1
|
Shukla RS, Zala VB, Gupta SK, Gajjar PN. BP/GaN and BP/GaP core/shell nanowires: theoretical insights into photovoltaic and gas-sensing abilities. NANOSCALE 2024; 16:20235-20251. [PMID: 39400256 DOI: 10.1039/d4nr02602k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
DFT-based calculations were undertaken to, first, fully optimize and study the structural and electrical properties of bare BP nanowire (NW) in its hexagonal wurtzite (WZ) phase. The bare BP NW was found to have an indirect bandgap of 1.362 eV. Hence, the optimization of BP/GaN and BP/GaP core/shell nanowires (CSNWs) was performed to check if an indirect-to-direct band transition occurred. Both the CSNWs showed direct bandgaps of 0.225 eV and 1.252 eV, respectively. The Shockley-Queisser limits for the bare BP NW and BP/GaP CSNW were calculated and compared to gauge their respective photovoltaic efficiencies. The bare BP NW and BP/GaP CSNW yielded almost identical SQ efficiencies of 33.80% and 33.55%, respectively. However, as far as the nano- and micro-photovoltaic cell applications are concerned, the BP/GaP CSNW would be preferable, owing to its direct bandgap. Furthermore, the adsorption of some small oxide gases like carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2) and sulfur dioxide (SO2) gases on BP/GaN and BP/GaP CSNWs was studied. On the basis of the charge transfer and work function mechanisms, NO2 and SO2 gases showed selectivity to be detected by both the CSNWs. However, the very highly escalated desorption times for these gases would reduce the repeatability of sensors. Conversely, both BP/GaN and BP/GaP CSNWs could find applications in the fabrication of entrapment devices for NO2 and SO2. The current-voltage (I-V) curves for the CSNWs before and after adsorption were also plotted and analyzed. The occurrence of negative differential conductance (NDC) can be observed in both the CSNWs. The CO2, NO2 and SO2 gases show significantly higher values of current than the pristine BP/GaN CSNW for voltages beyond 0.5 V. Thus, these gases are good proponents to be detected by BP/GaN CSNWs with negligible selectivity amongst them. However, CO@BP/GaN is a stand-out case with a characteristically unique NDC region at 0.9 V. In the case of BP/GaP CSNWs, CO and CO2 gases can be selectively detected, with a unique NDC region for CO at 0.9 V. Thus, the BP/GaP CSNW, in particular, stands out as an extremely versatile material that can be used to fabricate nano-photovoltaic and nano-sensing devices of the next generation.
Collapse
Affiliation(s)
- Rishit S Shukla
- Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, India.
| | - Vidit B Zala
- Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, India.
| | - Sanjeev K Gupta
- Computational Materials and Nanoscience Group, Department of Physics, St. Xavier's College, Ahmedabad 380 009, India.
| | - P N Gajjar
- Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, India.
| |
Collapse
|
2
|
Oliver MC, Wang S, Huang L. Computational Analysis of Sarin, Soman, and Their Water Mixtures in NU-1000: Interaction Mechanisms, Distribution Patterns, and Pairing Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23424-23436. [PMID: 39445518 DOI: 10.1021/acs.langmuir.4c02938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Due to their extraordinary structural stability under humid conditions, zirconium-based metal-organic frameworks (Zr-MOFs) have been widely investigated for the hydrolytic degradation of nerve agents. That said, mechanisms of hydrolysis in the solid state and the participation of environmental water are not well understood. This work utilizes computational techniques to evaluate the behavior of water and two organophosphorus nerve agents (sarin and soman) in NU-1000, a Zr-MOF with the characteristic attributes for hydrolytic efficiency under humid conditions. Density functional theory (DFT) calculations reveal that soman binds more favorably to NU-1000 active sites than sarin, resulting in different preferential locations of each nerve agent within the framework. The strength of nerve agent binding is also found to vary depending on the site environment, with more favorable binding of both nerve agents occurring in the c-pores of NU-1000 than in the mesopores. Molecular dynamics (MD) simulation results further illustrate that free water molecules in NU-1000 prioritize interactions with nerve agents. Given the variation in their affinity for active site interactions, the introduction of different nerve agents to the framework results in substantial differences in water distribution and behavior. The results give insight into potential variances in the functionality of NU-1000 toward the hydrolysis of each nerve agent. More importantly, they emphasize the significance of considering the role of environmental water in hydrolysis and the possibility of diverse reaction variables based on the type of nerve agent and the properties of the MOF.
Collapse
Affiliation(s)
- Madeleine C Oliver
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shanshan Wang
- College of Chemical Engineering, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, P.R. China
| | - Liangliang Huang
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Manz TA. A formally exact theory to construct nonreactive forcefields using linear regression to optimize bonded parameters. RSC Adv 2024; 14:33345-33383. [PMID: 39439840 PMCID: PMC11494935 DOI: 10.1039/d4ra01861c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
This article derives theoretical foundations of force field functional theory (FFFT). FFFT studies topics related to the functional representation of nonreactive forcefields to achieve various desirable properties such as: (a) formal exactness of the forcefield's energy functional under certain conditions, (b) a formally exact ansatz separating the bonded potential energy from the nonbonded potential energy within a bonded cluster in a way that enables bonded parameters to be optimized using linear regression instead of requiring nonlinear regression, (c) the potential energy's continuous differentiability to various orders with respect to energetically accessible internal coordinate displacements within a subdomain defined by one electronic ground state, (d) forcefield design that guarantees the reference ground-state geometry is exactly reproduced as an equilibrium structure on the forcefield's potential energy landscape, (e) reasonably accurate and broadly applicable frugal model potentials, (f) computationally efficient embedded feature selection that identifies and removes unimportant forcefield terms, (g) well-designed methods to parameterize the forcefield from quantum-mechanically-computed and (optionally) experimental reference data, and (h) forcefields that approximately reproduce experimentally-measured properties. This article also introduces: (1) an angle-bending model potential that more accurately describes physical dynamics and is continuously differentiable to all orders with respect to internal coordinate displacements even when the bond angle is linear (i.e., θ = π (180°)) and (2) a first-principles-derived stretch potential that accurately describes short-range Pauli repulsion and the long-range bond dissociation energy. This new angle-bending potential gave good agreement to CCSD quantum-chemistry calculations for CaH2, CO2, H2O, HNO, Li2O, NO2, NS2, SF2, SiH2, and SO2 molecules. This new bond-stretch potential reproduced the first 12+ and 30+ vibrational energy levels of H2 and O2 molecules, respectively, within a few percent of experimental values. Studying the C-F bond stretch in C6F6 as an example, the new ansatz (item (b) above) reduced sensitivity of the optimized force constant's value to choice of nonbonded interaction parameters by an order of magnitude compared to the old ansatz. Normal mode analysis of optimized flexibility models for CO2, H2O, HNO, and SO2 molecules yielded vibrational transition frequencies within a few percent of experimental values. These results demonstrate advantages of this new approach.
Collapse
Affiliation(s)
- Thomas A Manz
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| |
Collapse
|
4
|
Scardamaglia M, Casanova-Cháfer J, Temperton R, Annanouch FE, Mohammadpour A, Malandra G, Das A, Alagh A, Arbouch I, Montoisy L, Cornil D, Cornil J, Llobet E, Bittencourt C. Operando Investigation of WS 2 Gas Sensors: Simultaneous Ambient Pressure X-ray Photoelectron Spectroscopy and Electrical Characterization in Unveiling Sensing Mechanisms during Toxic Gas Exposure. ACS Sens 2024; 9:4079-4088. [PMID: 39057835 PMCID: PMC11348423 DOI: 10.1021/acssensors.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Ambient pressure X-ray photoelectron spectroscopy (APXPS) is combined with simultaneous electrical measurements and supported by density functional theory calculations to investigate the sensing mechanism of tungsten disulfide (WS2)-based gas sensors in an operando dynamic experiment. This approach allows for the direct correlation between changes in the surface potential and the resistivity of the WS2 sensing active layer under realistic operating conditions. Focusing on the toxic gases NO2 and NH3, we concurrently demonstrate the distinct chemical interactions between oxidizing or reducing agents and the WS2 active layer and their effect on the sensor response. The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations. This methodology applied to NH3 concentrations of 100, 230, and 760 and 14 ppm of NO2 establishes a benchmark for future APXPS studies on sensing devices, providing fast acquisition times and a 1:1 correlation between electrical response and spectroscopy data in operando conditions. Our findings contribute to a deeper understanding of the sensing mechanism in 2D transition metal dichalcogenides, paving the way for optimizing chemiresistor sensors for various industrial applications and wireless platforms with low energy consumption.
Collapse
Affiliation(s)
| | - Juan Casanova-Cháfer
- Departament
d’Enginyeria Electronica, Universitat
Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
- Chimie
des Interactions Plasma Surface, Institut Matériaux, Université de Mons, Place du Parc 23, 7000 Mons, Belgium
| | | | - Fatima Ezahra Annanouch
- Departament
d’Enginyeria Electronica, Universitat
Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - Amin Mohammadpour
- Koç
University Tüpraş Energy Center (KUTEM), Department
of Chemistry, Koç University, 34450 Istanbul, Turkey
| | - Gabriel Malandra
- Physics
Department, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
| | - Arkaprava Das
- Chimie
des Interactions Plasma Surface, Institut Matériaux, Université de Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Aanchal Alagh
- Departament
d’Enginyeria Electronica, Universitat
Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - Imane Arbouch
- Laboratory
for Chemistry of Novel Materials, Université
de Mons, Place du Parc
23, 7000 Mons, Belgium
| | - Loïc Montoisy
- Laboratory
for Chemistry of Novel Materials, Université
de Mons, Place du Parc
23, 7000 Mons, Belgium
| | - David Cornil
- Laboratory
for Chemistry of Novel Materials, Université
de Mons, Place du Parc
23, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory
for Chemistry of Novel Materials, Université
de Mons, Place du Parc
23, 7000 Mons, Belgium
| | - Eduard Llobet
- Departament
d’Enginyeria Electronica, Universitat
Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - Carla Bittencourt
- Chimie
des Interactions Plasma Surface, Institut Matériaux, Université de Mons, Place du Parc 23, 7000 Mons, Belgium
| |
Collapse
|
5
|
Cheranyova AM, Zelenkov LE, Baykov SV, Izotova YA, Ivanov DM, Bokach NA, Kukushkin VY. Intermolecular Metal-Involving Pnictogen Bonding: The Case of σ-(Sb III)-Hole···d z2[Pt II] Interaction. Inorg Chem 2024; 63:14943-14957. [PMID: 39066736 DOI: 10.1021/acs.inorgchem.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cocrystallizations of trans-[PtX'2(NCNR2)2] (R2 = Me2, X' = Cl 1a, Br 1b, I 1c; R2 = (CH2)5, X' = I 2c) with SbX3 (X = Cl, Br, I) gave 1:2 cocrystals 1a·2SbCl3, 1b·2SbBr3, 1c·2SbCl3, 1c·2SbBr3, 1c·2SbI3, and 2c·2SbI3. In all six X-ray structures, the association of the molecular coformers is achieved mainly by SbIII···dz2[PtII] metal-involving intermolecular pnictogen bonding. Density functional theory (DFT) calculations (based on experimentally determined geometries) using both gas-phase and solid-state approximations revealed that a σ-(Sb)-hole interacts with an area of negative potential associated with the dz2-orbital of the positively charged platinum(II) sites, thus forming a pnictogen bond whose energy falls in the range between -7.3 and -16.9 kcal/mol.
