1
|
Nunez FA, Castro ACH, de Oliveira VL, Lima AC, Oliveira JR, de Medeiros GX, Sasahara GL, Santos KS, Lanfredi AJC, Alves WA. Electrochemical Immunosensors Based on Zinc Oxide Nanorods for Detection of Antibodies Against SARS-CoV-2 Spike Protein in Convalescent and Vaccinated Individuals. ACS Biomater Sci Eng 2023; 9:458-473. [PMID: 36048716 PMCID: PMC9469957 DOI: 10.1021/acsbiomaterials.2c00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
Even after over 2 years of the COVID-19 pandemic, research on rapid, inexpensive, and accurate tests remains essential for controlling and avoiding the global spread of SARS-CoV-2 across the planet during a potential reappearance in future global waves or regional outbreaks. Assessment of serological responses for COVID-19 can be beneficial for population-level surveillance purposes, supporting the development of novel vaccines and evaluating the efficacy of different immunization programs. This can be especially relevant for broadly used inactivated whole virus vaccines, such as CoronaVac, which produced lower titers of neutralizing antibodies. and showed lower efficacy for specific groups such as the elderly and immunocompromised. We developed an impedimetric biosensor based on the immobilization of SARS-CoV-2 recombinant trimeric spike protein (S protein) on zinc oxide nanorod (ZnONR)-modified fluorine-doped tin oxide substrates for COVID-19 serology testing. Due to electrostatic interactions, the negatively charged S protein was immobilized via physical adsorption. The electrochemical response of the immunosensor was measured at each modification step and characterized by scanning electron microscopy and electrochemical techniques. We successfully evaluated the applicability of the modified ZnONR electrodes using serum samples from COVID-19 convalescent individuals, CoronaVac-vaccinated with or without positive results for SARS-CoV-2 infection, and pre-pandemic samples from healthy volunteers as controls. ELISA for IgG anti-SARS-CoV-2 spike protein was performed for comparison, and ELISA for IgG anti-RBDs of seasonal coronavirus (HCoVs) was used to test the specificity of immunosensor detection. No cross-reactivity with HCoVs was detected using the ZnONR immunosensor, and more interestingly, the sensor presented higher sensitivity when compared to negative ELISA results. The results demonstrate that the ZnONRs/spike-modified electrode displayed sensitive results for convalescents and vaccinated samples and shows excellent potential as a tool for the population's assessment and monitoring of seroconversion and seroprevalence.
Collapse
Affiliation(s)
- Freddy A. Nunez
- Centro de Ciências Naturais e Humanas,
Universidade Federal do ABC, Av. dos Estados, 5001, Santo
André, São Paulo09210-580, Brazil
| | - Ana C. H. Castro
- Centro de Ciências Naturais e Humanas,
Universidade Federal do ABC, Av. dos Estados, 5001, Santo
André, São Paulo09210-580, Brazil
| | - Vivian L. de Oliveira
- Centro de Ciências Naturais e Humanas,
Universidade Federal do ABC, Av. dos Estados, 5001, Santo
André, São Paulo09210-580, Brazil
- Laboratório de Imunologia, LIM19, Instituto do
Coração (InCor), Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo (HCFMUSP), Av. Dr. Arnaldo,
44, São Paulo, São Paulo05403-900, Brazil
| | - Ariane C. Lima
- Departamento de Clínica Médica, Disciplina
de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade
de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São
Paulo01246-903, Brazil
| | - Jamille R. Oliveira
- Departamento de Clínica Médica, Disciplina
de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade
de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São
Paulo01246-903, Brazil
| | - Giuliana X. de Medeiros
- Departamento de Clínica Médica, Disciplina
de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade
de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São
Paulo01246-903, Brazil
| | - Greyce L. Sasahara
- Laboratório de Imunologia, LIM19, Instituto do
Coração (InCor), Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo (HCFMUSP), Av. Dr. Arnaldo,
44, São Paulo, São Paulo05403-900, Brazil
| | - Keity S. Santos
- Laboratório de Imunologia, LIM19, Instituto do
