3% of inhibition). Bioassay-guided fractionation of the crude extract led to obtaining two active fractions: L (tripalmitin) and M (Fungal Tryglicerides Mixture). Tripalmitin (3.75 µM) showed better inhibitory activity than acarbose (positive control, IC50 217.71 µM). Kinetic analysis established that tripalmitin acted as a mixed inhibitor. Molecular docking and molecular dynamics simulations predicted that tripalmitin binds at the same site as acarbose and also to an allosteric site in the human intestinal α-glucosidase (PDB: 3TOP). CONCLUSIONS Zasmidium sp. strain EM5-10 represents a new source of bioactive substances that could possess beneficial properties for human health.
Collapse
Affiliation(s)
- Dioxelis Lopéz
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado, 0843-01103 Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522510 India
| | - Lilia Cherigo
- Departamento de Química Orgánica, Escuela De Química, Facultad de Ciencias Exactas y Tecnología, Universidad de Panamá, P.O. Box 3366, Panama City, Panama
| | - Luis C. Mejia
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado, 0843-01103 Panama City, Panama
| | - Marco A. Loza-Mejía
- Facultad de Ciencias Químicas, Universidad La Salle, Benjamín Franklin 45, Cuauhtémoc, 06140 Mexico City, Mexico
| | - Sergio Martínez-Luis
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado, 0843-01103 Panama City, Panama
| |
Collapse
|
44
|
Heo YM, Lee H, Kim K, Kwon SL, Park MY, Kang JE, Kim GH, Kim BS, Kim JJ. Fungal Diversity in Intertidal Mudflats and Abandoned Solar Salterns as a Source for Biological Resources. Mar Drugs 2019; 17:E601. [PMID: 31652878 PMCID: PMC6891761 DOI: 10.3390/md17110601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Intertidal zones are unique environments that are known to be ecological hot spots. In this study, sediments were collected from mudflats and decommissioned salterns on three islands in the Yellow Sea of South Korea. The diversity analysis targeted both isolates and unculturable fungi via Illumina sequencing, and the natural recovery of the abandoned salterns was assessed. The phylogeny and bioactivities of the fungal isolates were investigated. The community analysis showed that the abandoned saltern in Yongyudo has not recovered to a mudflat, while the other salterns have almost recovered. The results suggested that a period of more than 35 years may be required to return abandoned salterns to mudflats via natural restoration. Gigasporales sp. and Umbelopsis sp. were selected as the indicators of mudflats. Among the 53 isolates, 18 appeared to be candidate novel species, and 28 exhibited bioactivity. Phoma sp., Cladosporium sphaerospermum, Penicillium sp. and Pseudeurotium bakeri, and Aspergillus urmiensis showed antioxidant, tyrosinase inhibition, antifungal, and quorum-sensing inhibition activities, respectively, which has not been reported previously. This study provides reliable fungal diversity information for mudflats and abandoned salterns and shows that they are highly valuable for bioprospecting not only for novel microorganisms but also for novel bioactive compounds.
Collapse
Affiliation(s)
- Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Kyeongwon Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Sun Lul Kwon
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Min Young Park
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Ji Eun Kang
- Department of Biosystems & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Beom Seok Kim
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
45
|
Abstract
Introduction: Benzofuran is a fundamental unit in numerous bioactive heterocycles. They have attracted chemists and medical researchers due to their broad range of biological activity, where some of them possess unique anticancer, antitubercular, antidiabetic, anti-Alzheimer and anti-inflammatory properties. The benzofuran nucleus is present in a huge number of bioactive natural and synthetic compounds. Benzofuran derivatives have potent applications in pharmaceuticals, agriculture, and polymers. The recent developments considering the biological activities of benzofuran compounds are reported. They have a vital role as pronounced inhibitors against a number of diseases, viruses, fungus, microbes, and enzymes. Areas covered: This review covers the recent developments of biological activities of benzofurans during the period 2014-2019. The covered areas here comprised antimicrobial, anti-inflammatory, antitumor, antitubercular, antidiabetic, anti-Alzheimer, antioxidant, antiviral, vasorelaxant, anti-osteoporotic and enzyme inhibitory activities. Expert opinion: In addition to the already commercialized 34 benzofurans-based drugs in the market, this chapter outlines several potent benzofuran derivatives that may be useful as potential pro-drugs. It is also focused on providing details of SAR and the effect of certain functional groups on the activity of the benzofuran compounds. The presence of -OH, -OMe, sulfonamide, or halogen contributed greatly to increasing the therapeutic activities comparing with reference drugs.