Collapse
Affiliation(s)
- Anna M Cheranyova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Lev E Zelenkov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Yulia A Izotova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| |
Collapse
|
6
|
Ghanavati R, Escobosa AC, Manz TA. An automated protocol to construct flexibility parameters for classical forcefields: applications to metal-organic frameworks. RSC Adv 2024; 14:22714-22762. [PMID: 39035129 PMCID: PMC11258866 DOI: 10.1039/d4ra01859a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
In this work, forcefield flexibility parameters were constructed and validated for more than 100 metal-organic frameworks (MOFs). We used atom typing to identify bond types, angle types, and dihedral types associated with bond stretches, angle bends, dihedral torsions, and other flexibility interactions. Our work used Manz's angle-bending and dihedral-torsion model potentials. For a crystal structure containing N atoms in its unit cell, the number of independent flexibility interactions is 3(N atoms - 1). Because the number of bonds, angles, and dihedrals is normally much larger than 3(N atoms - 1), these internal coordinates are redundant. To reduce (but not eliminate) this redundancy, our protocol prunes dihedral types in a way that preserves symmetry equivalency. Next, each dihedral type is classified as non-rotatable, hindered, rotatable, or linear. We introduce a smart selection method that identifies which particular torsion modes are important for each rotatable dihedral type. Then, we computed the force constants for all flexibility interactions together via LASSO regression (i.e., regularized linear least-squares fitting) of the training dataset. LASSO automatically identifies and removes unimportant forcefield interactions. For each MOF, the reference dataset was quantum-mechanically-computed in VASP via DFT with dispersion and included: (i) finite-displacement calculations along every independent atom translation mode, (ii) geometries randomly sampled via ab initio molecular dynamics (AIMD), (iii) the optimized ground-state geometry using experimental lattice parameters, and (iv) rigid torsion scans for each rotatable dihedral type. After training, the flexibility model was validated across geometries that were not part of the training dataset. For each MOF, we computed the goodness of fit (R-squared value) and the root-mean-squared error (RMSE) separately for the training and validation datasets. We compared flexibility models with and without bond-bond cross terms. Even without cross terms, the model yielded R-squared values of 0.910 (avg across all MOFs) ± 0.018 (st. dev.) for atom-in-material forces in the validation datasets. Our SAVESTEPS protocol should find widespread applications to parameterize flexible forcefields for material datasets. We performed molecular dynamics simulations using these flexibility parameters to compute heat capacities and thermal expansion coefficients for two MOFs.
Collapse
Affiliation(s)
- Reza Ghanavati
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| | - Alma C Escobosa
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| | - Thomas A Manz
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| |
Collapse
|
7
|
Zhao G, Chung YG. PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials Based on Crystal Graph Convolution Networks. J Chem Theory Comput 2024; 20:5368-5380. [PMID: 38822793 DOI: 10.1021/acs.jctc.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
We report a fast and easy method (PACMAN) to assign partial atomic charges on metal-organic framework (MOF) and covalent-organic framework (COF) crystal structures based on graph convolution networks (GCNs) trained on >1.8 million high-fidelity partial atomic charge data obtained from the Quantum Metal-Organic Framework (QMOF) database. The developed model shows outstanding performance, achieving a mean absolute error (MAE) of 0.0055 e (test set performance) while maintaining consistency with DDEC6, Bader, and CM5 charges across diverse chemistry and topologies of MOFs and COFs. We find that the new method accurately assigns partial atomic charges for ion-containing nanoporous materials, which has not been possible in previous machine learning (ML) models. Grand canonical Monte Carlo (GCMC) simulation results for CO2 and N2 uptakes and the Widom particle insertion calculation for Henry's law constant of water results based on PACMAN and the original DDEC6 charges show excellent agreements compared to other ML models reported in the literature. The runtime analysis of the new method demonstrates that the partial atomic charges of MOF and COF structures with up to 500 atoms can be obtained in less than 10 s. An easy-to-use web interface has been developed to facilitate the adoption of the developed model.
Collapse
Affiliation(s)
- Guobin Zhao
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Yongchul G Chung
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
8
|
Kruse SJ, Rajapaksha H, LaVerne JA, Mason SE, Forbes TZ. Radiation-Induced Defects in Uranyl Trinitrate Solids. Chemistry 2024; 30:e202400956. [PMID: 38619503 DOI: 10.1002/chem.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Actinides are inherently radioactive; thus, ionizing radiation is emitted by these elements can have profound effects on its surrounding chemical environment through the formation of free radical species. While previous work has noted that the presence of free radicals in the system impacts the redox state of the actinides, there is little atomistic understanding of how these metal cations interact with free radicals. Herein, we explore the effects of radiation (UV and γ) on three U(VI) trinitrate complexes, M[UO2(NO3)3] (where M=K+, Rb+, Cs+), and their respective nitrate salts in the solid state via electron paramagnetic resonance (EPR) and Raman spectroscopy paired with Density Functional Theory (DFT) methods. We find that the alkali salts form nitrate radicals under UV and γ irradiation, but also note the presence of additional degradation products. M[UO2(NO3)3] solids also form nitrate radicals and additional DFT calculations indicate the species corresponds to a change from the bidentate bound nitrate anion into a monodentate NO3 • radical. Computational studies also highlight the need to include the second sphere coordination environment around the [UO2(NO3)3]0,1 species to gain agreement between the experimental and predicted EPR signatures.
Collapse
Affiliation(s)
- Samantha J Kruse
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, USA, 52242
| | - Harindu Rajapaksha
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, USA, 52242
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, USA, 46556
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN, USA, 46556
| | - Sara E Mason
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, USA, 52242
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA, 11973
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, USA, 52242
| |
Collapse
|
9
|
Wang K, Sun X, Cheng S, Cheng Y, Huang K, Liu R, Yuan H, Li W, Liang F, Yang Y, Yang F, Zheng K, Liang Z, Tu C, Liu M, Ma M, Ge Y, Jian M, Yin W, Qi Y, Liu Z. Multispecies-coadsorption-induced rapid preparation of graphene glass fiber fabric and applications in flexible pressure sensor. Nat Commun 2024; 15:5040. [PMID: 38866786 PMCID: PMC11169262 DOI: 10.1038/s41467-024-48958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Direct chemical vapor deposition (CVD) growth of graphene on dielectric/insulating materials is a promising strategy for subsequent transfer-free applications of graphene. However, graphene growth on noncatalytic substrates is faced with thorny issues, especially the limited growth rate, which severely hinders mass production and practical applications. Herein, graphene glass fiber fabric (GGFF) is developed by graphene CVD growth on glass fiber fabric. Dichloromethane is applied as a carbon precursor to accelerate graphene growth, which has a low decomposition energy barrier, and more importantly, the produced high-electronegativity Cl radical can enhance adsorption of active carbon species by Cl-CH2 coadsorption and facilitate H detachment from graphene edges. Consequently, the growth rate is increased by ~3 orders of magnitude and carbon utilization by ~960-fold, compared with conventional methane precursor. The advantageous hierarchical conductive configuration of lightweight, flexible GGFF makes it an ultrasensitive pressure sensor for human motion and physiological monitoring, such as pulse and vocal signals.
Collapse
Affiliation(s)
- Kun Wang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiucai Sun
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China
| | - Yi Cheng
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kewen Huang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ruojuan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Hao Yuan
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Wenjuan Li
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fushun Liang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yuyao Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Fan Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Zhiwei Liang
- Beijing Graphene Institute (BGI), Beijing, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing, China
| | - Mengxiong Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Mingyang Ma
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Yunsong Ge
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Muqiang Jian
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Wanjian Yin
- Beijing Graphene Institute (BGI), Beijing, China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, China
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing, China.
| | - Zhongfan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
| |
Collapse
|
10
|
Inui GK, Besse R, González JE, Da Silva JLF. Atomic-scale insights in the interplay of chemical composition and chirality in two-dimensional chiral perovskites. Phys Chem Chem Phys 2024; 26:16719-16731. [PMID: 38817152 DOI: 10.1039/d4cp00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The incorporation of chiral molecules (A) in materials based on hybrid ABX3 perovskites has opened new paths to tune the optoelectronic properties of perovskites through the transfer of chirality to the inorganic BX framework. However, our atomistic understanding of the role of chemical BX composition in the magnitude of the chirality transfer is far from complete. In this study, we use density functional theory calculations and the experimental Ruddlesden-Popper chiral (R-/S-NEA)2PbBr4 structure (R-/S-NEA = R-/S-1-(1-naphthyl)ethylammonium) to investigate the effects induced by chemical substitution of Pb by Ge or Sn and Br by Cl or I on the transfer of chirality and physical-chemical properties. We have observed that different enantiomers result in opposing orientations of octahedral tiltings within the inorganic framework, thus transferring chirality to the inorganic structure. The tilts are greater in perovskites based on Pb and decrease in the sequence of Cl to Br to I, as a consequence of the decrease in the halide electronegativity that weakens the interactions between X and the -N+H3 group of the NEA chiral cation. The chirality transfer is also evident in the Rashba-Dresselhaus effects on the electronic band structure, in which we found magnitudes directly correlated to the trends of octahedra tilting. The band offsets of substitutions B and X are predominantly influenced by their natural atomic energy levels, while organic molecules play a pivotal role in modulating the ionic potential and electron affinity in systems containing light atoms. The band gap values range from 1.91 up to 3.77 eV, with chirality and anion electronegativity providing significant tuning effects on whether the band gaps are direct or indirect.
Collapse
Affiliation(s)
- Guilherme K Inui
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, 13560-970, Brazil.
| | - Rafael Besse
- University of Brasília, Institute of Physics, Brasília, DF, 70910-970, Brazil
| | - José E González
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, 13560-970, Brazil.
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
11
|
McCready C, Sladekova K, Conroy S, Gomes JR, Fletcher AJ, Jorge M. Quantifying the Uncertainty of Force Field Selection on Adsorption Predictions in MOFs. J Chem Theory Comput 2024; 20:4869-4884. [PMID: 38818701 PMCID: PMC11171284 DOI: 10.1021/acs.jctc.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Comparisons between simulated and experimental adsorption isotherms in MOFs are fraught with challenges. On the experimental side, there is significant variation between isotherms measured on the same system, with a significant percentage (∼20%) of published data being considered outliers. On the simulation side, force fields are often chosen "off-the-shelf" with little or no validation. The effect of this choice on the reliability of simulated adsorption predictions has not yet been rigorously quantified. In this work, we fill this gap by systematically quantifying the uncertainty arising from force field selection on adsorption isotherm predictions. We choose methane adsorption, where electrostatic interactions are negligible, to independently study the effect of the framework Lennard-Jones parameters on a series of prototypical materials that represent the most widely studied MOF "families". Using this information, we compute an adsorption "consensus isotherm" from simulations, including a quantification of uncertainty, and compare it against a manually curated set of experimental data from the literature. By considering many experimental isotherms measured by different groups and eliminating outliers in the data using statistical analysis, we conduct a rigorous comparison that avoids the pitfalls of the standard approach of comparing simulation predictions to a single experimental data set. Our results show that (1) the uncertainty in simulated isotherms can be as large as 15% and (2) standard force fields can provide reliable predictions for some systems but can fail dramatically for others, highlighting systematic shortcomings in those models. Based on this, we offer recommendations for future simulation studies of adsorption, including high-throughput computational screening of MOFs.