Coração (InCor), Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo (HCFMUSP), Av. Dr. Arnaldo,
44, São Paulo, São Paulo05403-900, Brazil
- Departamento de Clínica Médica, Disciplina
de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade
de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São
Paulo01246-903, Brazil
| | - Alexandre J. C. Lanfredi
- Centro de Engenharia, Modelagem e Ciências
Sociais Aplicadas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo André, São Paulo09210-580,
Brazil
| | - Wendel A. Alves
- Centro de Ciências Naturais e Humanas,
Universidade Federal do ABC, Av. dos Estados, 5001, Santo
André, São Paulo09210-580, Brazil
| |
Collapse
|
2
|
Amen MT, Pham TTT, Cheah E, Tran DP, Thierry B. Metal-Oxide FET Biosensor for Point-of-Care Testing: Overview and Perspective. Molecules 2022; 27:molecules27227952. [PMID: 36432052 PMCID: PMC9698540 DOI: 10.3390/molecules27227952] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Metal-oxide semiconducting materials are promising for building high-performance field-effect transistor (FET) based biochemical sensors. The existence of well-established top-down scalable manufacturing processes enables the reliable production of cost-effective yet high-performance sensors, two key considerations toward the translation of such devices in real-life applications. Metal-oxide semiconductor FET biochemical sensors are especially well-suited to the development of Point-of-Care testing (PoCT) devices, as illustrated by the rapidly growing body of reports in the field. Yet, metal-oxide semiconductor FET sensors remain confined to date, mainly in academia. Toward accelerating the real-life translation of this exciting technology, we review the current literature and discuss the critical features underpinning the successful development of metal-oxide semiconductor FET-based PoCT devices that meet the stringent performance, manufacturing, and regulatory requirements of PoCT.
Collapse
|
3
|
Kumar PS, Sreeja BS, Gurunathan P, Kumar KK. An Efficient High-Powered Sulfamethaxazole Sensor Based on p– n Junction Heterostructures Using Nanostructured ZnO Thin Film and Graphene Oxide Sheets. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamil Nadu, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
| | - Balakrishnapillai Suseela Sreeja
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
- Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamil Nadu, India
| | - Padmalaya Gurunathan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamil Nadu, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
| | - Kungumaraj Krishna Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamil Nadu, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
| |
Collapse
|
4
|
Yu J, Kim J. Preparation of uniform gold nanoparticles of different quantity deposited on zinc oxide nanorods for photoelectrochemical water splitting. CHEMOSPHERE 2022; 287:132168. [PMID: 34826931 DOI: 10.1016/j.chemosphere.2021.132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
For the photocatalytic test, gold nanoparticles (AuNPs) were prepared using trisodium citrate dehydrate (TCD), following which they were combined on the surface of zinc oxide (ZnO) to prepare ZnO decorated with uniform AuNPs (ZnO/AuNP) photocatalysts. The photocatalytic performance with the ZnO/AuNP was estimated through the rhodamine B (RB) dye degradation under solar irradiation. ZnO/AuNP-30 showed the greatest photocatalytic performance, achieving dye degradation efficiency up to 78.65%. Photoelectrochemical (PEC) measurements were performed using the ZnO/AuNP photoanodes. With AuNP doping amounts of 10, 20, and 30 mL on the ZnO surface, photocurrent densities of 47.46, 63.74, and 68.64 mA cm-2, respectively, were achieved at an applied voltage of 1.5 V. These values indicated that the doping of AuNPs on the ZnO surface is advantageous for enhancing its PEC water-splitting activity. The highest solar-to-hydrogen (STH) efficiency is 22% with the ZnO/AuNP-30 photoanode at an applied voltage of 0.88 V. The interfacial charge-transfer resistances at the interface were 40 and 2.2 kΩ cm2 for the ZnO and ZnO/AuNP-30 photoanodes, respectively.
