1
|
Zemtsova EG, Kozlova LA, Yudintceva NM, Sokolova DN, Arbenin AY, Ponomareva AN, Korusenko PM, Kraeva LA, Rogacheva EV, Smirnov VM. Creation of a Composite Bioactive Coating with Antibacterial Effect Promising for Bone Implantation. Molecules 2023; 28:molecules28031416. [PMID: 36771083 PMCID: PMC9919298 DOI: 10.3390/molecules28031416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
When creating titanium-containing bone implants, the bioactive coatings that promote their rapid engraftment are important. The engraftment rate of titanium implants with bone tissue depends significantly on the modification of the implant surface. It is achieved by changing either the relief or the chemical composition of the surface layer, as well as a combination of these two factors. In this work, we studied the creation of composite coatings with a two-level (the micro- and nanolevel) hierarchy of the surface relief, which have bioactive and bactericidal properties, which are promising for bone implantation. Using the developed non-lithographic template electrochemical synthesis, a composite coating on titanium with a controlled surface structure was created based on an island-type TiO2 film, silver and hydroxyapatite (HAp). This TiO2/Ag/HAp composite coating has a developed surface relief at the micro- and nanolevels and has a significant cytological response and the ability to accelerate osteosynthesis, and also has an antibacterial effect. Thus, the developed biomaterial is suitable for production of dental and orthopedic implants with improved biomedical properties.
Collapse
Affiliation(s)
- Elena G. Zemtsova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-812-428-4033
| | - Lada A. Kozlova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Natalia M. Yudintceva
- Institute of Cytology, Russian Academy of Sciences (RAS), Tikhoretsky pr 4, 194064 Saint Petersburg, Russia
| | - Daria N. Sokolova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Andrey Yu. Arbenin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Alexandra N. Ponomareva
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Petr M. Korusenko
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Ludmila A. Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia
| | - Elizaveta V. Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia
| | - Vladimir M. Smirnov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| |
Collapse
|
2
|
Wang L, Xu C, Meng K, Xia Y, Zhang Y, Lian J, Wang X, Zhao B. Biomimetic Hydroxyapatite Composite Coatings with a Variable Morphology Mediated by Silk Fibroin and Its Derived Peptides Enhance the Bioactivity on Titanium. ACS Biomater Sci Eng 2023; 9:165-181. [PMID: 36472618 DOI: 10.1021/acsbiomaterials.2c00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various modifications performed on titanium alloy surfaces are shown to improve osteointegration and promote the long-term success of implants. In this work, a bioactive nanostructured hydroxyapatite (HA) composite coating with a variable morphology mediated by silk fibroin (SF) and its derived peptides (Cs) was prepared. Numerous experimental techniques were used to characterize the constructed coatings in terms of morphology, roughness, hydrophilicity, protein adsorption, in vitro biomineralization, and adhesion strength. The mixed protein layer with different contents of SF and Cs exhibited different secondary structures at different temperatures, effectively mediating the electrodeposited HA layer with different characteristics and finally forming proteins/HA composite coatings with versatile morphologies. The addition of Cs significantly improved the hydrophilicity and protein adsorption capacity of the composite coatings, while the electrodeposition of the HA layer effectively enhanced the adhesion between the composite coatings and Ti surface. In the in vitro mineralization experiments, all the composite coatings exhibited excellent apatite formation ability. Moreover, the composite coatings showed excellent cell growth and proliferation activity. Osteogenic induction experiments revealed that the coating could significantly increase the expression of specific osteogenic markers, including ALP, Col-I, Runx-2, and OCN. Overall, the proposed modification of the Ti implant surface by protein/HA coatings had good potential for clinical applications in enhancing bone induction and osteogenic activity of implants.