Collapse
Affiliation(s)
- Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University , Giza , Egypt
| |
Collapse
|
46
|
Miao YH, Hu YH, Yang J, Liu T, Sun J, Wang XJ. Natural source, bioactivity and synthesis of benzofuran derivatives. RSC Adv 2019; 9:27510-27540. [PMID: 35529241 PMCID: PMC9070854 DOI: 10.1039/c9ra04917g] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Benzofuran compounds are a class of compounds that are ubiquitous in nature. Numerous studies have shown that most benzofuran compounds have strong biological activities such as anti-tumor, antibacterial, anti-oxidative, and anti-viral activities. Owing to these biological activities and potential applications in many aspects, benzofuran compounds have attracted more and more attention of chemical and pharmaceutical researchers worldwide, making these substances potential natural drug lead compounds. For example, the recently discovered novel macrocyclic benzofuran compound has anti-hepatitis C virus activity and is expected to be an effective therapeutic drug for hepatitis C disease; novel scaffold compounds of benzothiophene and benzofuran have been developed and utilized as anticancer agents. Novel methods for constructing benzofuran rings have been discovered in recent years. A complex benzofuran derivative is constructed by a unique free radical cyclization cascade, which is an excellent method for the synthesis of a series of difficult-to-prepare polycyclic benzofuran compounds. Another benzofuran ring constructed by proton quantum tunneling has not only fewer side reactions, but also high yield, which is conducive to the construction of complex benzofuran ring systems. This review summarizes the recent studies on the various aspects of benzofuran derivatives including their important natural product sources, biological activities and drug prospects, and chemical synthesis, as well as the relationship between the bioactivities and structures.
Collapse
Affiliation(s)
- Yu-Hang Miao
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Yu-Heng Hu
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Jie Yang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Teng Liu
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Jie Sun
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Xiao-Jing Wang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
47
|
Xu GB, Yang FY, Wu XY, Li R, Zhou M, Wang B, Yang XS, Zhang TT, Liao SG. Two new dihydroisocoumarins with antimicrobial activities from the fungus Penicillium sp. XR046 collected from Xinren coal area. Nat Prod Res 2019; 35:1445-1451. [PMID: 31460795 DOI: 10.1080/14786419.2019.1655019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two new dihydroisocoumarins (1 and 2), together with six known compounds (3-8), were isolated from the fungus Penicillium sp. XR046 collected from the Xinren coal area of Guizhou province in China. Their structures were elucidated on the basis of spectroscopic analysis. The absolute configurations of C-3 in 1 and 2 were established by comparison of their CD data with those of known compounds. Compounds 1-6 showed anti-microbial activities with MIC values in the range of 50∼100 μg/mL against Candida albicans, Staphylococcus epidermidis, Bacillus subtilis, and Escherichia coli.
Collapse
Affiliation(s)
- Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Fei-Yu Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,School of Biology & Engineering, Guizhou Medical University, Guian New District, Guizhou, China
| | - Xin-Yu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Bing Wang
- School of Biology & Engineering, Guizhou Medical University, Guian New District, Guizhou, China
| | - Xiao-Sheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou, China
| | - Ting-Ting Zhang
- School of Biology & Engineering, Guizhou Medical University, Guian New District, Guizhou, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| |
Collapse
|
48
|
Xu Z, Xiong B, Xu J. Chemical Investigation Of Secondary Metabolites Produced By Mangrove Endophytic Fungus Phyllosticta Capitalensis. Nat Prod Res 2019; 35:1561-1565. [PMID: 31441681 DOI: 10.1080/14786419.2019.1656624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemical investigation of endophytic fungus Phyllosticta capitalensis, isolated from the hypocotyls of the Chinese mangrove Bruguiera sexangula led to the isolation of eight known secondary metabolites, including four meroterpenes guignardone A (1), 12-hydroxylated guignardone A (2), guignardone J (3), guignardone M (4), and four polyketides xenofuranone B (5), 6,8-dihydroxy-5-methoxy-3-methyl-1H-isochromen-1-one (6), regiolone (7), 3,4-dihydroxybenzoic acid (8). Their structures were elucidated unambiguously based on the comprehensive spectroscopic analysis and comparison with literature data. This is the first report of these compounds being isolated from this fungal species. All compounds isolated were subjected to antimicrobial and cytotoxic activities evaluation.