Collapse
Affiliation(s)
- Juyoung Yu
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 1342, Seongnam-daero, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 1342, Seongnam-daero, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
5
|
Aliyana AK, Naveen Kumar SK, Marimuthu P, Baburaj A, Adetunji M, Frederick T, Sekhar P, Fernandez RE. Machine learning-assisted ammonium detection using zinc oxide/multi-walled carbon nanotube composite based impedance sensors. Sci Rep 2021; 11:24321. [PMID: 34934086 PMCID: PMC8692315 DOI: 10.1038/s41598-021-03674-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022] Open
Abstract
We report a machine learning approach to accurately correlate the impedance variations in zinc oxide/multi walled carbon nanotube nanocomposite (F-MWCNT/ZnO-NFs) to NH4+ ions concentrations. Impedance response of F-MWCNT/ZnO-NFs nanocomposites with varying ZnO:MWCNT compositions were evaluated for its sensitivity and selectivity to NH4+ ions in the presence of structurally similar analytes. A decision-making model was built, trained and tested using important features of the impedance response of F-MWCNT/ZnO-NF to varying NH4+ concentrations. Different algorithms such as kNN, random forest, neural network, Naïve Bayes and logistic regression are compared and discussed. ML analysis have led to identify the most prominent features of an impedance spectrum that can be used as the ML predictors to estimate the real concentration of NH4+ ion levels. The proposed NH4+ sensor along with the decision-making model can identify and operate at specific operating frequencies to continuously collect the most relevant information from a system.
Collapse
Affiliation(s)
| | - S K Naveen Kumar
- Department of Electronics, Mangalore University, Mangalore, India
| | - Pradeep Marimuthu
- Rajeev Gandhi College of Engineering and Technology, Puducherry, India
| | - Aiswarya Baburaj
- Department of Electronics, Mangalore University, Mangalore, India
| | - Michael Adetunji
- Department of Engineering, Norfolk State University, Norfolk, USA
| | | | - Praveen Sekhar
- School of Engineering and Computer Science, Washington State University, Vancouver, USA
| | | |
Collapse
|
6
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
7
|
Mesoporous TiO2 Implanted ZnO QDs for the Photodegradation of Tetracycline: Material Design, Structural Characterization and Photodegradation Mechanism. Catalysts 2021. [DOI: 10.3390/catal11101205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A sol-gel method was used to prepare a mesoporous TiO2 implanted with a ZnO quantum dot photocatalyst (TZQ) for the photodegradation of tetracycline (TC) under fluorescent light irradiation. Scanning electron microscopy (SEM) shows the presence of cavities on the photocatalyst surface due to the use of starch as a synthetic template, where the nitrogen sorption results indicate that TZQ contains mesopores with reduced size (ca. 4.3 nm) versus the pore size of the parent meso-TiO2 (ca. 7.5 nm). The addition of ZnO quantum dots (QDs) resulted in spherically-shaped binary composite particles in layers onto the surface of TiO2. The coexistence of the ZnO QDs and TiO2 phase was observed using high resolution-transmission electron microscopy (HR-TEM). The photodegradation of TC was carried out in a homemade reactor equipped with two fluorescent lights (24 W each) and within 90 min of irradiation, 94.6% of TC (40 mg L−1) was photodegraded using 250 mg L−1 of TZQ at pH 9. The major reactive oxygen species identified from the scavenging tests were O2●− followed by HO●. The deconvolution of the photoluminescence spectrum of TZQ indicates the presence of a strong quantum confinement effect (QCE) of the ZnO QDs, a defect related to Ti-species and oxygen. The analysis of the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS) suggest two photodegradation pathways. The pathways were validated using the Fukui function approach and the Wheland localisation approach. This simple and efficient photocatalytic technology is anticipated to benefit small-scale animal husbandries and aquaculture operators that have limited access to sustainable water treatment technology.
