1
|
Daniel J, Satheesh AP, Kartha Kalathil K. Self-Assembly of Discrete Multi-Chromophoric Systems. Chemistry 2024; 30:e202401278. [PMID: 38803092 DOI: 10.1002/chem.202401278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Self-assembly of chromophoric systems is a prerequisite to create well-ordered, processable nanomaterials with multiple functionalities. In the past two decades, the field of functional organic materials has primarily focused on systems featuring only one type of dye/π-conjugated unit. Consequently, many reports with mechanistic insights on the self-assembly of the dyes featuring different molecular packing have been reported. Subsequently, we have witnessed several attempts to organize the multi-chromophoric systems in solution and solid-state via different approaches using self-assembly as a tool. Incorporation of more than one dye is important in creating materials with tuneable optoelectronic properties. Consequently, self-assembly of more than one chromophoric systems have been investigated to some extent. This review aims to discuss the self-assembled materials derived from discrete π-conjugated systems comprising more than one dye units connected through covalent bonding (multi-chromophoric systems). Molecular design of various multi-chromophoric systems leading to the formation of crystals, liquid crystals and supramolecular polymers have been correlated with corresponding properties. We envisage that classification of self-assembled multi-chromophoric systems, with a note on tuneable optoelectronic properties, can provide a deeper understanding on the molecular design strategies, which is important in the fabrication of functional organic materials with optimum performances.
Collapse
Affiliation(s)
- Jomol Daniel
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, 686560, Kottayam, Kerala, India
| | - Ashwin P Satheesh
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, 686560, Kottayam, Kerala, India
| | - Krishnan Kartha Kalathil
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, 686560, Kottayam, Kerala, India
| |
Collapse
|
2
|
Zhu M, Chen M, Guo H, Yang F. Fluorescein-bridged Perylene Bisimide Dimer for Use as Liquid Crystal: Studies on Mesomorphic and Fluorescence Properties. J Fluoresc 2021; 31:1555-1565. [PMID: 34338968 DOI: 10.1007/s10895-021-02793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
A novel fluorescein-bridged perylene bisimide (PBI) dimer for liquid crystal (LC) with geometrically symmetric structure was developed. The mesomorphic results indicated that the energetically stable and unstable conformers of fluorescein fragments could lead to the transformation of mesophases from a hexagonal columnar mesophase to an uncertain phase at 136.9 °C in heating, whilst a stable hexagonal columnar mesophase maintained between 175.6 °C and 58.6 °C in cooling. The selectively excited fluorescence characters in THF solution demonstrated that the fluorescence resonance energy transfer (FRET) effect between fluorescein fragments and PBI unites could provide a means to effectively impose strong fluorescence of the dimeric PBIs modified with suitable chromophore at the N-imide position, which alternatively serves as a platform for the further study of multi-functional PBI-based LCs.
Collapse
Affiliation(s)
- Mingguang Zhu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China. .,College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China.
| | - Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Hongyu Guo
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, P. R. China
| | - Fafu Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China. .,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, P. R. China.
| |
Collapse
|
3
|
Eichhorn SH, El-Ballouli AO, Cassar A, Kaafarani BR. Columnar Mesomorphism of Board-Shaped Perylene, Diketopyrrolopyrrole, Isoindigo, Indigo, and Quinoxalino-Phenanthrophenazine Dyes. Chempluschem 2021; 86:319-339. [PMID: 33624951 DOI: 10.1002/cplu.202100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Indexed: 12/12/2022]
Abstract
The properties of organic dyes depend as much on their intermolecular interactions as on their molecular structure. While it is generally predictable what supramolecular structure would be ideal for a specific application, the generation of specific supramolecular structures by molecular design and suitable processing methods remains to be a challenge. A versatile approach to different supramolecular structures has been the application of mesomorphism in conjunction with alignment techniques and self-assembly at interfaces. Reviewed here is the columnar mesomorphism of board-shaped dyes perylene, indigo, isoindigo, diketopyrrolopyrrole, and quinoxalinophenanthrophenazine. They generate a larger number of different supramolecular structures than conventional disc-shaped (discotic) mesogens because of their non-circular shape and directional intermolecular interactions. The mesomorphism of all but the perylene derivatives is systematically and comprehensively covered for the first time.