Collapse
Affiliation(s)
- Connaire McCready
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Kristina Sladekova
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Stuart Conroy
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - José R.
B. Gomes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Ashleigh J. Fletcher
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Miguel Jorge
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| |
Collapse
|
12
|
Xie Q, Horsfield AP. Coordinate-Free and Low-Order Scaling Machine Learning Model for Atomic Partial Charge Prediction for Any Size of Molecules. J Chem Inf Model 2024; 64:4419-4425. [PMID: 38757521 PMCID: PMC11167589 DOI: 10.1021/acs.jcim.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The atomic partial charge is of great importance in many fields, such as chemistry and drug-target recognition. However, conventional quantum-based computing of atomic charges is relatively slow, limiting further applications of atomic charge analysis. With the help of machine learning methods, various kinds of models appear to speed up atomic charge calculations. However, there are still some concerning problems. Some models based on geometric coordinates require high-accuracy geometry optimization as a preprocess, while other models have a limitation on the size of input molecules that narrow the applications of the model. Here, we propose a machine learning atomic charge model based on a message-passing featurizer. This preprocessing featurizer can quickly extract atomic environment information from a molecule according to the connectivity inside the molecule. The resulting descriptor can be used with a neural network to quickly predict the atomic partial charge. The model is able to automatically adapt to any size of molecule while remaining efficient and achieves a root-mean-square error in the Hirshfeld charge prediction of 0.018e, with an overall time complexity of O(n2). Thus, this model could enlarge the range of applications of atomic partial charge to more fields and cases.
Collapse
Affiliation(s)
- Qin Xie
- Department of Materials, Imperial
College London, SW7 2AZ London, U.K.
| | | |
Collapse
|
13
|
Krösschell R, Hensen EJ, Filot IA. Unravelling CO Activation on Flat and Stepped Co Surfaces: A Molecular Orbital Analysis. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:8947-8960. [PMID: 38864004 PMCID: PMC11163463 DOI: 10.1021/acs.jpcc.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Structure sensitivity in heterogeneous catalysis dictates the overall activity and selectivity of a catalyst whose origins lie in the atomic configurations of the active sites. We explored the influence of the active site geometry on the dissociation activity of CO by investigating the electronic structure of CO adsorbed on 12 different Co sites and correlating its electronic structure features to the corresponding C-O dissociation barrier. By including the electronic structure analyses of CO adsorbed on step-edge sites, we expand upon the current models that primarily pertain to flat sites. The most important descriptors for activation of the C-O bond are the decrease in electron density in CO's 1π orbital , the occupation of 2π anti-bonding orbitals and the redistribution of electrons in the 3σ orbital. The enhanced weakening of the C-O bond that occurs when CO adsorbs on sites with a step-edge motif as compared to flat sites is caused by a distancing of the 1π orbital with respect to Co. This distancing reduces the electron-electron repulsion with the Co d-band. These results deepen our understanding of the electronic phenomena that enable the breaking of a molecular bond on a metal surface.
Collapse
Affiliation(s)
- Rozemarijn
D.E. Krösschell
- Laboratory of Inorganic Materials
& Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Emiel J.M. Hensen
- Laboratory of Inorganic Materials
& Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Ivo A.W. Filot
- Laboratory of Inorganic Materials
& Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
14
|
Oliveira FL, Esteves PM. pyCOFBuilder: A Python Package for Automated Creation of Covalent Organic Framework Models Based on the Reticular Approach. J Chem Inf Model 2024; 64:3278-3289. [PMID: 38554087 DOI: 10.1021/acs.jcim.3c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Covalent organic frameworks (COFs) have gained significant popularity in recent years due to their unique ability to provide a high surface area and customizable pore geometry and chemistry, making them an ideal choice for a wide range of applications. However, exploring COFs experimentally can be arduous and time-consuming due to their immense number of potential structures. As a result, computational high-throughput studies have become an attractive option. Nevertheless, generating COF structures can also be a challenging and time-consuming task. To address this challenge, here, we introduce the pyCOFBuilder, an open-source Python package designed to facilitate the generation of COF structures for computational studies. The pyCOFBuilder software provides an easy-to-use set of functionalities to generate COF structures following the reticular approach. In this paper, we describe the implementation, main features, and capabilities of the pyCOFBuilder, demonstrating its utility for generating COF structures with varying topologies and chemical properties. pyCOFBuilder is freely available on GitHub at https://github.com/lipelopesoliveira/pyCOFBuilder.
Collapse
Affiliation(s)
- Felipe L Oliveira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT A-622, Cid. Univ., Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Pierre M Esteves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT A-622, Cid. Univ., Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
15
|
Yue J, Zheng J, Li J, Guo S, Ren W, Liu H, Liu Y, Cui T. Ultralow Glassy Thermal Conductivity and Controllable, Promising Thermoelectric Properties in Crystalline o-CsCu 5S 3. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38621188 DOI: 10.1021/acsami.4c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We thoroughly investigated the anharmonic lattice dynamics and microscopic mechanisms of the thermal and electronic transport characteristics in orthorhombic o-CsCu5S3 at the atomic level. Taking into account the phonon energy shifts and the wave-like tunneling phonon channel, we predict an ultralow κL of 0.42 w/mK at 300 K with an extremely weak temperature dependence following ∼T-0.33. These findings agree well with experimental values along with the parallel to the Bridgman growth direction. The κL in o-CsCu5S3 is suppressed down to the amorphous limit, primarily due to the unconventional Cu-S bonding induced by the p-d hybridization antibonding state coupled with the stochastic oscillation of Cs atoms. The nonstandard temperature dependence of κL can be traced back to the critical or dominant role of wave-like tunneling of phonon contributions in thermal transport. Moreover, the p-d hybridization of Cu(3)-S bonding results in the formation of a valence band with "pudding-mold" and high-degeneracy valleys, ensuring highly efficient electron transport characteristics. By properly adjusting the carrier concentration, excellent thermoelectric performance is achieved with a maximum thermoelectric conversion efficiency of 18.4% observed at 800 K in p-type o-CsCu5S3. Our work not only elucidates the anomalous electronic and thermal transport behavior in the copper-based chalcogenide o-CsCu5S3 but also provides insights for manipulating its thermal and electronic properties for potential thermoelectric applications.
Collapse
Affiliation(s)
- Jincheng Yue
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jiongzhi Zheng
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Junda Li
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Siqi Guo
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenling Ren
- Institute of Materials Science, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Han Liu
- School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanhui Liu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Tian Cui
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
16
|
Kastuar SM, Ekuma CE. Chemically tuned intermediate band states in atomically thin Cu xGeSe/SnS quantum material for photovoltaic applications. SCIENCE ADVANCES 2024; 10:eadl6752. [PMID: 38598620 PMCID: PMC11006210 DOI: 10.1126/sciadv.adl6752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
A new generation of quantum material derived from intercalating zerovalent atoms such as Cu into the intrinsic van der Waals gap at the interface of atomically thin two-dimensional GeSe/SnS heterostructure is designed, and their optoelectronic features are explored for next-generation photovoltaic applications. Advanced ab initio modeling reveals that many-body effects induce intermediate band (IB) states, with subband gaps (~0.78 and 1.26 electron volts) ideal for next-generation solar devices, which promise efficiency greater than the Shockley-Queisser limit of ~32%. The charge carriers across the heterojunction are both energetically and spontaneously spatially confined, reducing nonradiative recombination and boosting quantum efficiency. Using this IB material in a solar cell prototype enhances absorption and carrier generation in the near-infrared to visible light range. Tuning the active layer's thickness increases optical activity at wavelengths greater than 600 nm, achieving ~190% external quantum efficiency over a broad solar wavelength range, underscoring its potential in advanced photovoltaic technology.
Collapse
|
17
|
Wang S, Zhou L, Qin H, Dong Z, Li H, Liu B, Wang Z, Zhang L, Fu Q, Chen X. Study of CHF 3/CH 2F 2 Adsorption Separation in TIFSIX-2-Cu-i. Molecules 2024; 29:1721. [PMID: 38675541 PMCID: PMC11052523 DOI: 10.3390/molecules29081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrofluorocarbons (HFCs) have important applications in different industries; however, they are environmentally unfriendly due to their high global warming potential (GWP). Hence, reclamation of used hydrofluorocarbons via energy-efficient adsorption-based separation will greatly contribute to reducing their impact on the environment. In particular, the separation of azeotropic refrigerants remains challenging, such as typical mixtures of CH2F2 (HFC-23) and CHF3 (HFC-32), due to a lack of adsorptive mechanisms. Metal-organic frameworks (MOFs) can provide a promising solution for the separation of CHF3-CH2F2 mixtures. In this study, the adsorption mechanism of CHF3-CH2F2 mixtures in TIFSIX-2-Cu-i was revealed at the microscopic level by combining static pure-component adsorption experiments, molecular simulations, and density-functional theory (DFT) calculations. The adsorption separation selectivity of CH2F2/CHF3 in TIFSIX-2-Cu-i is 3.17 at 3 bar under 308 K. The existence of similar TiF62- binding sites for CH2F2 or CHF3 was revealed in TIFSIX-2-Cu-i. Interactions between the fluorine atom of the framework and the hydrogen atom of the guest molecule were found to be responsible for determining the high adsorption separation selectivity of CH2F2/CHF3. This exploration is important for the design of highly selective adsorbents for the separation of azeotropic refrigerants.
Collapse
Affiliation(s)
- Shoudong Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (S.W.); (H.Q.); (Z.D.); (H.L.); (B.L.); (Z.W.); (L.Z.)
| | - Lei Zhou
- Shandong Dongyue Organosilicon Materials Co., Ltd., Zibo 256401, China;
| | - Hongyun Qin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (S.W.); (H.Q.); (Z.D.); (H.L.); (B.L.); (Z.W.); (L.Z.)
| | - Zixu Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (S.W.); (H.Q.); (Z.D.); (H.L.); (B.L.); (Z.W.); (L.Z.)
| | - Haoyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (S.W.); (H.Q.); (Z.D.); (H.L.); (B.L.); (Z.W.); (L.Z.)
| | - Bo Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (S.W.); (H.Q.); (Z.D.); (H.L.); (B.L.); (Z.W.); (L.Z.)
| | - Zhilu Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (S.W.); (H.Q.); (Z.D.); (H.L.); (B.L.); (Z.W.); (L.Z.)
| | - Lina Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (S.W.); (H.Q.); (Z.D.); (H.L.); (B.L.); (Z.W.); (L.Z.)
| | - Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (S.W.); (H.Q.); (Z.D.); (H.L.); (B.L.); (Z.W.); (L.Z.)
| | - Xia Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (S.W.); (H.Q.); (Z.D.); (H.L.); (B.L.); (Z.W.); (L.Z.)
| |
Collapse
|
18
|
Yakovlev IV, Shubin AA, Papulovskiy ES, Toktarev AV, Lapina OB. Repulsive Lateral Interaction of Water Molecules at the Initial Stages of Adsorption in Microporous AlPO 4-11 According to 27Al NMR and DFT. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6384-6393. [PMID: 38475698 DOI: 10.1021/acs.langmuir.3c03969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Lateral (adsorbate-adsorbate) interactions between adsorbed molecules affect various physical and chemical properties of microporous adsorbents and catalysts, influencing their functional properties. In this work, we studied the hydration of microporous AlPO4-11 aluminophosphate, which has an unusually ordered structure upon adsorption of water vapor, and according to 27Al NMR data, only tetrahedrally or octahedrally coordinated Al sites are present in the AlPO4-11. These 27Al NMR data are consistent with the results of density functional theory (DFT) calculations of hydrated AlPO4-11, which revealed the presence of a strong repulsive lateral interaction at the initial stage of adsorption, suppressing the adsorption of water on neighboring (separated by one -O-P-O- bridge) Al crystallographic sites. As a result, of all the different aluminum sites, only half of the Al1 sites adsorb two water molecules and acquire octahedral coordination.