Collapse
|
8
|
Mishra AK, Jarwal DK, Mukherjee B, Jit S. CuO Nanoparticles Decorated ZnO Nanorods Based Extended-Gate Field-Effect-Transistor (EGFET) for Enzyme-Free Glucose Sensing Application. IEEE Trans Nanobioscience 2021; 21:3-9. [PMID: 34520359 DOI: 10.1109/tnb.2021.3112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this work, CuO nanoparticles (NPs) decorated zinc oxide nanorods (ZnO NRs) on fluorine-doped tin oxide (FTO) substrate has been used as a working electrode. This working electrode has been used as an extended gate for field-effect transistor. The main objective is to use the EGFET (extended gate field effect transistor) as a glucose sensor. The proposed glucose sensor has good sensitivity of 6.643 mV/mM with a wide range of linearity (1mM-8mM) which covers the glucose level of human blood ranging from 4.4 mM to 6.6 mM. This novel concept of the glucose sensing using CuO NPs decorated ZnO nanorods based EGFET may be explored for sensing other saccharides such as mannose, fructose, and sucrose. This vertically grown ZnO nanorods decorated with CuO NPs based electrode gives reliable selectivity, good repeatability, and more stability. The performance of proposed sensor is also compared with commercially available glucose sensors. The sensitivity performance of the glucose sensor also confirms the capability to detect the glucose level from human blood and serum.
Collapse
|
9
|
Cao B, Gu AZ, Hong PY, Ivanek R, Li B, Wang A, Wu J. Editorial perspective: Viruses in wastewater: Wading into the knowns and unknowns. ENVIRONMENTAL RESEARCH 2021; 196:110255. [PMID: 33035556 PMCID: PMC7537651 DOI: 10.1016/j.envres.2020.110255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 05/20/2023]
Affiliation(s)
- Bin Cao
- School of Civil and Environmental Engineering, 50 Nanyang Ave, Nanyang Technological University, Singapore, 639798.
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Pei-Ying Hong
- Environmental Science and Engineering, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Saudi Arabia.
| | - Renata Ivanek
- Epidemiology, Department of Population Medicine and Diagnostic Sciences, Cornell University, USA.
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, USA, 06269.
| | - Aijie Wang
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China.
| | - JingYi Wu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Appiagyei AB, Han JI. Potentiometric Performance of a Highly Flexible-Shaped Trifunctional Sensor Based on ZnO/V 2O 5 Microrods. SENSORS (BASEL, SWITZERLAND) 2021; 21:2559. [PMID: 33917438 PMCID: PMC8038666 DOI: 10.3390/s21072559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022]
Abstract
A trifunctional flexible sensor was fabricated on a polyethylene terephthalate (PET) fiber surface. Synthesized ZnO and ZnO/V2O5 composite were coated on ZnO seed layer sputtered PET fiber. X-ray diffraction (XRD) and photoelectron spectroscopy (XPS) techniques confirmed the exact formation of ZnO and ZnO/V2O5. The fabricated ZnO/V2O5 on ZnO seeds base temperature sensor recorded better electrical properties and reversibility with a maximum temperature coefficient resistance (TCR) of 0.0111 °C-1. A calibration curve (R = 0.9941) within glucose concentration of (10 µM-10 mM) was obtained at +0.8 V vs. Ag/AgCl from current-voltage curves which assisted in calculating glucose sensitivity, limit of detection (LOD), limit of quantification (LOQ). The electrode achieved an outstanding performance of sensitivity (72.06 µAmM-1cm-2), LOD (174 µM), and LOQ (582 µM) at optimum deposition time. Interference from oxidation of interfering biomolecules such as ascorbic acid, dopamine, and uric acid were negligible compared to glucose. Finally, the fabricated electrode was employed as a pH sensor and displayed a pH sensitivity of 42.26 mV/pH (R = 0.9922). This fabricated ZnO/V2O5 electrode exhibited high sensitivity and a stable combined temperature, glucose, and pH sensor which is promising for development of multifunctional sensors in next generation wearables.