Collapse
Affiliation(s)
- S Holger Eichhorn
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - A O El-Ballouli
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 11481, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Adam Cassar
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Bilal R Kaafarani
- Department of Chemistry, American University of Beirut, Beirut, 1107-2020, Lebanon
| |
Collapse
|
4
|
Zhu X, Hessin C, Salamé A, Sosa-Vargas L, Kreher D, Adachi C, Proust A, Mialane P, Marrot J, Bouchet A, Sliwa M, Méry S, Heinrich B, Mathevet F, Izzet G. Photoactive Organic/Inorganic Hybrid Materials with Nanosegregated Donor-Acceptor Arrays. Angew Chem Int Ed Engl 2021; 60:8419-8424. [PMID: 33448550 DOI: 10.1002/anie.202014319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/14/2021] [Indexed: 11/07/2022]
Abstract
The synthesis of the first mesogenic donor-acceptor polyoxometalate (POM)-based hybrid is herein described. The structural and electronic properties of the hybrid compound were evaluated through combination of small- and wide-angle X-ray scattering, optical microscopy, electrochemistry and photoluminescence. In the solid state, the compound behaves as a birefringent solid, displaying a lamellar organization in which double-layers of POMs and bis(thiophene)thienothiophene organic donors alternate regularly. Noticeably, the sub-unit organizations in the composite are similar to that observed for the individual POM and organic donor precursors. Photophysical studies show that in the hybrid, the fluorescence of the organic donor unit is considerably quenched both in solution and in the solid state, which is attributed to occurrence of intramolecular charge-separated state.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Cheriehan Hessin
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Aude Salamé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Lydia Sosa-Vargas
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - David Kreher
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Anna Proust
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Pierre Mialane
- Université de Versailles Saint-Quentin en Yvelines, Institut Lavoisier Versailles, Université Paris Saclay, UMR CNRS 8180, 78035, Versailles cedex, France
| | - Jérome Marrot
- Université de Versailles Saint-Quentin en Yvelines, Institut Lavoisier Versailles, Université Paris Saclay, UMR CNRS 8180, 78035, Versailles cedex, France
| | - Aude Bouchet
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000, Lille, France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000, Lille, France
| | - Stéphane Méry
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR, 7504, Strasbourg, France
| | - Benoît Heinrich
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR, 7504, Strasbourg, France
| | - Fabrice Mathevet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France.,Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
5
|
Zhu X, Hessin C, Salamé A, Sosa‐Vargas L, Kreher D, Adachi C, Proust A, Mialane P, Marrot J, Bouchet A, Sliwa M, Méry S, Heinrich B, Mathevet F, Izzet G. Photoactive Organic/Inorganic Hybrid Materials with Nanosegregated Donor–Acceptor Arrays. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaolei Zhu
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Cheriehan Hessin
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Aude Salamé
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Lydia Sosa‐Vargas
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - David Kreher
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University Fukuoka Japan
| | - Anna Proust
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Pierre Mialane
- Université de Versailles Saint-Quentin en Yvelines Institut Lavoisier Versailles Université Paris Saclay UMR CNRS 8180 78035 Versailles cedex France
| | - Jérome Marrot
- Université de Versailles Saint-Quentin en Yvelines Institut Lavoisier Versailles Université Paris Saclay UMR CNRS 8180 78035 Versailles cedex France
| | - Aude Bouchet
- Univ. Lille CNRS, UMR 8516 LASIRE LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement 59000 Lille France
| | - Michel Sliwa
- Univ. Lille CNRS, UMR 8516 LASIRE LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement 59000 Lille France
| | - Stéphane Méry
- Université de Strasbourg CNRS Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 Strasbourg France
| | - Benoît Heinrich
- Université de Strasbourg CNRS Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 Strasbourg France
| | - Fabrice Mathevet
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University Fukuoka Japan
| | - Guillaume Izzet
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| |
Collapse
|
6
|
Lee KJ, Beyreuther E, Jalil SA, Kim SJ, Eng LM, Guo C, André P. Optical-field driven charge-transfer modulations near composite nanostructures. Nat Commun 2020; 11:6150. [PMID: 33262344 PMCID: PMC7708636 DOI: 10.1038/s41467-020-19423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022] Open