Collapse
Affiliation(s)
- Ilya V Yakovlev
- Boreskov Institute of Catalysis, Prospekt Lavrentieva 5, 630090 Novosibirsk, Russia
- Novosibirsk State University, ul. Pirogova 1, 630090 Novosibirsk, Russia
| | - Aleksandr A Shubin
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze 18, 630090 Novosibirsk, Russia
| | | | - Alexander V Toktarev
- Boreskov Institute of Catalysis, Prospekt Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Olga B Lapina
- Boreskov Institute of Catalysis, Prospekt Lavrentieva 5, 630090 Novosibirsk, Russia
- Novosibirsk State University, ul. Pirogova 1, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Wang Y, Han C, Sinnott SB. Predicted Separation of Acid Gases from Gas Mixtures by Functionalized Porous Aromatic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5688-5694. [PMID: 38456440 DOI: 10.1021/acs.langmuir.3c03169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The selective adsorption of target acid gas molecules from binary gas mixtures by porous aromatic frameworks (PAFs) with two identical functional groups per aromatic ring (PAF-R2) was computationally investigated using grand canonical Monte Carlo simulations. PAF-R2 adsorption was considered for three binary mixtures of small molecular concentrations of acid gas and abundant nitrogen gas (CO2/N2, SO2/N2, and H2S/N2). The results indicate that additional functional groups enhance acid gas loadings and selectivity, compared with pristine PAF and single-functionalized PAFs. Low pressures yield linearly increasing gas loadings and constant selectivity, while high pressures yield much higher adsorption and selectivity. In particular, SO2 loading and selectivity under high pressures are heavily influenced by the PAF's maximum adsorption limit, which can be linked back to the functional groups and their configuration. In summary, PAF-(3,5)-(COOH)2 (nomenclature of PAFs is provided in the Appendix in the Supporting Information) and many other PAF with the same two electron-withdrawing groups are predicted to have great acid gas adsorption and selectivity from gas mixtures, while PAF-(3,5)-(OH)2 (one of PAFs with two identical electron-donating groups) is predicted to have good adsorption and selectivity, especially under elevated pressures. The results of this work can provide insights into various types of PAFs with great selective adsorption ability and their corresponding conditions. The simulation procedures and results may inspire the exploration and screening of other types of PAFs or porous materials, for acid gas absorption.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chang Han
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Susan B Sinnott
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute for Computational and Data Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
20
|
Matemb Ma Ntep TJ, Wahiduzzaman M, Laurenz E, Cornu I, Mouchaham G, Dovgaliuk I, Nandi S, Knop K, Jansen C, Nouar F, Florian P, Füldner G, Maurin G, Janiak C, Serre C. When Polymorphism in Metal-Organic Frameworks Enables Water Sorption Profile Tunability for Enhancing Heat Allocation and Water Harvesting Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211302. [PMID: 36897806 DOI: 10.1002/adma.202211302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The development of thermally driven water-sorption-based technologies relies on high-performing water vapor adsorbents. Here, polymorphism in Al-metal-organic frameworks is disclosed as a new strategy to tune the hydrophilicity of MOFs. This involves the formation of MOFs built from chains of either trans- or cis- µ-OH-connected corner-sharing AlO4(OH)2 octahedra. Specifically, [Al(OH)(muc)] or MIP-211, is made of trans, trans-muconate linkers, and cis-µ-OH-connected corner-sharing AlO4(OH)2 octahedra giving a 3D network with sinusoidal channels. The polymorph MIL-53-muc has a tiny change in the chain structure that results in a shift of the step position of the water isotherm from P/P0 ≈ 0.5 in MIL-53-muc, to P/P0 ≈ 0.3 in MIP-211. Solid-state NMR and Grand Canonical Monte Carlo reveal that the adsorption occurs initially between two hydroxyl groups of the chains, favored by the cis-positioning in MIP-211, resulting in a more hydrophilic behavior. Finally, theoretical evaluations show that MIP-211 would allow achieving a coefficient of performance for cooling (COPc) of 0.63 with an ultralow driving temperature of 60 °C, outperforming benchmark sorbents for small temperature lifts. Combined with its high stability, easy regeneration, huge water uptake capacity, green synthesis, MIP-211 is among the best adsorbents for adsorption-driven air conditioning and water harvesting from the air.
Collapse
Affiliation(s)
- Tobie J Matemb Ma Ntep
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | | | - Eric Laurenz
- Department of Heating and Cooling Technologies, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
| | - Ieuan Cornu
- Centre National de la Recherche Scientifique (CNRS), UPR3079 CEMHTI, Université d'Orléans, 1D Av. Recherche Scientifique, CEDEX 2, 45071, Orléans, France
| | - Georges Mouchaham
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Iurii Dovgaliuk
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Shyamapada Nandi
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Klaus Knop
- Institut für Pharmazeutische Technologie und Biopharmazie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Christian Jansen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Farid Nouar
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Pierre Florian
- Centre National de la Recherche Scientifique (CNRS), UPR3079 CEMHTI, Université d'Orléans, 1D Av. Recherche Scientifique, CEDEX 2, 45071, Orléans, France
| | - Gerrit Füldner
- Department of Heating and Cooling Technologies, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293, Montpellier, France
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätstraße 1, D-40225, Düsseldorf, Germany
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| |
Collapse
|
21
|
Ercakir G, Aksu GO, Keskin S. High-throughput computational screening of MOF adsorbents for efficient propane capture from air and natural gas mixtures. J Chem Phys 2024; 160:084706. [PMID: 38415834 DOI: 10.1063/5.0189493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
In this study, we used a high-throughput computational screening approach to examine the potential of metal-organic frameworks (MOFs) for capturing propane (C3H8) from different gas mixtures. We focused on Quantum MOF (QMOF) database composed of both synthesized and hypothetical MOFs and performed Grand Canonical Monte Carlo (GCMC) simulations to compute C3H8/N2/O2/Ar and C3H8/C2H6/CH4 mixture adsorption properties of MOFs. The separation of C3H8 from air mixture and the simultaneous separation of C3H8 and C2H6 from CH4 were studied for six different adsorption-based processes at various temperatures and pressures, including vacuum-swing adsorption (VSA), pressure-swing adsorption (PSA), vacuum-temperature swing adsorption (VTSA), and pressure-temperature swing adsorption (PTSA). The results of molecular simulations were used to evaluate the MOF adsorbents and the type of separation processes based on selectivity, working capacity, adsorbent performance score, and regenerability. Our results showed that VTSA is the most effective process since many MOFs offer high regenerability (>90%) combined with high C3H8 selectivity (>7 × 103) and high C2H6 + C3H8 selectivity (>100) for C3H8 capture from air and natural gas mixtures, respectively. Analysis of the top MOFs revealed that materials with narrow pores (<10 Å) and low porosities (<0.7), having aromatic ring linkers, alumina or zinc metal nodes, typically exhibit a superior C3H8 separation performance. The top MOFs were shown to outperform commercial zeolite, MFI for C3H8 capture from air, and several well-known MOFs for C3H8 capture from natural gas stream. These results will direct the experimental efforts to the most efficient C3H8 capture processes by providing key molecular insights into selecting the most useful adsorbents.
Collapse
Affiliation(s)
- Goktug Ercakir
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Gokhan Onder Aksu
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
22
|
Rajapaksha H, Benthin GC, Markun EL, Mason SE, Forbes TZ. Synthesis, characterization, and density functional theory investigation of (CH 6N 3) 2[NpO 2Cl 3] and Rb[NpO 2Cl 2(H 2O)] chain structures. Dalton Trans 2024. [PMID: 38265201 DOI: 10.1039/d3dt03630h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The actinyl tetrachloro complex [An(V/VI)O2Cl4]2-/3- tends to form discrete molecular units in both solution and solid state materials, but related aquachloro complexes have been observed as both discrete coordination compounds and 1-D chain topologies. Subtle differences in the inner sphere coordination significantly influence the formation of structural topologies in the actinyl chloride system, but the exact reasoning for these variations has not been delineated. In the current study, we present the synthesis, structural characterization, and vibrational analysis of two 1-D neptunyl(V) chain compounds: (CH6N3)2[NpO2Cl3] (Np-Gua) and Rb[NpO2Cl2(H2O)] (Np-Rb). Bonding and non-covalent interactions (NCIs) in the systems were evaluated using periodic Density Functional Theory (DFT) to link these properties to related phases. We observed ∼6.5% and ∼3.9% weakening of NpO bonds in Np-Gua and Np-Rb compared to the reference Cs3[NpO2Cl4]. NCI analysis distinguished specific assembly modes, where Np-Gua was connected via hydrogen bonding (N-H⋯Cleq and N-H⋯Oyl) and Np-Rb contained both cation interactions (Rb+⋯Oyl and Rb+⋯Cleq) and hydrogen bonding (Oeq-H⋯Oyl) networks. Thermodynamically viable formation pathways for both compounds were explored using DFT methodology. The [NpO2Cl4](aq)3- and [NpO2Cl3(H2O)](aq)2- substructures were identified as precursors to Np-Gua and [NpO2Cl3(H2O)](aq)2- and [NpO2Cl2(H2O)2](aq)- were isolated as the primary building units of Np-Rb. Finally, we utilized DFT to analyze the vibrational modes for Np-Gua and Np-Rb, where we found evidence of the NpO bond weakening within the Np(V) chain structures compared to [NpO2Cl4]3-.