Collapse
Affiliation(s)
| | - Jeong In Han
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Korea;
| |
Collapse
|
11
|
Highly sensitive non-enzymatic electrochemical glucose sensor based on dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures. Sci Rep 2021; 11:344. [PMID: 33431992 PMCID: PMC7801383 DOI: 10.1038/s41598-020-79460-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
A high-performance non-enzymatic glucose sensor based on hybrid metal-oxides is proposed. Dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures (CuO/ZnO-DSDSHNM) were prepared via the hydrothermal method using pluronic F-127 as a surfactant. This structure is studied by various physicochemical characterizations such as scanning electron microscopy, X-ray diffraction spectroscopy, inductively coupled plasma atomic emission spectroscopy, elemental mapping techniques, X-ray photoelectron spectroscopy, and transmission electron microscopy. This unique CuO/ZnO-DSDSHNM provides both a large surface area and an easy penetrable structure facilitating improved electrochemical reactivity toward glucose oxidation. The prepared CuO/ZnO-DSDSHNM was used over the glassy carbon electrode (GCE) as the active material for glucose detection and then coated by Nafion to provide the proposed Nafion/CuO/ZnO-DSDSHNM/GCE. The fabricated glucose sensor exhibits an extremely wide dynamic range from 500 nM to 100 mM, a sensitivity of 1536.80 µA mM-1 cm-2, a low limit of detection of 357.5 nM, and a short response time of 1.60 s. The proposed sensor also showed long-term stability, good reproducibility, favorable repeatability, excellent selectivity, and satisfactory applicability for glucose detection in human serum samples. The achieved high-performance glucose sensing based on Nafion/CuO/ZnO-DSDSHNM/GCE shows that both the material synthesis and the sensor fabrication methods have been promising and they can be used in future researches.
Collapse
|
12
|
Wang T, Xu Z, Huang Y, Dai Z, Wang X, Lee M, Bagtzoglou C, Brückner C, Lei Y, Li B. Real-time in situ auto-correction of K + interference for continuous and long-term NH 4+ monitoring in wastewater using solid-state ion selective membrane (S-ISM) sensor assembly. ENVIRONMENTAL RESEARCH 2020; 189:109891. [PMID: 32979997 DOI: 10.1016/j.envres.2020.109891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Potassium ions (K+) present in wastewater has caused severe interference for NH4+ monitoring, over-estimation of NH4+ concentration and ultimately leads to extra energy consumption. Past effort for enhancing the selectivity of NH4+ over K+ were oftentimes complex, costly, or compromised the selectivity and accuracy of the NH4+ ion selective membrane (ISM) sensors. This study targeted this imminent challenge by developing an integrated NH4+/K+ auto-correction solid-state ISM (S-ISM) sensor assembly combined with a data-driven model to monitor [NH4+] under different [NH4+] and [K+] concentrations. The results showed that the interference of K+ was substantially alleviated for NH4+ measurement. The accuracy was enhanced by over 70% when examined using real wastewater and energy consumption was expected to reduce by 26% for a wastewater treatment plant, especially for wastewater with high [K+]. Furthermore, the uniquely structured S-ISMs were made by embedding the ionophores in a robust polyvinyl chloride (PVC) matrix containing plasticizers and a layer of carbon nanotubes (CNT) as ion-to-electron transducer, which maintained the selectivity and accuracy of the S-ISM sensor for 4 weeks in wastewater. NH4+/K+ sensor assembly integrated with data-driven correction models poses great potential in high-efficiency and energy-saving wastewater treatment and water reuse processes.
Collapse
Affiliation(s)
- Tianbao Wang
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States
| | - Zhiheng Xu
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States
| | - Yuankai Huang
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States
| | - Zheqin Dai
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States; School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xingyu Wang
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States
| | - Meredith Lee
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States
| | - Christos Bagtzoglou
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, 06269, United States
| | - Yu Lei
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States
| | - Baikun Li
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut, 06269, United States.
