1
|
Li X, Wu M, Ding H, Li W, Yin J, Lin R, Wu X, Han L, Yang W, Bie S, Li F, Song X, Yu H, Dong Z, Li Z. Integration of non-targeted multicomponent profiling, targeted characteristic chromatograms and quantitative to accomplish systematic quality evaluation strategy of Huo-Xiang-Zheng-Qi oral liquid. J Pharm Biomed Anal 2023; 236:115715. [PMID: 37769526 DOI: 10.1016/j.jpba.2023.115715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Huo-Xiang-Zheng-Qi oral liquid (HXZQOL) is a well-known traditional Chinese medicine formula for the treatment of gastrointestinal diseases, with the pharmacologic effects of antiinflammatory, immune protection and gastrointestinal motility regulation. More significantly, HXZQOL is recommended for the treatment of COVID-19 patients with gastrointestinal symptoms, and it has been clinically proven to reduce the inflammatory response in patients with COVID-19. However, the effective and overall quality control of HXZQOL is currently limited due to its complex composition, especially the large amount of volatile and non-volatile active components involved. In this study, aimed to fully develop a comprehensive strategy based on non-targeted multicomponent identification, targeted authentication and quantitative analysis for quality evaluation of HXZQOL from different batches. Firstly, the non-targeted high-definition MSE (HDMSE) approach is established based on UHPLC/IM-QTOF-MS, utilized for multicomponent comprehensive characterization of HXZQOL. Combined with in house library-driven automated peak annotation and comparison of 47 reference compounds, 195 components were initially identified. In addition, HS-SPME-GC-MS was employed to analyze the volatile organic compounds (VOCs) in HXZQOL, and a total of 61 components were identified by comparison to the NIST database, reference compounds as well as retention indices. Secondly, based on the selective ion monitoring (SIM) of 24 "identity markers" (involving each herbal medicine), characteristic chromatograms (CCs) were established on LC-MS and GC-MS respectively, to authenticate 15 batches of HXZQOL samples. The targeted-SIM CCs showed that all marker compounds in 15 batches of samples could be accurately monitored, which could indicate preparations authenticity. Finally, a parallel reaction monitoring (PRM) method was established and validated to quantify the nine compounds in 15 batches of HXZQOL. Conclusively, this study first reports chemical-material basis, SIM CCs and quality evaluation of HXZQOL, which is of great implication to quality control and ensuring the authenticity of the preparation.
Collapse
Affiliation(s)
- Xuejuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengfan Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruimei Lin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinlong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Ziliang Dong
- Chongqing Taiji Industry (Group) Co.,Ltd., 408000, China.
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
2
|
Hou J, Yao C, Li Y, Yang L, Chen X, Nie M, Qu H, Ji S, Guo DA. A MS-feature-based medicinal plant database-driven strategy for ingredient identification of Chinese medicine prescriptions. J Pharm Biomed Anal 2023; 234:115482. [PMID: 37290179 DOI: 10.1016/j.jpba.2023.115482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Identification of the individual herbs that constitute the Chinese medicine prescription (CMP) is a key step to control the quality and ensure the efficacy of traditional Chinese medicine (TCM), but also a challenging task for analysts from all over the world. In this study, a MS-feature-based medicinal plant database-driven strategy was proposed for quick and automatic interpretation of CMP ingredients. The single herb database consisting of stable ions of sixty-one common TCM medicinal herbs was first constructed. And then, the data of CMP was imported into a self-built searching program to achieve quick and automatic identification with four steps including level 1 candidate herb screening based on stable ions (step 1), level 2 candidate herb screening based on unique ions (step 2), difficult-to-distinguish herb differentiation (step 3) and results integration (step 4). The identification model was optimized and validated with homemade Shaoyaogancao Decoction, Mahuang Decoction, Banxiaxiexin Decoction, and their related negative prescriptions and homemade fakes. Another nine batches of homemade and commercial CMPs were applied to this new approach and most of composed herbs in the corresponding CMPs were correctly identified. This work provided a promising and universal strategy for the clarification of CMP ingredients.