Collapse
Affiliation(s)
| | - Grant C Benthin
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Emma L Markun
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Sara E Mason
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
23
|
Ercakir G, Aksu GO, Altintas C, Keskin S. Hierarchical Computational Screening of Quantum Metal-Organic Framework Database to Identify Metal-Organic Frameworks for Volatile Organic-Compound Capture from Air. ACS ENGINEERING AU 2023; 3:488-497. [PMID: 38144678 PMCID: PMC10739624 DOI: 10.1021/acsengineeringau.3c00039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
The design and discovery of novel porous materials that can efficiently capture volatile organic compounds (VOCs) from air are critical to address one of the most important challenges of our world, air pollution. In this work, we studied a recently introduced metal-organic framework (MOF) database, namely, quantum MOF (QMOF) database, to unlock the potential of both experimentally synthesized and hypothetically generated structures for adsorption-based n-butane (C4H10) capture from air. Configurational Bias Monte Carlo (CBMC) simulations were used to study the adsorption of a quaternary gas mixture of N2, O2, Ar, and C4H10 in QMOFs for two different processes, pressure swing adsorption (PSA) and vacuum-swing adsorption (VSA). Several adsorbent performance evaluation metrics, such as C4H10 selectivity, working capacity, the adsorbent performance score, and percent regenerability, were used to identify the best adsorbent candidates, which were then further studied by molecular simulations for C4H10 capture from a more realistic seven-component air mixture consisting of N2, O2, Ar, C4H10, C3H8, C3H6, and C2H6. Results showed that the top five QMOFs have C4H10 selectivities between 6.3 × 103 and 9 × 103 (3.8 × 103 and 5 × 103) at 1 bar (10 bar). Detailed analysis of the structure-performance relations showed that low/mediocre porosity (0.4-0.6) and narrow pore sizes (6-9 Å) of QMOFs lead to high C4H10 selectivities. Radial distribution function analyses of the top materials revealed that C4H10 molecules tend to confine close to the organic parts of MOFs. Our results provided the first information in the literature about the VOC capture potential of a large variety and number of MOFs, which will be useful to direct the experimental efforts to the most promising adsorbent materials for C4H10 capture from air.
Collapse
Affiliation(s)
- Goktug Ercakir
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Gokhan Onder Aksu
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Cigdem Altintas
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
24
|
Pandey I, Lin LC, Chen CC, Howe JD. Understanding Carbon Monoxide Binding and Interactions in M-MOF-74 (M = Mg, Mn, Ni, Zn). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18187-18197. [PMID: 38059595 DOI: 10.1021/acs.langmuir.3c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Small molecules may adsorb strongly in metal-organic frameworks (MOFs) through interactions with under-coordinated open metal sites (OMS) that often exist within these structures. Among adsorbates, CO is attractive to study both for its relevance in energy-related applications and for its ability to engage in both σ-donation and π-backbonding interactions with the OMS in MOFs. Concomitant with strong adsorption, structural changes arise due to modifications of the electronic structure of both the adsorbate and adsorbent. These structural changes affect the separation performance of materials, and accurately capturing these changes and the resulting energetics is critical for accurate predictive modeling of adsorption. Traditional approaches to modeling using classical force fields typically do not capture or account for changes at the electronic level. To characterize the structural and energetic effects of the local structural changes, we employed density functional theory (DFT) to study CO adsorption in M-MOF-74s. M-MOF-74s feature OMS at which CO is known to adsorb strongly and can be synthesized with a variety of divalent metal cations with distinct performance in adsorption. We considered M-MOF-74s with a range of metals of varied d-band occupations (Mg (3d0), Mn (3d5), Ni (3d8), and Zn (3d10)) with various structural constraints ranging from geometrically constrained adsorbent and adsorbate ions to fully optimized geometries to deconvolute the relative contributions of various structural effects to the adsorption energetics and binding distances observed. Our data indicate that the most significant structural changes during adsorption correlate with the greatest π-backbonding behaviors and commensurately result in a sizable binding energy change observed for CO adsorption. The insights built from this work are relevant to two longstanding research challenges within the MOF community: rational design of materials for separations and the design of force fields capable of accurately modeling adsorption.
Collapse
Affiliation(s)
- Ishan Pandey
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Li-Chiang Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chau-Chyun Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Joshua D Howe
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
25
|
Kruse SJ, Rajapaksha H, MacGillivray LR, LaVerne JA, Forbes TZ. Atomistic-Level Effects of Noncovalent Interactions and Crystalline Packing for Organic Material Structural Integrity upon Exposure to Gamma Radiation. Chemistry 2023; 29:e202302653. [PMID: 37616378 DOI: 10.1002/chem.202302653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Developing an atomistic understanding of ionizing radiation induced changes to organic materials is necessary for intentional design of greener and more sustainable materials for radiation shielding and detection. Cocrystals are promising for these purposes, but a detailed understanding of how the specific intermolecular interactions within the lattice upon exposure to radiation affect the structural stability of the organic crystalline material is unknown. This study evaluates atomistic-level effects of γ radiation on both single- and multicomponent organic crystalline materials and how specific noncovalent interactions and packing within the crystalline lattice enhance structural stability. Dose studies were performed on all crystalline systems and evaluated via experimental and computational methods. Changes in crystallinity were evaluated by p-XRD and free radical formation was analyzed via EPR spectroscopy. Type of intermolecular interactions and packing within the crystal lattice was delineated and related to the specific free radical species formed and the structural integrity of each material. Periodic DFT and HOMO-LUMO surface mapping calculations provided atomistic-level identifications of the most probable sites for the radicals formed upon exposure to γ radiation and relate intermolecular interactions and molecular packing within the crystalline lattice to experimental results.
Collapse
Affiliation(s)
- Samantha J Kruse
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, 52242, USA
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Harindu Rajapaksha
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, 52242, USA
| | - Leonard R MacGillivray
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, 52242, USA
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, University of Iowa Chemistry Building, Iowa City, IA, 52242, USA
| |
Collapse
|
26
|
Liu S, Wang M, Wei S, Liu S, Wang Z, Lawrence Wu CM, Sun D, Lu X. Enhanced CO 2 capture in partially interpenetrated MOFs: Synergistic effects from functional group, pore size, and steric-hindrance. J Colloid Interface Sci 2023; 650:1361-1370. [PMID: 37480651 DOI: 10.1016/j.jcis.2023.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
Excessive CO2 emissions have contributed to global environmental issues, driving the development of CO2 capture adsorbents. Among various candidates, metal-organic frameworks (MOFs) are considered the most promising due to their unique microporous structure. Herein, a series of partially interpenetrated MOFs named UPC-XX were built to investigate the continuous enhancement in CO2 capture performance via synergistic effects from functional group, pore size, and steric-hindrance using theoretical calculations. It's showed that the introduction of functional groups improved the structure polarity and created more adsorption sites, thus, enhanced CO2 capture capacity. The pore size modification augments the exposure of adsorption sites to mitigate the negative impact of pore space and surface area reduction caused by the introduction of functional groups, thereby further increasing the CO2 capture capacity. The steric-hindrance effect optimized the adsorption sites distribution, which hasn't been considered in the previous two regulation strategies, thus, further increased the CO2 capture capacity. The results underscore UPC-MOFs as outstanding adsorbent materials, among the UPC-MOFs, UPC-OSO3-steric exhibited the highest CO2 capture capacity of 12.69 mmol/g with selectivities of 1142.41 (CO2 over N2) and 507.42 (CO2 over CH4) at 1.0 bar, 298 K. And the synergistic effect mechanisms of functional group, structure size, and steric hindrance were elucidated through theoretical calculations analyzing pore characteristics, gas distribution, isosteric heat, and van der Waals/Coulomb interactions.
Collapse
Affiliation(s)
- Sen Liu
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Maohuai Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, PR China.
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| |
Collapse
|
27
|
Rajapaksha H, Benthin GC, Kravchuk DV, Lightfoot H, Mason SE, Forbes TZ. Three-Dimensional Noncovalent Interaction Network within [NpO 2Cl 4] 2- Coordination Compounds: Influence on Thermochemical and Vibrational Properties. Inorg Chem 2023; 62:17265-17275. [PMID: 37816161 PMCID: PMC10598792 DOI: 10.1021/acs.inorgchem.3c02502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 10/12/2023]
Abstract
Noncovalent interactions (NCIs) can influence the stability and chemical properties of pentavalent and hexavalent actinyl (AnO2+/2+) compounds. In this work, the impact of NCIs (actinyl-hydrogen and actinyl-cation interactions) on the enthalpy of formation (ΔHf) and vibrational features was evaluated using Np(VI) tetrachloro compounds as the model system. We calculated the ΔHf values of these solid-state compounds through density functional theory+ thermodynamics (DFT+ T) and validated the results against experimental ΔHf values obtained through isothermal acid calorimetry. Three structural descriptors were evaluated to develop predictors for ΔHf, finding a strong link between ΔHf and hydrogen bond energy (EHtotal) for neptunyl-hydrogen interactions and total electrostatic attraction energy (Eelectrostatictotal) for neptunyl-cation interactions. Finally, we used Raman spectroscopy together with bond order analysis to probe Np=O bond perturbation due to NCIs. Our results showed a strong correlation between the degree of NCIs by axial oxygen and red-shifting of Np=O symmetrical stretch (ν1) wavenumbers and quantitatively demonstrated that NCIs can weaken the Np=O bond. These properties were then compared to those of related U(VI) and Np(V) phases to evaluate the effects of subtle differences in the NCIs and overall properties. In general, the outcomes of our study demonstrated the role of NCIs in stabilizing actinyl solid materials, which consequently governs their thermochemical behaviors and vibrational signatures.
Collapse
Affiliation(s)
- Harindu Rajapaksha
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Grant C. Benthin
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dmytro V. Kravchuk
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Haley Lightfoot
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sara E. Mason
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Tori Z. Forbes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
28
|
Rajapaksha H, Mason SE, Forbes TZ. Synthesis, Characterization, and Density Functional Theory Investigation of the Solid-State [UO 2Cl 4(H 2O)] 2- Complex. Inorg Chem 2023; 62:14318-14325. [PMID: 37610833 PMCID: PMC10481372 DOI: 10.1021/acs.inorgchem.3c01725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 08/25/2023]
Abstract
A significant number of solid-state [UO2Cl4]2- coordination compounds have been synthesized and structurally characterized. Yet, despite their purposive relative abundance in aqueous solutions, characterization of aquachlorouranium(VI) complexes remain rare. In the current study, a solid-state uranyl aqua chloro complex ((C4H12N2)2[UO2Cl4(H2O)]Cl2) was synthesized using piperazinium as a charge-balancing ligand, and the structure was determined using single-crystal X-ray diffraction. Using periodic density functional theory, the electronic structure of the [UO2Cl4(H2O)]2- complex was compared to [UO2Cl4]2- to uncover the strengthening of the U═O bond in [UO2Cl4(H2O)]2-. Changes in the strength of the U═O bond were validated further with Raman and IR spectroscopy, where uranyl symmetrical (ν1) and asymmetrical (ν3) stretches were blue-shifted compared to the reference [UO2Cl4]2- complex. Furthermore, the formation energy of the solid-state (C4H12N2)2[UO2Cl4(H2O)]Cl2 complex was calculated to be -287.60 ± 1.75 kJ mol-1 using isothermal acid calorimetry. The demonstrated higher stability relative to the related [UO2Cl4]2- complex was related to the relative stoichiometry of the counterions.