| |
Collapse
|
13
|
Mishra AK, Jarwal DK, Mukherjee B, Kumar A, Ratan S, Tripathy MR, Jit S. Au nanoparticles modified CuO nanowireelectrode based non-enzymatic glucose detection with improved linearity. Sci Rep 2020; 10:11451. [PMID: 32651423 PMCID: PMC7351779 DOI: 10.1038/s41598-020-67986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/01/2020] [Indexed: 11/18/2022] Open
Abstract
This paper explores gold nanoparticle (GNP) modified copper oxide nanowires(CuO NWs)based electrode grown on copper foil for non-enzymatic glucose detection in a wide linear ranging up to 31.06 mM, and 44.36 mM at 0.5 M NaOH and 1 M NaOH concentrations. The proposed electrode can be used to detect a very low glucose concentration of 0.3 µM with a high linearity range of 44.36mM and sensitivity of 1591.44 µA mM-1 cm-2. The electrode is fabricated by first synthesizing Cu (OH)2 NWs on a copper foil by chemical etching method and then heat treatment is performed to convert Cu (OH)2 NWs into CuO NWs. The GNPs are deposited on CuO NWs to enhance the effective surface-to-volume ratio of the electrode with improved catalytic activity. The surface morphology has been investigated by XRD, XPS, FE-SEM and HR-TEM analysis. The proposed sensor is expected to detect low-level of glucose in urine, and saliva. At the same time, it can also be used to measure extremely high sugar levels (i.e. hyperglycemia) of ~ 806.5454 mg/dl. The proposed sensor is also capable of detecting glucose after multiple bending of the GNP modified CuO NWs electrode. The proposed device is also used to detect the blood sugar level in human being and it is found that this sensor's result is highly accurate and reliable.
Collapse
Affiliation(s)
- Ashwini Kumar Mishra
- Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - Deepak Kumar Jarwal
- Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - Bratindranath Mukherjee
- Department of Metallurgical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India
| | - Amit Kumar
- Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - Smrity Ratan
- Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - Manas Ranjan Tripathy
- Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - Satyabrata Jit
- Department of Electronics Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India.
| |
Collapse
|
14
|
Li D, Xu X, Li Z, Wang T, Wang C. Detection methods of ammonia nitrogen in water: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115890] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Bhat K, Nakate UT, Yoo JY, Wang Y, Mahmoudi T, Hahn YB. Nozzle-Jet-Printed Silver/Graphene Composite-Based Field-Effect Transistor Sensor for Phosphate Ion Detection. ACS OMEGA 2019; 4:8373-8380. [PMID: 31459926 PMCID: PMC6648902 DOI: 10.1021/acsomega.9b00559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/22/2019] [Indexed: 05/22/2023]
Abstract
High concentration of dissolved phosphate ions is the main responsible factor for eutrophication of natural water bodies. Therefore, detection of phosphate ions is essential for evaluating water eutrophication. There is a need at large-scale production of real-time monitoring technology to detect phosphorus accurately. In this study, facile enzymeless phosphate ion detection is reported using a nozzle-jet-printed silver/reduced graphene oxide (Ag/rGO) composite-based field-effect transistor sensor on flexible and disposable polymer substrates. The sensor exhibits promising results in low concentration as well as real-time phosphate ion detection. The sensor shows excellent performance with a wide linear range of 0.005-6.00 mM, high sensitivity of 62.2 μA/cm2/mM, and low detection limit of 0.2 μM. This facile combined technology readily facilitates the phosphate ion detection with high performance, long-term stability, excellent reproducibility, and good selectivity in the presence of other interfering anions. The sensor fabrication method and phosphate detection technique yield low-cost, user-friendly sensing devices with less analyte consumption, which are easy to fabricate on polymer substrates on a large scale. Besides, the sensor has the capability to sense phosphate ions in real water samples, which makes it applicable in environmental monitoring.
Collapse
|
16
|
Middya S, Bhattacharjee M, Bandyopadhyay D. Reusable nano-BG-FET for point-of-care estimation of ammonia and urea in human urine. NANOTECHNOLOGY 2019; 30:145502. [PMID: 30641495 DOI: 10.1088/1361-6528/aafe44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A back-gate-field-effect-transistor (BG-FET) has been developed to selectively detect ammonia and urea. The BG-FET was prepared on a p-type Si substrate with an n-type channel of CdS-TiO2 nanocomposite and poly-methyl methacrylate film as dielectric layer. The reusability of the sensor was ensured by putting it as a cover to a chamber where samples were detected. The BG-FET showed an increase in drain current with the increase in ammonia release from chamber because higher numbers of charge carriers were created when ammonia adsorped on CdS-TiO2 nanostructures. Control experiments suggested that the variation in current-to-voltage response of BG-FET could also be calibrated to measure the activity of a host of other hazardous gases. The lowest concentration of ammonia detected was ∼0.85 ppm with a response time of 30 s at a gate voltage of 0.5 V or less, which were superior than available field effect transistors ammonia sensors. Addition of urease in urine liberated ammonia equivalent to urea content in urine, which could be detected by the proposed BGFET. The urea-urease enzyme catalysis reaction made the sensor specific in detecting the biomarker. The accuracy, sensitivity, and reusability of the device was found to be suitable to develop a point-of-care testing device for ammonia and urea detection.