Collapse
Affiliation(s)
- Jianru Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuebing Chen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Min Nie
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Qu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Xu X, Jiang M, Li X, Wang Y, Liu M, Wang H, Mi Y, Chen B, Gao X, Yang W. Three-dimensional characteristic chromatogram by online comprehensive two-dimensional liquid chromatography: Application to the identification and differentiation of ginseng from herbal medicines to various Chinese patent medicines. J Chromatogr A 2023; 1700:464042. [PMID: 37163941 DOI: 10.1016/j.chroma.2023.464042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
One bottleneck problem in the quality control of traditional Chinese medicine (TCM) is the accurate identification of easily confused herbal medicines from Chinese patent medicine (CPM). Ginseng products derived from the multiple parts (e.g., root/rhizome, leaf, and flower bud) of multiple Panax species (P. ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major) are globally popular; however, their authentication is very challenging. Using online comprehensive two-dimensional liquid chromatography (LC × LC), we propose the concept of a three-dimensional characteristic chromatogram (3D CC) by integrating enhanced LC × LC separation and a contour plot that visualizes the stereoscopic chromatographic peaks and examine its performance in authenticating various ginseng products. Targeted at the resolution of 17 ginsenoside markers, an online LC × LC/UV system with a 56 min analysis time was constructed: a CORTECS UPLC Shield RP 18 column running at 0.1 mL/min for the first-dimensional chromatography and a Poroshell SB-Aq column at 2.0 mL/min in shift gradient mode in the second dimension of separation. In particular, ginsenosides Rg1/Re and Rc/Ra1 were well resolved. According to the presence/absence of stereo peaks consistent with the main ginsenoside markers in the 3D CC and the depth of shade (depending on peak volume), it was feasible to use a single method to identify and distinguish among 12 different ginseng species as the drug materials and the use of ginseng simultaneously from 21 CPMs. Conclusively, a practical solution enabling the accurate identification of easily confused TCMs was provided, covering both the drug materials and the compound preparations.
Collapse
Affiliation(s)
- Xiaoyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xiaohang Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Meiyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yueguang Mi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Boxue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| |
Collapse
|
4
|
Ichim MC, Scotti F, Booker A. Quality evaluation of commercial herbal products using chemical methods. Crit Rev Food Sci Nutr 2022; 64:4219-4239. [PMID: 36315039 DOI: 10.1080/10408398.2022.2140120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Herbal products comprise a wide spectrum of locally, nationally or internationally commercialized commodities. As these products have an increasingly important position in healthcare systems worldwide, a detailed product quality assessment is of crucial importance. For the quality evaluation of commercial herbal products, a wide range of methods were used, from simpler, quicker, and cost-effective HPTLC, to hyphenated methods with MS or NMR, where more precise quantification or specific structural information is required. Additionally, most of the methods have been coupled with chemometric tools, such as PCA, or PDA, for the multivariate analysis of the high amount of data generated by chromatograms, electropherograms or spectra. The chemical methods have revealed the widespread presence of low or variable quality herbal products in the marketplace. The majority of analytical investigations present major, qualitative and quantitative, inter-product variations of their chemical composition, ranging from missing ingredients, to strikingly and unnaturally high concentrations of some compounds. Moreover, the inter-batch quality variations were frequently reported, as well as the presence of some undesirable substances. The chemical analysis of herbal products is a vital component to raise the overall awareness of quality in the herbal market and generate a quality driven approach.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- "Stejarul" Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | - Francesca Scotti
- Pharmacognosy and Phytotherapy Group, Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, UK
| |
Collapse
|
5
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
6
|
Xue X, Jiao Q, Jin R, Wang X, Li P, Shi S, Huang Z, Dai Y, Chen S. The combination of UHPLC-HRMS and molecular networking improving discovery efficiency of chemical components in Chinese Classical Formula. Chin Med 2021; 16:50. [PMID: 34215302 PMCID: PMC8254261 DOI: 10.1186/s13020-021-00459-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/19/2021] [Indexed: 02/04/2023] Open
Abstract
Background It is essential to identify the chemical components for the quality control methods establishment of Chinese Classical Formula (CCF). However, CCF are complex mixture of several herbal medicines with huge number of different compounds and they are not equal to the combination of chemical components from each herb due to particular formula ratio and preparation techniques. Therefore, it is time-consuming to identify compounds in a CCF by analyzing the LC–MS/MS data one by one, especially for unknown components. Methods An ultra-high pressure liquid chromatography-linear ion trap-orbitrap high resolution mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS) approach was developed to comprehensively profile and characterize multi-components in CCF with Erdong decoction composed of eight herbal medicines as an example. Then the MS data of Erdong decoction was analyzed by MS/MS-based molecular networking and these compounds with similar structures were connected to each other into a cluster in the network map. Then the unknown compounds connected to known compounds in a cluster of the network map were identified due to their similar structures. Results Based on the clusters of the molecular networking, 113 compounds were rapidly tentative identification from Erdong decoction for the first time in the negative mode, which including steroidal saponins, triterpenoid saponins, flavonoid O-glycosides and flavonoid C-glycosides. In addition, 10 alkaloids were tentatively identified in the positive mode from Nelumbinis folium by comparison with literatures. Conclusion MS/MS-based molecular networking technique is very useful for the rapid identification of components in CCF. In Erdong decoction, this method was very suitable for the identification of major steroidal saponins, triterpenoid saponins, and flavonoid C-glycosides. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00459-6.