Collapse
Affiliation(s)
- Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Changzhen Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Kejing Meng
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Yijing Xia
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Yufang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Jing Lian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Xing Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| |
Collapse
|
3
|
Jiang N, Guo Z, Sun D, Ay B, Li Y, Yang Y, Tan P, Zhang L, Zhu S. Exploring the mechanism behind improved osteointegration of phosphorylated titanium implants with hierarchically structured topography. Colloids Surf B Biointerfaces 2019; 184:110520. [PMID: 31590052 DOI: 10.1016/j.colsurfb.2019.110520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 02/05/2023]
Abstract
Titanium (Ti) and its alloys have been frequently used in dental and orthopedic implants, but the undesired oxide layer easily formed on the surface tends to be the cause of implant failure for Ti-based implants. To address this problem, we herein prepared a phosphorylated Ti coating (TiP-Ti) with a micro/nano hierarchically structured topography on commercially pure Ti implants by a hydrothermal method to improve its osteointegration capacity. The surface morphology, chemical composition, and biological activity were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact-angle measurement, and protein adsorption assay. Osteointegration of TiP-Ti implants in rat tibia was investigated by biomechanical testing, micro-CT and histological analyses. We further explored the proposed mechanism which improves osteointegration of TiP-Ti implants by proliferation, adhesion, and differentiation assays of rat bone marrow mesenchymal stem cells (BMSCs). Our results demonstrated that the improved osteointegration mainly benefited from the better spread and adhesion of BMSCs on the micro/nano hierarchically structured TiP-Ti surfaces compared to hydroxyapatite coated Ti (HA-Ti), the positive control, and untreated Ti (untreated-Ti), the negative control. In conclusion, TiP-Ti surface is a promising candidate implant surface design to accelerate the osteointegration of Ti-based implants in biomedical applications.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Zhijun Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Dan Sun
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast BT7 1NN, UK
| | - Birol Ay
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E3, Canada
| | - Yubao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Boonrungsiman S, Prompinit P, Khemthong P, Wutikhun T, Treethong A, Kasamechonchung P, Chanlek N, Maniratanachote R, Horprathum M, Pankiew A, Pornthreeraphat S, Khemasiri N, Klamchuen A. Effects of thermal treatment on hydrophilicity and corrosion resistance of Ti surface. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Panida Prompinit
- National Nanotechnology Center (NANOTEC), NSTDA; Klong Luang Thailand
| | | | - Tuksadon Wutikhun
- National Nanotechnology Center (NANOTEC), NSTDA; Klong Luang Thailand
| | | | | | - Narong Chanlek
- Synchrotron Light Research Institute; Nakhon Ratchasima Thailand
| | | | - Mati Horprathum
- National Electronics and Computer Technology Center (NECTEC); Klong Luang Thailand
| | - Apirak Pankiew
- National Electronics and Computer Technology Center (NECTEC); Klong Luang Thailand
| | | | - Narathon Khemasiri
- College of Nanotechnology; King Mongkut's Institute of Technology Ladkrabang; Bangkok Thailand
| | - Annop Klamchuen
- National Nanotechnology Center (NANOTEC), NSTDA; Klong Luang Thailand
| |
Collapse
|
5
|
Nazarov DV, Smirnov VM, Zemtsova EG, Yudintceva NM, Shevtsov MA, Valiev RZ. Enhanced Osseointegrative Properties of Ultra-Fine-Grained Titanium Implants Modified by Chemical Etching and Atomic Layer Deposition. ACS Biomater Sci Eng 2018; 4:3268-3281. [DOI: 10.1021/acsbiomaterials.8b00342] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Denis V. Nazarov
- Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
- National Technology Initiative Center of Excellence in Advanced Manufacturing Technologies at Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya 29/1 str., Saint Petersburg 195251, Russia
| | - Vladimir M. Smirnov
- Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Elena G. Zemtsova
- Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Natalia M. Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave. 4, Saint Petersburg 194064, Russia
| | - Maxim A. Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave. 4, Saint Petersburg 194064, Russia
- First Pavlov State Medical University of St. Petersburg, Lva Tolstogo str. 6-8, Saint Petersburg 197022, Russia
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaniger Str. 22, 81675 Munich, Germany
| | - Ruslan Z. Valiev
- Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| |
Collapse
|
6
|