Collapse
Affiliation(s)
- Sagnik Middya
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, 781039, India. Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | | | | |
Collapse
|
17
|
Huang Y, Wang T, Xu Z, Hughes E, Qian F, Lee M, Fan Y, Lei Y, Brückner C, Li B. Real-Time in Situ Monitoring of Nitrogen Dynamics in Wastewater Treatment Processes using Wireless, Solid-State, and Ion-Selective Membrane Sensors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3140-3148. [PMID: 30807116 DOI: 10.1021/acs.est.8b05928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Real-time, in situ accurate monitoring of nitrogen contaminants in wastewater over a long-term period is critical for swift feedback control, enhanced nitrogen removal efficiency, and reduced energy consumption of wastewater treatment processes. Existing nitrogen sensors suffer from high cost, low stability, and short life times, posing hurdles for their mass deployment to capture a complete picture within heterogeneous systems. Tackling this challenge, this study presents solid-state ion-selective membrane (S-ISM) nitrogen sensors for ammonium (NH4+) and nitrate (NO3-) in wastewater that were coupled to a wireless data transmission gateway for real-time remote data access. Lab-scale test and continuous-flow field tests using real municipal wastewater indicated that the S-ISM nitrogen sensors possessed excellent accuracy and precision, high selectivity, and multiday stability. Importantly, autocorrections of the sensor readings on the cloud minimized temperature influences and assured accurate nitrogen concentration readings in remote-sensing applications. It was estimated that real-time, in situ monitoring using wireless S-ISM nitrogen sensors could save 25% of electric energy under normal operational conditions and reduce 22% of nitrogen discharge under shock conditions.
Collapse
|
18
|
Jung DUJ, Ahmad R, Hahn YB. Nonenzymatic flexible field-effect transistor based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods. J Colloid Interface Sci 2018; 512:21-28. [DOI: 10.1016/j.jcis.2017.10.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/11/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
|
19
|
Choi J, Seong TW, Jeun M, Lee KH. Field-Effect Biosensors for On-Site Detection: Recent Advances and Promising Targets. Adv Healthc Mater 2017; 6. [PMID: 28885777 DOI: 10.1002/adhm.201700796] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Indexed: 12/21/2022]
Abstract
There is an explosive interest in the immediate and cost-effective analysis of field-collected biological samples, as many advanced biodetection tools are highly sensitive, yet immobile. On-site biosensors are portable and convenient sensors that provide detection results at the point of care. They are designed to secure precision in highly ionic and heterogeneous solutions with minimal hardware. Among various methods that are capable of such analysis, field-effect biosensors are promising candidates due to their unique sensitivity, manufacturing scalability, and integrability with computational circuitry. Recent developments in nanotechnological surface modification show promising results in sensing from blood, serum, and urine. This report gives a particular emphasis on the on-site efficacy of recently published field-effect biosensors, specifically, detection limits in physiological solutions, response times, and scalability. The survey of the properties and existing detection methods of four promising biotargets, exosomes, bacteria, viruses, and metabolites, aims at providing a roadmap for future field-effect and other on-site biosensors.