Collapse
Affiliation(s)
- Xiaoxia Xue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Qishu Jiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Runa Jin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xueyuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Pengyue Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shougang Shi
- Sunflower Pharmaceutical Group (Xiangyang) Longzhong Co. Ltd, Xiangyang, 441003, Hubei, China
| | - Zhengjun Huang
- Sunflower Pharmaceutical Group (Xiangyang) Longzhong Co. Ltd, Xiangyang, 441003, Hubei, China
| | - Yuntao Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
7
|
Chen YH, Bi JH, Xie M, Zhang H, Shi ZQ, Guo H, Yin HB, Zhang JN, Xin GZ, Song HP. Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011-2020): Theory, technical route and difficulty. J Chromatogr A 2021; 1651:462307. [PMID: 34161837 DOI: 10.1016/j.chroma.2021.462307] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
The difficulty of traditional Chinese medicine (TCM) researches lies in the complexity of components, metabolites, and bioactivities. For a long time, there has been a lack of connections among the three parts, which is not conducive to the systematic elucidation of TCM effectiveness. To overcome this problem, a classification-based methodology for simplifying TCM researches was refined from literature in the past 10 years (2011-2020). The theoretical basis of this methodology is set theory, and its core concept is classification. Its starting point is that "although TCM may contain hundreds of compounds, the vast majority of these compounds are structurally similar". The methodology is composed by research strategies for components, metabolites and bioactivities of TCM, which are the three main parts of the review. Technical route, key steps and difficulty are introduced in each part. Two perspectives are highlighted in this review: set theory is a theoretical basis for all strategies from a conceptual perspective, and liquid chromatography-mass spectrometry (LC-MS) is a common tool for all strategies from a technical perspective. The significance of these strategies is to simplify complex TCM researches, integrate isolated TCM researches, and build a bridge between traditional medicines and modern medicines. Potential research hotspots in the future, such as discovery of bioactive ingredients from TCM metabolites, are also discussed. The classification-based methodology is a summary of research experience in the past 10 years. We believe it will definitely provide support and reference for the following TCM researches.