Suo L, Jiang N, Wang Y, Wang P, Chen J, Pei X, Wang J, Wan Q. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. J Biomed Mater Res B Appl Biomater 2018; 107:635-645. [PMID: 29802685 DOI: 10.1002/jbm.b.34156] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 02/05/2023]
Abstract
Titanium (Ti) has been commonly used as an implant material in dentistry and bone surgery for several decades. Meanwhile, surface modification of titanium can enhance the osseointegration of implants. In this study, a graphene oxide/chitosan/hydroxyapatite (GO/CS/HA) composite coating was fabricated by electrophoretic deposition on Ti substrates. Subsequently, the surface morphology, phase composition, wettability, and bonding strength of this composite coating were researched. Additionally, in vitro cytological examination was performed, including evaluations of cell adhesion, cell viability, cell differentiation, cell mineralization, and osteogenetic factor expression. Finally, the in vivo osteogenetic properties were evaluated through an animal study, including a histological analysis, a microcomputed tomography, and biomechanical tests. The results showed that a homogeneous and crack-free GO/CS/HA composite coating was coated on Ti, and the wettability and bonding strength of the GO/CS/HA composite coating were enhanced compared with HA, GO/HA, and CS/HA coatings. Furthermore, the GO/CS/HA coating greatly heightened the cell-material interactions in vitro. Additionally, this GO/CS/HA-Ti implant could enhance osseointegration in vivo. Consequently, GO/CS/HA-Ti may have potential applications in the field of dental implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 635-645, 2019.
Collapse
Affiliation(s)
- Lai Suo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Tianjin Stomatological Hospital, NanKai University, Tianjin, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- Yantai City Stomatological Hospital, Yantai, China
| | - Puyu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Qin J, Yang D, Maher S, Lima-Marques L, Zhou Y, Chen Y, Atkins GJ, Losic D. Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration. J Mater Chem B 2018; 6:3136-3144. [DOI: 10.1039/c7tb03251j] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
3D printing technology combined with electrochemical nano-structuring and HA modification is a promising approach for the fabrication of Ti implants with improved osseointegration.
Collapse
Affiliation(s)
- Jie Qin
- School of Chemical Engineering
- The University of Adelaide
- Australia
- Departments of Dental Implantology
- School and Hospital of Stomatology
| | - Dongqing Yang
- Centre for Orthopaedic and Trauma Research
- Adelaide Medical School
- Discipline of Orthopaedics and Trauma
- The University of Adelaide
- Australia
| | - Shaheer Maher
- School of Chemical Engineering
- The University of Adelaide
- Australia
- Faculty of Pharmacy
- Assiut University
| | - Luis Lima-Marques
- The Institute for Photonics and Advanced Sensing
- The University of Adelaide
- Australia
| | - Yanmin Zhou
- Departments of Dental Implantology
- School and Hospital of Stomatology
- Jilin University
- China
| | - Yujie Chen
- School of Mechanical Engineering
- The University of Adelaide
- Australia
| | - Gerald J. Atkins
- Centre for Orthopaedic and Trauma Research
- Adelaide Medical School
- Discipline of Orthopaedics and Trauma
- The University of Adelaide
- Australia
| | - Dusan Losic
- School of Chemical Engineering
- The University of Adelaide
- Australia
| |
Collapse
|
8
|
Hou Y, Jiang N, Zhang L, Li Y, Meng Y, Han D, Chen C, Yang Y, Zhu S. Oppositely Charged Polyurethane Microspheres with Tunable Zeta Potentials as an Injectable Dual-Loaded System for Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25808-25817. [PMID: 28704028 DOI: 10.1021/acsami.7b06673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To effectively repair irregular shaped bone defects by a minimally invasive procedure, the exploration of an injectable gel to fill the defect is desirable. Herein, positively and negatively charged polyurethane microspheres (PU-A and PU-B) with adjustable zeta potentials as well as the hydroxyapatite-loaded PU microsphere (PU-A/HA) and the dexamethasone-loaded PU microsphere (PU-B/Dex) were successfully prepared, and the oppositely charged microspheres could self-assemble into injectable gels with 3D structures by a mutually electrostatic attraction. The self-assembly PU-A/HA+PU-B/Dex gel exhibited a much higher elastic modulus (about 0.20 MPa) and excellent shear-thinning and self-recovery behaviors, which would allow the gel to be injected through a fine syringe to fill the irregular defect. The in vitro and in vivo experiments demonstrated that the coexistence of HA and Dex in PU-A/HA+PU-B/Dex gel had a synergistic effect on cell differentiation and accelerating new bone formation, displaying a good prospect as an injectable gel for bone repair in minimally invasive surgery.