Abstract
Optical activation of material properties illustrates the potentials held by tuning light-matter interactions with impacts ranging from basic science to technological applications. Here, we demonstrate for the first time that composite nanostructures providing nonlocal environments can be engineered to optically trigger photoinduced charge-transfer-dynamic modulations in the solid state. The nanostructures explored herein lead to out-of-phase behavior between charge separation and recombination dynamics, along with linear charge-transfer-dynamic variations with the optical-field intensity. Using transient absorption spectroscopy, up to 270% increase in charge separation rate is obtained in organic semiconductor thin films. We provide evidence that composite nanostructures allow for surface photovoltages to be created, which kinetics vary with the composite architecture and last beyond optical pulse temporal characteristics. Furthermore, by generalizing Marcus theory framework, we explain why charge-transfer-dynamic modulations can only be unveiled when optic-field effects are enhanced by nonlocal image-dipole interactions. Our demonstration, that composite nanostructures can be designed to take advantage of optical fields for tuneable charge-transfer-dynamic remote actuators, opens the path for their use in practical applications ranging from photochemistry to optoelectronics. Controlling and modulating charge transfer dynamics in composite nanostructures, though promising for optoelectronic applications, remains a challenge. Here, the authors report optical control of charge separation and recombination processes in organic semiconductor-based composite nanostructures.
Collapse
Affiliation(s)
- Kwang Jin Lee
- The Institute of Optics, University of Rochester, Rochester, New York, USA. .,Department of Physics, Ewha Womans University, Seoul, South Korea. .,CNRS-Ewha International Research Center, Ewha Womans University, Seoul, South Korea.
| | - Elke Beyreuther
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden, Germany
| | - Sohail A Jalil
- The Institute of Optics, University of Rochester, Rochester, New York, USA.,Changchun Institute of Optics, Fine Mechanics, and Physics, Changchun, China
| | | | - Lukas M Eng
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden, Germany
| | - Chunlei Guo
- The Institute of Optics, University of Rochester, Rochester, New York, USA.
| | - Pascal André
- CNRS-Ewha International Research Center, Ewha Womans University, Seoul, South Korea. .,Laboratoire des Multimatériaux et Interfaces, Université Claude Bernard Lyon 1, UMR CNRS 5615, Villeurbanne, France. .,RIKEN, Wako, Japan.
| |
Collapse
|
7
|
Abstract
In addition to the underlying basic concepts and early recognition of halogen bonding, this paper reviews the conflicting views that consistently appear in the area of noncovalent interactions and the ability of covalently bonded halogen atoms in molecules to participate in noncovalent interactions that contribute to packing in the solid-state. It may be relatively straightforward to identify Type-II halogen bonding between atoms using the conceptual framework of σ-hole theory, especially when the interaction is linear and is formed between the axial positive region (σ-hole) on the halogen in one monomer and a negative site on a second interacting monomer. A σ-hole is an electron density deficient region on the halogen atom X opposite to the R–X covalent bond, where R is the remainder part of the molecule. However, it is not trivial to do so when secondary interactions are involved as the directionality of the interaction is significantly affected. We show, by providing some specific examples, that halogen bonds do not always follow the strict Type-II topology, and the occurrence of Type-I and -III halogen-centered contacts in crystals is very difficult to predict. In many instances, Type-I halogen-centered contacts appear simultaneously with Type-II halogen bonds. We employed the Independent Gradient Model, a recently proposed electron density approach for probing strong and weak interactions in molecular domains, to show that this is a very useful tool in unraveling the chemistry of halogen-assisted noncovalent interactions, especially in the weak bonding regime. Wherever possible, we have attempted to connect some of these results with those reported previously. Though useful for studying interactions of reasonable strength, IUPAC’s proposed “less than the sum of the van der Waals radii” criterion should not always be assumed as a necessary and sufficient feature to reveal weakly bound interactions, since in many crystals the attractive interaction happens to occur between the midpoint of a bond, or the junction region, and a positive or negative site.