Collapse
Affiliation(s)
- Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jing-Hua Bi
- Shanxi Medical University, Taiyuan 030001, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Qi Shi
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hua Guo
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
8
|
Chen L, Yao C, Li J, Wang J, Yao S, Shen S, Yang L, Zhang J, Wei W, Bi Q, Guo DA. Systematic characterization of chemical constituents in Mahuang decoction by UHPLC tandem linear ion trap-Orbitrap mass spectrometry coupled with feature-based molecular networking. J Sep Sci 2021; 44:2717-2727. [PMID: 33963673 DOI: 10.1002/jssc.202100121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Comprehensive characterization of traditional Chinese medicine prescriptions has long been a hurdle due to the chemical complexity and the lack of analytical tools. Mahuang decoction is a well-known traditional Chinese medicine prescription widely used for sweating and relieving the exterior, relieving cough and asthma, but it was insufficiently chemically scrutinized. In this study, the chemical component information of Mahuang decoction was investigated by ultrahigh-performance liquid chromatography tandem linear ion trap-Orbitrap mass spectrometry. A new data processing tool, feature-based molecular networking, was introduced for grouping and elucidating the compounds. In this way, 156 chemical components were identified or tentatively characterized, including alkaloids, triterpenoid saponins, flavanone-O-glycosides, flavone-C-glycosides, and procyanidins. Thus, this research provides a solid foundation for further development of Mahuang decoction, and the adopted method is expected to be applied to other traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- Ling Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jiayuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jing Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Shuai Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Shijie Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Lin Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - De-An Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
9
|
Cheng M, Yao C, Li Y, Li Z, Li H, Yao S, Qu H, Li J, Wei W, Zhang J, Guo DA. A strategy for practical authentication of medicinal plants in traditional Chinese medicine prescription, paeony root in ShaoYao-GanCao decoction as a case study. J Sep Sci 2021; 44:2427-2437. [PMID: 33885223 DOI: 10.1002/jssc.202100028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022]
Abstract
Authentication of Chinese medicine materials in prescriptions is extremely difficult due to the complicated chemical matrix. A strategy integrating in-depth profiling, chemical marker selection, and selected detection was established and exemplarily applied to authenticate paeony root in ShaoYao-GanCao decoction. First, an ultra-performance liquid chromatography/linear trap quadrupole-Orbitrap method was developed to probe the chemical compositions of the decoction. Second, 20 batches of decoctions prepared from white paeony root and red paeony root were compared by a metabolomics method, and multistep chemometrics analysis distinguished the chemical markers. Third, an ultra-performance liquid chromatography/QDa-selected ion monitoring method was developed to authenticate the paeony root in decoctions. As a result, 161 compounds were characterized, including 84 triterpene saponins, 42 flavonoids, and 10 monoterpenes. Four chemical markers and paeoniflorin were successfully screened out as chemical markers for white paeony root. The selected ion monitoring method easily differentiated authentic decoction (prepared from white paeony root) from fraud decoction (prepared from red paeony root) by monitoring the above five chemical markers. In conclusion, the strategy was proved effective in authentication of paeony root in ShaoYao-GanCao decoction, and it can also be applied to authenticate other Chinese medicine materials in prescriptions, which will greatly avail the quality enhancement of prescriptions.
Collapse
Affiliation(s)
- Mengzhen Cheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhenwei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haojv Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Shuai Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hua Qu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jiayuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - De-An Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
10
|
Yao CL, Wang J, Li ZW, Qu H, Pan HQ, Li JY, Wei WL, Zhang JQ, Bi QR, Guo DA. Characteristic Malonyl Ginsenosides from the Leaves of Panax notoginseng as Potential Quality Markers for Adulteration Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4849-4857. [PMID: 33849274 DOI: 10.1021/acs.jafc.1c00382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the high price and limited supply of Panax notoginseng, a large number of samples adulterated with the leaves appear in the market. A group of new malonyl ginsenosides were exclusively detected in the P. notoginseng leaves (PNL). Targeted isolation of the malonyl ginsenosides was guided by UPLC-QDa MS. HRMS, 1D/2D NMR, and chemical methods were used for structural identification. A selected ion monitoring method was developed based on UPLC-QDa MS to detect the adulterations. In addition, the anti-inflammatory activities and the collision-induced dissociation features of the isolated saponins were studied. As a result, eight new 3-OH malonylated dammarane-type triterpene oligoglycosides (notoginsenosides L3-L10) were obtained from PNL. Adulteration with PNL can be easily detected with limit of detection as low as 0.06%. To sum up, the isolated ginsenosides can be used as quality markers for fraud detection, which will promote the quality control of the notoginseng products.