Collapse
Affiliation(s)
- Yi Hou
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan 610041, PR China
| | - Li Zhang
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Yubao Li
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University , Guangzhou, Guangdong 510275, PR China
| | - Dongmei Han
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University , Guangzhou, Guangdong 510275, PR China
| | - Chen Chen
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Yuan Yang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario M5S 3E3, Canada
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan 610041, PR China
| |
Collapse
|
9
|
Abstract
Facile fabrication of nanostructured surface is of great importance for the use of titanium (Ti) implants in biomedical field. In this study, a low-cost and easy-to-operate method called HPT (hydrothermal & pressure) here has been developed and used to fabricate the expected nanostructured surface on Ti substrates. The effects of experimental parameters on the morphology of Ti surface were investigated and characterized. The results indicated that by altering the hydrothermal pressure, NaOH concentration and treating time, surface nanostructure like nanopetals or nanoflakes could be formed on the surface of Ti substrates. The orthogonal experiments were conducted to demonstrate the optimized operation conditions. A formation mechanism of the nanostructured titanate layer was proposed, revealing that the nanostructured layer could be formed via a special upward and downward co-growth manner. In vitro cell culture showed that the HPT treated Ti substrates, especially the T-10 sample, could greatly enhance the cell-material interactions, i.e. the cell proliferation and differentiation, focal protein adhesion, and osteogenic factor expression. The HPT method paves a new way to modify the surface of Ti implants with better bioactivity and promising prospect for future biomedical applications.
Collapse
|
10
|
Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching. NANOMATERIALS 2017; 7:nano7010015. [PMID: 28336849 PMCID: PMC5295205 DOI: 10.3390/nano7010015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/09/2023]
Abstract
In this study, we present the detailed investigation of the influence of the etching medium (acidic or basic Piranha solutions) and the etching time on the morphology and surface relief of ultrafine grained (UFG) and coarse grained (CG) titanium. The surface relief and morphology have been studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and the spectral ellipsometry. The composition of the samples has been determined by X-ray fluorescence analysis (XRF) and X-ray Photoelectron Spectroscopy (XPS). Significant difference in the etching behavior of UFG and CG titanium has been found. UFG titanium exhibits higher etching activity independently of the etching medium. Formed structures possess higher homogeneity. The variation of the etching medium and time leads to micro-, nano-, or hierarchical micro/nanostructures on the surface. Significant difference has been found between surface composition for UFG titanium etched in basic and acidic Piranha solution. Based on the experimental data, the possible reasons and mechanisms are considered for the formation of nano- and microstructures. The prospects of etched UFG titanium as the material for implants are discussed.
Collapse
|
11
|
Li X, Lin K, Wang Z. Enhanced growth and osteogenic differentiation of MC3T3-E1 cells on Ti6Al4V alloys modified with reduced graphene oxide. RSC Adv 2017. [DOI: 10.1039/c6ra25832h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), have been considered as promising candidates in tissue regeneration.
Collapse
Affiliation(s)
- Xiaojing Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Department of Oral Implant
- School of Stomatology
- Tongji University
- Shanghai
| | - Kaili Lin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- School of Stomatology
- Tongji University
- Shanghai
- China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Department of Oral Implant
- School of Stomatology
- Tongji University
- Shanghai
| |
Collapse
|