Collapse
|
8
|
Gupta RK, Sudhakar AA. Perylene-Based Liquid Crystals as Materials for Organic Electronics Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2455-2479. [PMID: 29929366 DOI: 10.1021/acs.langmuir.8b01081] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Columnar phases formed by the stacking of disclike molecules with an intimate π-π overlap forms a 1D pathway for the anisotropic charge migration along the columns. Columnar phases have great potential in organic electronic devices to be utilized as active semiconducting layers in comparison to organic single crystals or amorphous polymers in terms of processability, ease of handling, and high charge carrier mobility. Intelligent molecular engineering of perylene and its derivatives provided access to tune the physical properties and self-assembly behavior. The columnar phase formed by perylene derivatives has great potential in the fabrication of organic electronic devices. There are several positions on the perylene molecule, which can be functionalized to tune its self-assembly, as well as optoelectronic properties. Thus, many liquid-crystalline molecules stabilizing the columnar phase, which are based on perylene tetraesters, perylene diester imides, and perylene bisimides, have been synthesized over the years. Their longitudinal and laterally extended derivatives, bay-substituted derivatives exhibiting a columnar phase, are reported. In addition, several liquid-crystalline oligomers and polymers based on perylene derivatives were also reported. All such modifications provide an option to tune the energy levels of frontier molecular orbitals with respect to the work function of the electrodes in devices and also the processability of such materials. In this feature article, we attempt to provide an overview of the molecular design developed to tune the applicable properties and self-assembly of perylene derivatives as well as recent developments related to their application in the fabrication of organic solar cells, organic light-emitting diodes, and organic field-effect transistors.
Collapse
Affiliation(s)
- Ravindra Kumar Gupta
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam , India
| | | |
Collapse
|
9
|
Molecular assembly of PC70BM with a designed monoporphyrin: Spectroscopic investigation in solution and theoretical calculations. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Phulwale BV, Mishra SK, Mazal C. Synthesis and properties of π-conjugated donor–acceptor macrocycles derived from phenanthrylene building blocks. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Kong X, Gong H, Dai S, Yao W, Mu L, Zhang S, Wang G. Mesogenic complementary absorbing dyads based on porphyrin and perylene units. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Five novel dyads, consisting of a tetraphenylporphyrine unit connected to a perylene monoimide diester unit via a flexible bridge -CONH-(CH[Formula: see text]- (n [Formula: see text] 4, 6, 8, 10 and 12), have been synthesized. Their structures were characterized by [Formula: see text]C and [Formula: see text]H nuclear magnetic resonance spectroscopy, infrared spectroscopy, mass spectrometry and elemental analysis. The UV-vis absorption spectra revealed these dyads have broad optical absorption in the ultraviolet and visible regions due to the complementary absorption of the two units. The differential scanning calorimetry traces and polarized optical microscopy textures showed all these dyads have columnar liquid crystal phases. Cyclic voltammetry revealed the highest occupied molecular orbitals of the dyads located on the porphyrin units, and the lowest unoccupied molecular orbitals located on the perylene units. In addition, these results were in agreement with that of the theoretical modeling. When excited at 423 or 473 nm, the photoluminescent emission spectra showed that the degree of fluorescence quenching of porphyrin units increased as the spacers became shorter. This quenching was ascribed to intramolecular photoinduced electron transfer, which also induced the dyad molecules to form the charge-separated states. The charge-separated molecules were further confirmed by the photocurrent response curves. These behaviors of broad absorption of the ultraviolet-visible light, yielding the charge-separated states of the molecules when excited and the formation of columnar liquid crystal phase made these dyads candidates for single-component photovoltaic active materials.