Collapse
Affiliation(s)
- Chang-Liang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jing Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Zhen-Wei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Hua Qu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Hui-Qin Pan
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jia-Yuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Qi-Rui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
11
|
Ichim MC, Booker A. Chemical Authentication of Botanical Ingredients: A Review of Commercial Herbal Products. Front Pharmacol 2021; 12:666850. [PMID: 33935790 PMCID: PMC8082499 DOI: 10.3389/fphar.2021.666850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Chemical methods are the most important and widely used traditional plant identification techniques recommended by national and international pharmacopoeias. We have reviewed the successful use of different chemical methods for the botanical authentication of 2,386 commercial herbal products, sold in 37 countries spread over six continents. The majority of the analyzed products were reported to be authentic (73%) but more than a quarter proved to be adulterated (27%). At a national level, the number of products and the adulteration proportions varied very widely. Yet, the adulteration reported for the four countries, from which more than 100 commercial products were purchased and their botanical ingredients chemically authenticated, was 37% (United Kingdom), 31% (Italy), 27% (United States), and 21% (China). Simple or hyphenated chemical analytical techniques have identified the total absence of labeled botanical ingredients, substitution with closely related or unrelated species, the use of biological filler material, and the hidden presence of regulated, forbidden or allergenic species. Additionally, affecting the safety and efficacy of the commercial herbal products, other low quality aspects were reported: considerable variability of the labeled metabolic profile and/or phytochemical content, significant product-to-product variation of botanical ingredients or even between batches by the same manufacturer, and misleading quality and quantity label claims. Choosing an appropriate chemical technique can be the only possibility for assessing the botanical authenticity of samples which have lost their diagnostic microscopic characteristics or were processed so that DNA cannot be adequately recovered.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- “Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
12
|
Simple and robust differentiation of Ganoderma species by high performance thin-layer chromatography coupled with single quadrupole mass spectrometry QDa. Chin J Nat Med 2021; 19:295-304. [PMID: 33875169 DOI: 10.1016/s1875-5364(21)60030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 11/21/2022]
Abstract
In this study, a high performance thin-layer chromatography/single quadrupole mass spectrometry QDa (HPTLC-QDa) method for robust authentication of Ganoderma lucidum, a popular and valuable herbal medicine, has been developed. This method is simple and practical, which allows direct generation of characteristic mass spectra from the HPTLC plates automatically with the application of in situ solvent desorption interface. The HPTLC silica gel plates were developed with toluene-ethyl formate-formic acid (5 : 5 : 0.2, V/V) and all bands were transferred to QDa system directly in situ using 80% methanol with 0.1% formic acid as desorption solvent. The acquired HPTLC-QDa spectra showed that luminous yellow band b3, containing ganoderic acid B/G/H and ganodeneric acid B, the major active components of Ganoderma, could be found only in G. lucidum and G. lucidum (Antler-shaped), but not in G. sinense and G. applanatum. Moreover, bands b13 and b14 with m/z 475/477 and m/z 475/491/495, respectively, could be detected in G. lucidum (Antler-shaped), but not in G. lucidum, thus allowing simple and robust authentication of G. lucidum with confused species. This method is proved to be simple, practical and reproducible, which can be extended to analyze other herbal medicines.
Collapse
|
13
|
Wang X, Wu W, Zhang J, Gao L, Zhang L, Long H, Hou J, Wu W, Guo D. An integrated strategy for holistic quality identification of Chinese patent medicine: Liuwei Dihuang Pills as a case study. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:183-197. [PMID: 32130754 DOI: 10.1002/pca.2927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Liuwei Dihuang Pills (concentrated pills, simplified as LWDHP), one of the most famous classic Chinese Patent Medicine (CPM), is produced by hundreds of pharmaceutical manufacturers with billions of Chinese yuan (CNY) in annual sales. However, current quality identification of LWDHP mainly relies on a thin-layer chromatography (TLC) method that is complicated and deficient. OBJECTIVE The goal of this study is to simplify the identification process and provide a more comprehensive quality assessment method of LWDHP by developing an integrated strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) and multivariate statistical analysis. METHOD Ultra-high-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UHPLC/QTOF-MS) was employed to perform qualitative analyses of a home-made LWDHP and to establish a stably characteristic compound library by analysis of batches of its component herbs. Then selective ion monitoring (SIM) of single MS was utilised to develop a rapid identification method based on the UHPLC/QTOF-MS analysis result. Multivariate statistical analysis was subsequently used for the quality assessment of different commercial samples. RESULTS Seventy-eight characteristic compounds were characterised, and 68 of them were recorded to establish a stably characteristic compound library. Thirty-one compounds were selected from the library for the establishment of SIM identification method. Good specificity, capability, and feasibility had been respectively verified by the analysis of blank sample, negative control (NC) preparation samples, home-made LWDHP sample, and commercial sample. Multivariate statistical analysis of 20 batches of commercial LWDHP samples revealed the quality consistency of the same vendor's product and quality difference between diverse vendors' products. CONCLUSION The SIM identification method by a single analysis could significantly simplify the identification process of LWDHP, and it was performed in a holistic mode for no less than two compounds of each component herb monitored. Moreover, it could also be combined with multivariate statistical analysis to conduct quality assessments of batches of samples. The integrated strategy used in the study of LWDHP could be applied for the identification of other CPM as well.