Collapse
Affiliation(s)
- Harindu Rajapaksha
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sara E. Mason
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Tori Z. Forbes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
29
|
Wang J, Xie SJ. The influence of force fields on the structure and dynamics of water confined in ZIF-8 from atomistic simulations. Phys Chem Chem Phys 2023; 25:23100-23110. [PMID: 37602670 DOI: 10.1039/d3cp02075d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The complexity of modeling flexible crystals, such as ZIF-8, mainly stems from the handling of intramolecular interactions. Numerous force fields have been proposed in the literature to describe the interactions between atoms in ZIF-8. We employ seven force fields to examine the structure and dynamic behavior of water molecules confined in ZIF-8, with the aim of investigating the impact of force fields on simulation results. Various structural characterization methods consistently indicate that the choice of different force fields has quantitative effects but no qualitative effects on the structural characteristics of confined water. Additionally, the force fields do not impact the qualitative description of the diffusion mechanism. Both mean-square displacement and van Hove autocorrelation function reveal two characteristic movements of water molecules diffusing in ZIF-8: a short-time intra-cavity hopping process and a long-time inter-cavity hopping process. However, the framework flexibility is found to play a crucial role in determining the order of spatial arrangement and local structure, self-diffusion coefficient and reorientational dynamics of confined water. Specifically, the DREIDING force field gives rise to an unrealistic stiff framework, enhancing the order of spatial arrangement and diminishing the local ordered structure of confined water. Meanwhile, it results in much slower translational and reorientational dynamics. Hence, the general DREIDING force field cannot be considered for providing a quantitative description of the water structure and dynamics.
Collapse
Affiliation(s)
- Jing Wang
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shi-Jie Xie
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
30
|
Rajapaksha H, Augustine LJ, Mason SE, Forbes TZ. Guiding Principles for the Rational Design of Hybrid Materials: Use of DFT Methodology for Evaluating Non-Covalent Interactions in a Uranyl Tetrahalide Model System. Angew Chem Int Ed Engl 2023; 62:e202305073. [PMID: 37177866 DOI: 10.1002/anie.202305073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Together with the synthesis and experimental characterization of 14 hybrid materials containing [UO2 X4 ]2- (X=Cl- and Br- ) and organic cations, we report on novel methods for determining correlation trends in their formation enthalpy (ΔHf ) and observed vibrational signatures. ΔHf values were analyzed through isothermal acid calorimetry and a Density Functional Theory+Thermodynamics (DFT+T) approach with results showing good agreement between theory and experiment. Three factors (packing efficiency, cation protonation enthalpy, and hydrogen bonding energy [E H , norm total ${{E}_{H,{\rm { norm}}}^{{\rm { total}}}}$ ]) were assessed as descriptors for trends in ΔHf . Results demonstrated a strong correlation betweenE H , norm total ${E_{{\rm{H}},{\rm{norm}}}^{{\rm{total}}} }$ and ΔHf , highlighting the importance of hydrogen bonding networks in determining the relative stability of solid-state hybrid materials. Lastly, we investigate how hydrogen bonding networks affect the vibrational characteristics of uranyl solid-state materials using experimental Raman and IR spectroscopy and theoretical bond orders and find that hydrogen bonding can red-shift U≡O stretching modes. Overall, the tightly integrated experimental and theoretical studies presented here bridge the trends in macroscopic thermodynamic energies and spectroscopic features with molecular-level details of the geometry and electronic structure. This modeling framework forms a basis for exploring 3D hydrogen bonding as a tunable design feature in the pursuit of supramolecular materials by rational design.
Collapse
Affiliation(s)
- Harindu Rajapaksha
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| | - Logan J Augustine
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| | - Sara E Mason
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
- Center for Funtional Nanomaterials (CFN), Brookhaven National Labotatory, Upton, NY 52242, USA
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| |
Collapse
|
31
|
Dziadyk-Stopyra E, Tranca I, Smykowski D, Szyja BM. The Influence of Ni Addition in the Mechanism of CO 2 Electroreduction on Cu Crystals-Mechanistic Insight from DFT Simulations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5138. [PMID: 37512415 PMCID: PMC10384679 DOI: 10.3390/ma16145138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
We present a DFT analysis of the role of the Cu-Ni synergistic effect for the CO2 reduction to C2H4, in comparison to the pure Cu catalyst. The analysis is focused on the thermodynamic stability of reactive intermediates along the proposed pathway of C2 species formation. We have observed that the potential needed for the reaction decreases with the addition of Ni in the investigated model. In addition, we have observed the differences in the preferred pathway based on the significant differences in stability of the reactive intermediates depending on th Cu:Ni ratio. The results suggest that despite the fact the Cu surface is always exposed, and it is the only one that is able to directly interact with the intermediates, the presence of the Ni in the underlying sections of the crystal is significant enough to change the mechanism of the reaction.
Collapse
Affiliation(s)
- Elżbieta Dziadyk-Stopyra
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland
| | - Ionut Tranca
- Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Smykowski
- Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Bartłomiej M Szyja
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland
| |
Collapse
|
32
|
Gu Y, Zheng JJ, Otake KI, Sakaki S, Ashitani H, Kubota Y, Kawaguchi S, Yao MS, Wang P, Wang Y, Li F, Kitagawa S. Soft corrugated channel with synergistic exclusive discrimination gating for CO 2 recognition in gas mixture. Nat Commun 2023; 14:4245. [PMID: 37454124 DOI: 10.1038/s41467-023-39470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Developing artificial porous systems with high molecular recognition performance is critical but very challenging to achieve selective uptake of a particular component from a mixture of many similar species, regardless of the size and affinity of these competing species. A porous platform that integrates multiple recognition mechanisms working cooperatively for highly efficient guest identification is desired. Here, we designed a flexible porous coordination polymer (PCP) and realised a corrugated channel system that cooperatively responds to only target gas molecules by taking advantage of its stereochemical shape, location of binding sites, and structural softness. The binding sites and structural deformation act synergistically, exhibiting exclusive discrimination gating (EDG) effect for selective gate-opening adsorption of CO2 over nine similar gas molecules, including N2, CH4, CO, O2, H2, Ar, C2H6, and even higher-affinity gases such as C2H2 and C2H4. Combining in-situ crystallographic experiments with theoretical studies, it is clear that this unparalleled ability to decipher the CO2 molecule is achieved through the coordination of framework dynamics, guest diffusion, and interaction energetics. Furthermore, the gas co-adsorption and breakthrough separation performance render the obtained PCP an efficient adsorbent for CO2 capture from various gas mixtures.
Collapse
Affiliation(s)
- Yifan Gu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, 200092, Shanghai, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Shigeyoshi Sakaki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirotaka Ashitani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Insitute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ying Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, 200092, Shanghai, China
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, 200092, Shanghai, China.
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
33
|
Sahoo A, Paul T, Nath A, Maiti S, Kumar P, Ghosh P, Banerjee R. Preferential perovskite surface-termination induced high piezoresponse in lead-free in situ fabricated Cs 3Bi 2Br 9-PVDF nanocomposites promotes biomechanical energy harvesting. NANOSCALE 2023. [PMID: 37377099 DOI: 10.1039/d3nr01517c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Lead-free halide perovskites have gained immense popularity in photovoltaic and energy harvesting applications because of their excellent optical and electrical attributes with minimal toxicity. We synthesized composite films of lead-free Cs3Bi2Br9 perovskite embedded in the polyvinylidene fluoride (PVDF) matrix and have investigated their piezoelectric energy harvesting. Five PVDF@Cs3Bi2Br9 composite films were fabricated with varying wt% of the perovskite in the PVDF. The composite with a 4 wt% of the perovskite shows 85% activation of the electroactive β-phase of PVDF. Additionally, this composite exhibits a maximum polarisation of ∼0.1 μC cm-2 and the best energy storage density of ∼0.8 mJ cm-3 at an applied field of ∼16 kV cm-1 among all the synthesized composites. A nanogenerator fabricated using 4 wt% loading in the composite film produced an instantaneous output voltage of ∼40 V, an instantaneous current of ∼4.1 μA, and a power density of ∼17.8 μW cm-2 across 10 MΩ resistance when repeatedly hammered by the human hand. The nanogenerator is further employed to light up several LEDs and to charge capacitors with a small active area demonstrating significant promise for prospective wearables and portable devices and paving the way for high-performance nanogenerators using lead-free halide perovskites. Density functional theory calculations were performed to understand the interaction of the electroactive phase of the PVDF with different perovskite surface terminations to unravel the various interaction mechanisms and their ensuing charge transfer properties.
Collapse
Affiliation(s)
- Aditi Sahoo
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Tufan Paul
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Ankan Nath
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Soumen Maiti
- St. Thomas Colleges of Engineering & Technology, Kolkata 700023, India
| | - Prabhat Kumar
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Prasenjit Ghosh
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Rupak Banerjee
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
- K C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
34
|
Achar SK, Bernasconi L, Johnson JK. Machine Learning Electron Density Prediction Using Weighted Smooth Overlap of Atomic Positions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1853. [PMID: 37368284 DOI: 10.3390/nano13121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Having access to accurate electron densities in chemical systems, especially for dynamical systems involving chemical reactions, ion transport, and other charge transfer processes, is crucial for numerous applications in materials chemistry. Traditional methods for computationally predicting electron density data for such systems include quantum mechanical (QM) techniques, such as density functional theory. However, poor scaling of these QM methods restricts their use to relatively small system sizes and short dynamic time scales. To overcome this limitation, we have developed a deep neural network machine learning formalism, which we call deep charge density prediction (DeepCDP), for predicting charge densities by only using atomic positions for molecules and condensed phase (periodic) systems. Our method uses the weighted smooth overlap of atomic positions to fingerprint environments on a grid-point basis and map it to electron density data generated from QM simulations. We trained models for bulk systems of copper, LiF, and silicon; for a molecular system, water; and for two-dimensional charged and uncharged systems, hydroxyl-functionalized graphane, with and without an added proton. We showed that DeepCDP achieves prediction R2 values greater than 0.99 and mean squared error values on the order of 10-5e2 Å-6 for most systems. DeepCDP scales linearly with system size, is highly parallelizable, and is capable of accurately predicting the excess charge in protonated hydroxyl-functionalized graphane. We demonstrate how DeepCDP can be used to accurately track the location of charges (protons) by computing electron densities at a few selected grid points in the materials, thus significantly reducing the computational cost. We also show that our models can be transferable, allowing prediction of electron densities for systems on which it has not been trained but that contain a subset of atomic species on which it has been trained. Our approach can be used to develop models that span different chemical systems and train them for the study of large-scale charge transport and chemical reactions.
Collapse
Affiliation(s)
- Siddarth K Achar
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - J Karl Johnson
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
35
|
Mhatre CV, Wardzala JJ, Shukla PB, Agrawal M, Johnson JK. Calculation of Self, Corrected, and Transport Diffusivities of Isopropyl Alcohol in UiO-66. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111793. [PMID: 37299696 DOI: 10.3390/nano13111793] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The UiO-6x family of metal-organic frameworks has been extensively studied for applications in chemical warfare agent (CWA) capture and destruction. An understanding of intrinsic transport phenomena, such as diffusion, is key to understanding experimental results and designing effective materials for CWA capture. However, the relatively large size of CWAs and their simulants makes diffusion in the small-pored pristine UiO-66 very slow and hence impractical to study directly with direct molecular simulations because of the time scales required. We used isopropanol (IPA) as a surrogate for CWAs to investigate the fundamental diffusion mechanisms of a polar molecule within pristine UiO-66. IPA can form hydrogen bonds with the μ3-OH groups bound to the metal oxide clusters in UiO-66, similar to some CWAs, and can be studied by direct molecular dynamics simulations. We report self, corrected, and transport diffusivities of IPA in pristine UiO-66 as a function of loading. Our calculations highlight the importance of the accurate modeling of the hydrogen bonding interactions on diffusivities, with about an order of magnitude decrease in diffusion coefficients when the hydrogen bonding between IPA and the μ3-OH groups is included. We found that a fraction of the IPA molecules have very low mobility during the course of a simulation, while a small fraction are highly mobile, exhibiting mean square displacements far greater than the ensemble average.