Collapse
Affiliation(s)
- Jaebin Choi
- Sensor System Research Center; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Tae Wha Seong
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Minhong Jeun
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| |
Collapse
|
20
|
Ahmad R, Tripathy N, Ahn MS, Bhat KS, Mahmoudi T, Wang Y, Yoo JY, Kwon DW, Yang HY, Hahn YB. Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode. Sci Rep 2017; 7:5715. [PMID: 28720844 PMCID: PMC5515932 DOI: 10.1038/s41598-017-06064-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
There is a major challenge to attach nanostructures on to the electrode surface while retaining their engineered morphology, high surface area, physiochemical features for promising sensing applications. In this study, we have grown vertically-aligned ZnO nanorods (NRs) on fluorine doped tin oxide (FTO) electrodes and decorated with CuO to achieve high-performance non-enzymatic glucose sensor. This unique CuO-ZnO NRs hybrid provides large surface area and an easy substrate penetrable structure facilitating enhanced electrochemical features towards glucose oxidation. As a result, fabricated electrodes exhibit high sensitivity (2961.7 μA mM-1 cm-2), linear range up to 8.45 mM, low limit of detection (0.40 μM), and short response time (<2 s), along with excellent reproducibility, repeatability, stability, selectivity, and applicability for glucose detection in human serum samples. Circumventing, the outstanding performance originating from CuO modified ZnO NRs acts as an efficient electrocatalyst for glucose detection and as well, provides new prospects to biomolecules detecting device fabrication.
Collapse
Affiliation(s)
- Rafiq Ahmad
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Nirmalya Tripathy
- Department of BIN Fusion Technology, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Min-Sang Ahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Kiesar Sideeq Bhat
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Tahmineh Mahmoudi
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Yousheng Wang
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jin-Young Yoo
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Wook Kwon
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Hwa-Young Yang
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Yoon-Bong Hahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
21
|
Development of highly-stable binder-free chemical sensor electrodes for p-nitroaniline detection. J Colloid Interface Sci 2017; 494:300-306. [DOI: 10.1016/j.jcis.2017.01.099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/16/2022]
|
22
|
ZnO nanorods array based field-effect transistor biosensor for phosphate detection. J Colloid Interface Sci 2017; 498:292-297. [PMID: 28342312 DOI: 10.1016/j.jcis.2017.03.069] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 11/20/2022]
Abstract
A promising field-effect transistor (FET) biosensor has been fabricated based on pyruvate oxidase (PyO) functionalized ZnO nanorods (ZnO NRs) array grown on seeded SiO2/Si substrate. The direct and vertically grown ZnO NRs on the seeded SiO2/Si substrate offers high surface area for enhanced PyO immobilization, which further helps to detect phosphate with higher specificity. Under optimum conditions, the fabricated FET biosensor provided a convenient method for phosphate detection with high sensitivity (80.57μAmM-1cm-2) in a wide-linear range (0.1µM-7.0mM). Additionally, it also showed very low effect of electroactive species, stability and good reproducibility. Encouraging results suggest that this approach presents a promising method to be used for field measurements to detect phosphate.
Collapse
|
23
|
Zhu Z, Li B, Wen J, Chen Z, Chen Z, Zhang R, Ye S, Fang G, Qian J. Indium-doped ZnO horizontal nanorods for high on-current field effect transistors. RSC Adv 2017. [DOI: 10.1039/c7ra09105b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High on-current field effect transistors (FETs) are highly desirable for driving information displays such as active matrix organic light-emitting diode displays.
Collapse
Affiliation(s)
- Ziqiang Zhu
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
- School of Physics and Technology
| | - Borui Li
- School of Physics and Technology
- Wuhan University
- Wuhan
- P. R. China
| | - Jian Wen
- School of Physics and Technology
- Wuhan University
- Wuhan
- P. R. China
| | - Zhao Chen
- School of Physics and Technology
- Wuhan University
- Wuhan
- P. R. China
| | - Zhiliang Chen
- School of Physics and Technology
- Wuhan University
- Wuhan
- P. R. China
| | - Ranran Zhang
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
| | - Shuangli Ye
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
| | - Guojia Fang
- School of Physics and Technology
- Wuhan University
- Wuhan
- P. R. China
| | - Jun Qian
- School of Printing and Packaging
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|