Collapse
Affiliation(s)
- Zhiyong Xu
- College of Material and Chemical Engineering, Hainan University, Haikou, 570228, P. R. China.,Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, P. R. China
| | - Bingxue Xiong
- College of Material and Chemical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Jing Xu
- College of Material and Chemical Engineering, Hainan University, Haikou, 570228, P. R. China.,Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
49
|
The Purification, Characterization, and Biological Activity of New Polyketides from Mangrove-Derived Endophytic Fungus Epicoccum nigrum SCNU-F0002. Mar Drugs 2019; 17:md17070414. [PMID: 31336899 PMCID: PMC6669579 DOI: 10.3390/md17070414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022] Open
Abstract
Six new polyketides, including one coumarin (1), two isocoumarins (2 and 3), dihydroradicinin (4), and two benzofuranone derivatives (7 and 8), together with seven known analogues (5–6 and 9–13) were isolated from the culture of the mangrove endophytic fungus Epicoccum nigrum SCNU-F0002. The structures were elucidated on the interpretation of spectroscopic data. The absolute configuration of Compounds 2 and 3 were determined by comparison of their ECD spectra with the data of their analogue dihydroisocoumarins described in the literature. The absolute configuration of 4 was determined by single-crystal X-ray diffraction. All the compounds were screened for their antioxidant, antibacterial, anti-phytopathogenic fungi and cytotoxic activities. Using a DPPH radical-scavenging assay, Compounds 10–13 showed potent antioxidant activity with IC50 values of 13.6, 12.1, 18.1, and 11.7 μg/mL, respectively. In addition, Compounds 6 and 7 showed antibacterial effects against Bacillus subtilis (ATCC 6538), Escherichia coli (ATCC 8739), and Staphylococcus aureus (ATCC 6538), with MIC values in the range of 25–50 μg/mL.
Collapse
|
50
|
Four New Isocoumarins and a New Natural Tryptamine with Antifungal Activities from a Mangrove Endophytic Fungus Botryosphaeria ramosa L29. Mar Drugs 2019; 17:md17020088. [PMID: 30717119 PMCID: PMC6410081 DOI: 10.3390/md17020088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/25/2023] Open
Abstract
Four new isocoumarin derivatives, botryospyrones A (1), B (2), C (3), and D (4), and a new natural tryptamine, (3aS, 8aS)-1-acetyl-1, 2, 3, 3a, 8, 8a-hexahydropyrrolo [2,3b] indol-3a-ol (5), were isolated from a marine mangrove endophytic fungus Botryosphaeria ramosa L29, obtained from the leaf of Myoporum bontioides. Their structures were elucidated using spectroscopic analysis. The absolute configurations of compounds 3, 4, and 5 were determined by comparison of their circular dichroism (CD) spectra with the calculated data. The inhibitory activities of compound 1 on Fusarium oxysporum, of compounds 2 and 3 on F. oxysporum and Fusarium graminearum, and of compound 5 on F. oxysporum, Penicillium italicum, and F. graminearum were higher than those of triadimefon, widely used as an agricultural fungicide. Compound 5 was produced after using the strategy we called "using inhibitory stress from components of the host" (UISCH), wherein (2R, 3R)-3, 5, 7-trihydroxyflavanone 3-acetate, a component of M. bontioides with weak growth inhibitory activity towards B. ramosa L29, was introduced into the culture medium.
Collapse
|