Collapse
Affiliation(s)
- Chinmay V Mhatre
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jacob J Wardzala
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Priyanka B Shukla
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
36
|
Kancharlapalli S, Snurr RQ. High-Throughput Screening of the CoRE-MOF-2019 Database for CO 2 Capture from Wet Flue Gas: A Multi-Scale Modeling Strategy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262369 DOI: 10.1021/acsami.3c04079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Stabilizing the escalating CO2 levels in the atmosphere is a grand challenge in view of the increasing global demand for energy, the majority of which currently comes from the burning of fossil fuels. Capturing CO2 from point source emissions using solid adsorbents may play a part in meeting this challenge, and metal-organic frameworks (MOFs) are considered to be a promising class of materials for this purpose. It is important to consider the co-adsorption of water when designing materials for CO2 capture from post-combustion flue gases. Computational high-throughput screening (HTS) is a powerful tool to identify top-performing candidates for a particular application from a large material database. Using a multi-scale modeling strategy that includes a machine learning model, density functional theory (DFT) calculations, force field (FF) optimization, and grand canonical Monte Carlo (GCMC) simulations, we carried out a systematic computational HTS of the all-solvent-removed version of the computation-ready experimental metal-organic framework (CoRE-MOF-2019) database for selective adsorption of CO2 from a wet flue gas mixture. After initial screening based on the pore diameters, a total of 3703 unique MOFs from the database were considered for screening based on the FF interaction energies of CO2, N2, and H2O molecules with the MOFs. MOFs showing stronger interactions with CO2 compared to that with H2O and N2 were considered for the next level of screening based on the interaction energies calculated from DFT. CO2-selective MOFs from DFT screening were further screened using two-component (CO2 and N2) and finally three-component (CO2, N2, and H2O) GCMC simulations to predict the CO2 capacity and CO2/N2 selectivity. Our screening study identified MOFs that show selective CO2 adsorption under wet flue gas conditions with significant CO2 uptake capacity and CO2/N2 selectivity in the presence of water vapor. We also analyzed the nature of pore confinements responsible for the observed CO2 selectivity.
Collapse
Affiliation(s)
- Srinivasu Kancharlapalli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
37
|
Huynh NTX, Le OK, Dung TP, Chihaia V, Son DN. Theoretical investigation of CO 2 capture in the MIL-88 series: effects of organic linker modification. RSC Adv 2023; 13:15606-15615. [PMID: 37228675 PMCID: PMC10204073 DOI: 10.1039/d3ra01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
CO2 capture is a crucial strategy to mitigate global warming and protect a sustainable environment. Metal-organic frameworks with large surface area, high flexibility, and reversible adsorption and desorption of gases are good candidates for CO2 capture. Among the synthesized metal-organic frameworks, the MIL-88 series has attracted our attention due to their excellent stability. However, a systematic investigation of CO2 capture in the MIL-88 series with different organic linkers is not available. Therefore, we clarified the topic via two sections: (1) elucidate physical insights into the CO2@MIL-88 interaction by van der Waals-dispersion correction density functional theory calculations, and (2) quantitatively study the CO2 capture capacity by grand canonical Monte Carlo simulations. We found that the 1πg, 2σu/1πu, and 2σg peaks of the CO2 molecule and the C and O p orbitals of the MIL-88 series are the predominant contributors to the CO2@MIL-88 interaction. The MIL-88 series, i.e., MIL-88A, B, C, and D, has the same metal oxide node but different organic linkers: fumarate (MIL-88A), 1,4-benzene-dicarboxylate (MIL-88B), 2,6-naphthalene-dicarboxylate (MIL-88C), and 4,4'-biphenyl-dicarboxylate (MIL-88D). The results exhibited that fumarate should be the best replacement for both the gravimetric and volumetric CO2 uptakes. We also pointed out a proportional relationship between the capture capacities with electronic properties and other parameters.
Collapse
Affiliation(s)
- Nguyen Thi Xuan Huynh
- Faculty of Natural Sciences, Quy Nhon University 170 An Duong Vuong Quy Nhon City Binh Dinh Province Vietnam
| | - Ong Kim Le
- Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City Vietnam
| | - Tran Phuong Dung
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City Vietnam
- Department of Chemistry, University of Science Ho Chi Minh City Vietnam
| | - Viorel Chihaia
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy Splaiul Independentei 202, Sector 6 060021 Bucharest Romania
| | - Do Ngoc Son
- Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City Vietnam
| |
Collapse
|
38
|
Kirchhoff B, Jung C, Gaissmaier D, Braunwarth L, Fantauzzi D, Jacob T. In silico characterization of nanoparticles. Phys Chem Chem Phys 2023; 25:13228-13243. [PMID: 37161752 DOI: 10.1039/d3cp01073b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanoparticles (NPs) make for intriguing heterogeneous catalysts due to their large active surface area and excellent and often size-dependent catalytic properties that emerge from a multitude of chemically different surface reaction sites. NP catalysts are, in principle, also highly tunable: even small changes to the NP size or surface facet composition, doping with heteroatoms, or changes of the supporting material can significantly alter their physicochemical properties. Because synthesis of size- and shape-controlled NP catalysts is challenging, the ability to computationally predict the most favorable NP structures for a catalytic reaction of interest is an in-demand skill that can help accelerate and streamline the material optimization process. Fundamentally, simulations of NP model systems present unique challenges to computational scientists. Not only must considerable methodological hurdles be overcome in performing calculations with hundreds to thousands of atoms while retaining appropriate accuracy to be able to probe the desired properties. Also, the data generated by simulations of NPs are typically more complex than data from simulations of, for example, single crystal surface models, and therefore often require different data analysis strategies. To this end, the present work aims to review analytical methods and data analysis strategies that have proven useful in extracting thermodynamic trends from NP simulations.
Collapse
Affiliation(s)
- Björn Kirchhoff
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Daniel Gaissmaier
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Laura Braunwarth
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Donato Fantauzzi
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
39
|
Oliveira FL, Cleeton C, Neumann Barros Ferreira R, Luan B, Farmahini AH, Sarkisov L, Steiner M. CRAFTED: An exploratory database of simulated adsorption isotherms of metal-organic frameworks. Sci Data 2023; 10:230. [PMID: 37081024 PMCID: PMC10119274 DOI: 10.1038/s41597-023-02116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
Grand Canonical Monte Carlo is an important method for performing molecular-level simulations and assisting the study and development of nanoporous materials for gas capture applications. These simulations are based on the use of force fields and partial charges to model the interaction between the adsorbent molecules and the solid framework. The choice of the force field parameters and partial charges can significantly impact the results obtained, however, there are very few databases available to support a comprehensive impact evaluation. Here, we present a database of simulations of CO2 and N2 adsorption isotherms on 690 metal-organic frameworks taken from the CoRE MOF 2014 database. We performed simulations with two force fields (UFF and DREIDING), six partial charge schemes (no charges, Qeq, EQeq, MPNN, PACMOF, and DDEC), and three temperatures (273, 298, 323 K). The resulting isotherms compose the Charge-dependent, Reproducible, Accessible, Forcefield-dependent, and Temperature-dependent Exploratory Database (CRAFTED) of adsorption isotherms.
Collapse
Affiliation(s)
- Felipe Lopes Oliveira
- IBM Research, Av. República do Chile, 330, CEP 20031-170, Rio de Janeiro, RJ, Brazil
- Department of Organic Chemistry, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Conor Cleeton
- Department of Chemical Engineering, Engineering A, the University of Manchester, Manchester, M13 9PL, United Kingdom
| | | | - Binquan Luan
- IBM Research, 1101 Kitchawan Road, Yorktown Heights, 10598, NY, United States of America
| | - Amir H Farmahini
- Department of Chemical Engineering, Engineering A, the University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Lev Sarkisov
- Department of Chemical Engineering, Engineering A, the University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Mathias Steiner
- IBM Research, Av. República do Chile, 330, CEP 20031-170, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
40
|
Shivanna M, Zheng JJ, Ray KG, Lto S, Ashitani H, Kubota Y, Kawaguchi S, Stavila V, Yao MS, Fujikawa T, Otake KI, Kitagawa S. Selective sorption of oxygen and nitrous oxide by an electron donor-incorporated flexible coordination network. Commun Chem 2023; 6:62. [PMID: 37016050 PMCID: PMC10073098 DOI: 10.1038/s42004-023-00853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
Incorporating strong electron donor functionality into flexible coordination networks is intriguing for sorption applications due to a built-in mechanism for electron-withdrawing guests. Here we report a 2D flexible porous coordination network, [Ni2(4,4'-bipyridine)(VTTF)2]n(1) (where H2VTTF = 2,2'-[1,2-bis(4-benzoic acid)-1,2ethanediylidene]bis-1,3-benzodithiole), which exhibits large structural deformation from the as-synthesized or open phase (1α) into the closed phase (1β) after guest removal, as demonstrated by X-ray and electron diffraction. Interestingly, upon exposure to electron-withdrawing species, 1β reversibly undergoes guest accommodation transitions; 1α⊃O2 (90 K) and 1α⊃N2O (185 K). Moreover, the 1β phase showed exclusive O2 sorption over other gases (N2, Ar, and CO) at 120 K. The phase transformations between the 1α and 1β phases under these gases were carefully investigated by in-situ X-ray diffraction, in-situ spectroscopic studies, and DFT calculations, validating that the unusual sorption was attributed to the combination of flexible frameworks and VTTF (electron-donor) that induces strong interactions with electron-withdrawing species.
Collapse
Affiliation(s)
- Mohana Shivanna
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jia-Jia Zheng
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Keith G Ray
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Sho Lto
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Hirotaka Ashitani
- Department of Physics, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yoshiki Kubota
- Department of Physics, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Department of Physical Science, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | | | - Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takao Fujikawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
41
|
Deraet X, Turek J, Alonso M, Tielens F, Weckhuysen BM, Calatayud M, De Proft F. Understanding the Reactivity of Supported Late Transition Metals on a Bare Anatase (101) Surface: A Periodic Conceptual DFT Investigation. Chemphyschem 2023; 24:e202200785. [PMID: 36401599 DOI: 10.1002/cphc.202200785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Indexed: 11/21/2022]
Abstract
The rapidly growing interest for new heterogeneous catalytic systems providing high atomic efficiency along with high stability and reactivity triggered an impressive progress in the field of single-atom catalysis. Nevertheless, unravelling the factors governing the interaction strength between the support and the adsorbed metal atoms remains a major challenge. Based on periodic density functional theory (DFT) calculations, this paper provides insight into the adsorption of single late transition metals on a defect-free anatase surface. The obtained adsorption energies fluctuate, with the exception of Pd, between -3.11 and -3.80 eV and are indicative of a strong interaction. Depending on the considered transition metal, we could attribute the strength of this interaction with the support to i) an electron transfer towards anatase (Ru, Rh, Ni), ii) s-d orbital hybridisation effects (Pt), or iii) a synergistic effect between both factors (Fe, Co, Os, Ir). The driving forces behind the adsorption were also found to be strongly related to Klechkowsky's rule for orbital filling. In contrast, the deviating behaviour of Pd is most likely associated with the lower dissociation enthalpy of the Pd-O bond. Additionally, the reactivity of these systems was evaluated using the Fermi weighted density of states approach. The resulting softness values can be clearly related to the electron configuration of the catalytic systems as well as with the net charge on the transition metal. Finally, these indices were used to construct a model that predicts the adsorption strength of CO on these anatase-supported d-metal atoms. The values obtained from this regression model show, within a 95 % probability interval, a correlation of 84 % with the explicitly calculated CO adsorption energies.