Collapse
Affiliation(s)
- Xiangfei Kong
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Jian’gan Road No. 12, Guilin 541006, China
| | - Hongkang Gong
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Jian’gan Road No. 12, Guilin 541006, China
| | - Shengping Dai
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Jian’gan Road No. 12, Guilin 541006, China
| | - Wei Yao
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Jian’gan Road No. 12, Guilin 541006, China
| | - Linping Mu
- School of Physics and Information Engineering, Shanxi Normal University, Gongyuan Avenue No. 1, Linfen 041004, China
| | - Shufen Zhang
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Jian’gan Road No. 12, Guilin 541006, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, China
| | - Guixia Wang
- College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Jian’gan Road No. 12, Guilin 541006, China
| |
Collapse
|
12
|
Kong X, Gong H, Liu P, Yao W, Liu Z, Wang G, Zhang S, He Z. Synthesis and investigation on optoelectronic properties of mesogenic triphenylene–perylene dyads linked by ethynylphenyl bridges. NEW J CHEM 2018. [DOI: 10.1039/c7nj04328g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Columnar mesogenic dyads consisting of triphenylene and perylene units are a novel kind of single-component photovoltaic materials.
Collapse
Affiliation(s)
- Xiangfei Kong
- College of Chemistry and Bioengineering
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- Guilin University of Technology
- Guilin 541004
- China
| | - Hongkang Gong
- College of Chemistry and Bioengineering
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- Guilin University of Technology
- Guilin 541004
- China
| | - Peng Liu
- College of Chemistry and Bioengineering
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- Guilin University of Technology
- Guilin 541004
- China
| | - Wei Yao
- College of Chemistry and Bioengineering
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- Guilin University of Technology
- Guilin 541004
- China
| | - Zheng Liu
- College of Chemistry and Bioengineering
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- Guilin University of Technology
- Guilin 541004
- China
| | - Guixia Wang
- College of Chemistry and Bioengineering
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- Guilin University of Technology
- Guilin 541004
- China
| | - Shufen Zhang
- College of Chemistry and Bioengineering
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- Guilin University of Technology
- Guilin 541004
- China
| | - Zhiqun He
- Key Laboratory of Luminescence and Optical Information
- Ministry of Education
- Institute of Optoelectronic Technology
- Beijing Jiaotong University
- Beijing 100044
| |
Collapse
|
13
|
Lee KJ, Xiao Y, Woo JH, Kim E, Kreher D, Attias AJ, Mathevet F, Ribierre JC, Wu JW, André P. Charge-transfer dynamics and nonlocal dielectric permittivity tuned with metamaterial structures as solvent analogues. NATURE MATERIALS 2017; 16:722-729. [PMID: 28581481 DOI: 10.1038/nmat4907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Charge transfer (CT) is a fundamental and ubiquitous mechanism in biology, physics and chemistry. Here, we evidence that CT dynamics can be altered by multi-layered hyperbolic metamaterial (HMM) substrates. Taking triphenylene:perylene diimide dyad supramolecular self-assemblies as a model system, we reveal longer-lived CT states in the presence of HMM structures, with both charge separation and recombination characteristic times increased by factors of 2.4 and 1.7-that is, relative variations of 140 and 73%, respectively. To rationalize these experimental results in terms of driving force, we successfully introduce image dipole interactions in Marcus theory. The non-local effect herein demonstrated is directly linked to the number of metal-dielectric pairs, can be formalized in the dielectric permittivity, and is presented as a solid analogue to local solvent polarity effects. This model and extra PH3T:PC60BM results show the generality of this non-local phenomenon and that a wide range of kinetic tailoring opportunities can arise from substrate engineering. This work paves the way toward the design of artificial substrates to control CT dynamics of interest for applications in optoelectronics and chemistry.
Collapse
Affiliation(s)
- Kwang Jin Lee
- Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea
| | - Yiming Xiao
- Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Chimie des Polymères, 4 place Jussieu, 75005 Paris, France
| | - Jae Heun Woo
- Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea
- Center for Length, Division of Physical Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
| | - Eunsun Kim
- Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea
| | - David Kreher
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Chimie des Polymères, 4 place Jussieu, 75005 Paris, France
| | - André-Jean Attias
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Chimie des Polymères, 4 place Jussieu, 75005 Paris, France
| | - Fabrice Mathevet
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Chimie des Polymères, 4 place Jussieu, 75005 Paris, France
| | - Jean-Charles Ribierre
- Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea
| | - Jeong Weon Wu
- Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea
| | - Pascal André
- Department of Physics, CNRS-Ewha International Research Center, Ewha Womans University, Seoul 03760, South Korea
- RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|