Collapse
Affiliation(s)
- Xavier Deraet
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| | - Jan Turek
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| | - Mercedes Alonso
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| | - Frederik Tielens
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Monica Calatayud
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 75005, Paris, France
| | - Frank De Proft
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050, Brussels, Belgium
| |
Collapse
|
42
|
A theoretical study of the functionalized carbon dots surfaces binding with silver nanostructures. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
43
|
Kruchinin R, Diéguez O. Carbon Dioxide Reduction on Transition Metal Dichalcogenides with Ni and Cu Edge Doping: A Density-Functional Theory Study. Chemphyschem 2023; 24:e202200765. [PMID: 36825670 DOI: 10.1002/cphc.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Transition-metal dichalcogenides (TMDs) have promising properties for their use as catalysts of CO2 reduction to methane via the Sabatier reaction. In this article we use density-functional theory calculations to gain insight into the energetics of this reaction for Mo/W-based and S/Se-based TMDs with non-, Ni- and Cu-doping. We show that sulfur-based TMDs with Ni/Cu doping exhibit better indicators for catalytic performance of the CO2 reduction reaction than non-doped and doped TMDs without active sites. In addition, the role of the transition metal was found to a much smaller influence in the reaction than the role of the chalcogen and dopant atoms, which influence the bonding strength and type, respectively.
Collapse
Affiliation(s)
- Ronen Kruchinin
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Oswaldo Diéguez
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| |
Collapse
|
44
|
Feng X, Bu K, Liu T, Guo S, Sun Z, Fu T, Xu Y, Liu K, Yang S, Zhao Y, Li H, Lü X, Zhai T. Giant Tunability of Charge Transport in 2D Inorganic Molecular Crystals by Pressure Engineering. Angew Chem Int Ed Engl 2023; 62:e202217238. [PMID: 36461902 DOI: 10.1002/anie.202217238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
The unique intermolecular van der Waals force in emerging two-dimensional inorganic molecular crystals (2DIMCs) endows them with highly tunable structures and properties upon applying external stimuli. Using high pressure to modulate the intermolecular bonding, here we reveal the highly tunable charge transport behavior in 2DIMCs for the first time, from an insulator to a semiconductor. As pressure increases, 2D α-Sb2 O3 molecular crystal undergoes three isostructural transitions, and the intermolecular bonding enhances gradually, which results in a considerably decreased band gap by 25 % and a greatly enhanced charge transport. Impressively, the in situ resistivity measurement of the α-Sb2 O3 flake shows a sharp drop by 5 orders of magnitude in 0-3.2 GPa. This work sheds new light on the manipulation of charge transport in 2DIMCs and is of great significance for promoting the fundamental understanding and potential applications of 2DIMCs in advanced modern technologies.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Teng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tonghuan Fu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Yongshan Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
45
|
Rosen AS, Vijay S, Persson KA. Free-atom-like d states beyond the dilute limit of single-atom alloys. Chem Sci 2023; 14:1503-1511. [PMID: 36794204 PMCID: PMC9906637 DOI: 10.1039/d2sc05772g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Through a data-mining and high-throughput density functional theory approach, we identify a diverse range of metallic compounds that are predicted to have transition metals with "free-atom-like" d states that are highly localized in terms of their energetic distribution. Design principles that favor the formation of localized d states are uncovered, among which we note that site isolation is often necessary but that the dilute limit, as in most single-atom alloys, is not a pre-requisite. Additionally, the majority of localized d state transition metals identified from the computational screening study exhibit partial anionic character due to charge transfer from neighboring metal species. Using CO as a representative probe molecule, we show that localized d states for Rh, Ir, Pd, and Pt tend to reduce the binding strength of CO compared to their pure elemental analogues, whereas this does not occur as consistently for the Cu binding sites. These trends are rationalized through the d-band model, which suggests that the significantly reduced d-band width results in an increased orthogonalization energy penalty upon CO chemisorption. With the multitude of inorganic solids that are predicted to have highly localized d states, the results of the screening study are likely to result in new avenues for heterogeneous catalyst design from an electronic structure perspective.
Collapse
Affiliation(s)
- Andrew S. Rosen
- Department of Materials Science and Engineering, University of California, BerkeleyBerkeleyCalifornia94720USA,Miller Institute for Basic Research in Science, University of California, BerkeleyBerkeleyCalifornia 94720USA,Materials Science Division, Lawrence Berkeley National LaboratoryBerkeleyCalifornia 94720USA
| | - Sudarshan Vijay
- Department of Materials Science and Engineering, University of California, BerkeleyBerkeleyCalifornia94720USA,Materials Science Division, Lawrence Berkeley National LaboratoryBerkeleyCalifornia 94720USA
| | - Kristin A. Persson
- Department of Materials Science and Engineering, University of California, BerkeleyBerkeleyCalifornia94720USA,Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyCalifornia 94720USA
| |
Collapse
|
46
|
Peters LDM, Culpitt T, Tellgren EI, Helgaker T. Berry Population Analysis: Atomic Charges from the Berry Curvature in a Magnetic Field. J Chem Theory Comput 2023; 19:1231-1242. [PMID: 36705605 PMCID: PMC9979605 DOI: 10.1021/acs.jctc.2c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Berry curvature is essential in Born-Oppenheimer molecular dynamics, describing the screening of the nuclei by the electrons in a magnetic field. Parts of the Berry curvature can be understood as the external magnetic field multiplied by an effective charge so that the resulting Berry force behaves like a Lorentz force during the simulations. Here, we investigate whether these effective charges can provide insight into the electronic structure of a given molecule or, in other words, whether we can perform a population analysis based on the Berry curvature. To develop our approach, we first rewrite the Berry curvature in terms of charges that partially capture the effective charges and their dependencies on the nuclear velocities. With these Berry charges and charge fluctuations, we then construct our population analysis yielding atomic charges and overlap populations. Calculations at the Hartree-Fock level reveal that the atomic charges are similar to those obtained from atomic polar tensors. However, since we additionally obtain an estimate for the fluctuations of the charges and a partitioning of the atomic charges into contributions from all atoms, we conclude that the Berry population analysis is a useful alternative tool to analyze the electronic structures of molecules.
Collapse
|
47
|
Ignatov SK, Masunov AE. Unexpected polarization properties of sub-nanosized magnesium clusters. RSC Adv 2023; 13:4065-4076. [PMID: 36756583 PMCID: PMC9890678 DOI: 10.1039/d2ra08086a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
The isotropic electrostatic polarizability (IEP) of sub-nanosized magnesium clusters Mg2-Mg32 was studied in an extensive set comprising 1237 structurally unique isomers. These isomers were found in the course of the global search for the potential energy surface minima of the magnesium clusters at the BP86/6-31G(d) level. The calculation of the polarizability at the same DFT level reveals an unexpected property of the IEP: the linear correlation between the polarizability of the most favorable isomers (and only them) and the cluster nuclearity n. Moreover, for each n, the most stable cluster isomer demonstrates nearly minimal IEP value among all found isomers of a given nuclearity. Surprisingly, these observed features are independent of the cluster structures which are quite different. We hypothesize that the energetic favorability of a cluster structure is related to their low polarizability. Apparently, the atoms forming the cluster tend to arrange themselves in such a way as to provide the most compact distribution of the cluster electron density. A possible explanation of the observed trends, their significance for cluster structure prediction, and the practical applications are discussed.
Collapse
Affiliation(s)
- Stanislav K Ignatov
- Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod 603950 Russia
| | - Artëm E Masunov
- NanoScience Technology Center, University of Central Florida Orlando Florida 32826 USA
- School of Modeling, Simulations and Training, University of Central Florida Orlando Florida 32826 USA
- South Ural State University (National Research University) Chelyabinsk Russia
| |
Collapse
|
48
|
Goncharov AV, Chibisov CA. Effect of External Pressure and Quantum State on the Local Magnetization of Germanium Layers: Ab Initio Calculation. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Aleksei Vasilievich Goncharov
- Laboratory for Modeling of Quantum Processes Pacific National University 136 Tikhookeanskaya St. Khabarovsk 680033 Russia
| | - Chibisov Andrey Chibisov
- Computing Center Far Eastern Branch of the Russian Academy of Sciences 65 Kim Yu Chen St. Khabarovsk 680000 Russia
| |
Collapse
|
49
|
Guha S, Kabiraj A, Mahapatra S. Discovery of Clustered-P1 Borophene and Its Application as the Lightest High-Performance Transistor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3182-3191. [PMID: 36622780 DOI: 10.1021/acsami.2c20055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The two-dimensional network of boron atoms (borophene) has attracted attention for its ultralow molar mass and remarkable polymorphism. Synthesized polymorphs of borophene (striped, β12, χ3, and honeycomb), so far, are all found to be metallic. Employing a genetic algorithm-based structure searching technique, here we discover an allotrope, clustered-P1, which is located very close to the global energy minimum. Clustered-P1 exhibits a bulk silicon-like band gap (1.08 eV) with symmetric effective masses (∼0.2 m0) for electrons and holes along the transport direction. Phonon dispersion and beyond room-temperature ab initio molecular dynamics studies further confirm its excellent dynamic and structural stability. Since two-dimensional semiconductors are promising silicon alternatives for complementary metal-oxide semiconductor (CMOS) technology extension, we further investigate the characteristics of clustered-P1-based transistors using self-consistent quantum transport models for channel lengths of 10-3 nm. The performance of these devices has been found to be balanced for p- and n-type transistors and meets the requirements of the International Roadmap for Devices and Systems (IRDS). Our study may aid in the experimental realization of the lightest high-performance transistor.
Collapse
Affiliation(s)
- Sirsha Guha
- Nano-Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science (IISc) Bangalore, Bangalore560012, India
| | - Arnab Kabiraj
- Nano-Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science (IISc) Bangalore, Bangalore560012, India
| | - Santanu Mahapatra
- Nano-Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science (IISc) Bangalore, Bangalore560012, India
| |
Collapse
|
50
|
Jamdade S, Gurnani R, Fang H, Boulfelfel SE, Ramprasad R, Sholl DS. Identifying High-Performance Metal–Organic Frameworks for Low-Temperature Oxygen Recovery from Helium by Computational Screening. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shubham Jamdade
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Rishi Gurnani
- School of Material Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Hanjun Fang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Salah Eddine Boulfelfel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Rampi Ramprasad
- School of Material Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - David S. Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|