Collapse
Affiliation(s)
- Xia Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wenyong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Lei Gao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Linlin Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
14
|
Yao CL, Zhang JQ, Li JY, Wei WL, Wu SF, Guo DA. Traditional Chinese medicine (TCM) as a source of new anticancer drugs. Nat Prod Rep 2021; 38:1618-1633. [PMID: 33511969 DOI: 10.1039/d0np00057d] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: up to July 2020Drugs derived from traditional Chinese medicine (TCM) include both single chemical entities and multi-component preparations. Drugs of both types play a significant role in the healthcare system in China, but are not well-known outside China. The research and development process, the molecular mechanisms of action, and the clinical evaluation associated with some exemplificative anticancer drugs based on TCM are discussed, along with their potential of integration in western medicine.
Collapse
Affiliation(s)
- Chang-Liang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jia-Yuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Shi-Fei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
15
|
Ichim MC, de Boer HJ. A Review of Authenticity and Authentication of Commercial Ginseng Herbal Medicines and Food Supplements. Front Pharmacol 2021; 11:612071. [PMID: 33505315 PMCID: PMC7832030 DOI: 10.3389/fphar.2020.612071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Ginseng traditional medicines and food supplements are the globally top selling herbal products. Panax ginseng, Panax quinquefolius and Panax notoginseng are the main commercial ginseng species in herbal medicine. Prices of ginseng products vary widely based on the species, quality, and purity of the used ginseng, and this provides a strong driver for intentional adulteration. Our systematic literature search has reviewed the authenticity results of 507 ginseng-containing commercial herbal products sold in 12 countries scattered across six continents. The analysis of the botanical and chemical identity of all these products shows that 76% are authentic while 24% were reported as adulterated. The number of commercial products as well as the percentage of adulteration varies significantly between continents, being highest in South America (100%) and Australia (75%), and lower in Europe (35%), North America (23%), Asia (21%) and Africa (0%). At a national level, from the five countries for which more than 10 products have been successfully authenticated, the highest percentage of adulterated ginseng products were purchased from Taiwan (49%), followed by Italy (37%), China (21%), and USA (12%), while all products bought in South Korea were reported to be authentic. In most cases, labeled Panax species were substituted with other Panax species, but substitution of ginseng root, the medicinally recommended plant part, with leaves, stems or flowers was also reported. Efficient and practical authentication using biomarkers to distinguish the main ginseng varieties and secondary metabolite spectra for age determination are essential to combat adulteration in the global marketplace.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- “Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | | |
Collapse
|
16
|
Houriet J, Allard PM, Queiroz EF, Marcourt L, Gaudry A, Vallin L, Li S, Lin Y, Wang R, Kuchta K, Wolfender JL. A Mass Spectrometry Based Metabolite Profiling Workflow for Selecting Abundant Specific Markers and Their Structurally Related Multi-Component Signatures in Traditional Chinese Medicine Multi-Herb Formulae. Front Pharmacol 2020; 11:578346. [PMID: 33362543 PMCID: PMC7756971 DOI: 10.3389/fphar.2020.578346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
In Traditional Chinese Medicine (TCM), herbal preparations often consist of a mixture of herbs. Their quality control is challenging because every single herb contains hundreds of components (secondary metabolites). A typical 10 herb TCM formula was selected to develop an innovative strategy for its comprehensive chemical characterization and to study the specific contribution of each herb to the formula in an exploratory manner. Metabolite profiling of the TCM formula and the extract of each single herb were acquired with liquid chromatography coupled to high-resolution mass spectrometry for qualitative analyses, and to evaporative light scattering detection (ELSD) for semi-quantitative evaluation. The acquired data were organized as a feature-based molecular network (FBMN) which provided a comprehensive view of all types of secondary metabolites and their occurrence in the formula and all single herbs. These features were annotated by combining MS/MS-based in silico spectral match, manual evaluation of the structural consistency in the FBMN clusters, and taxonomy information. ELSD detection was used as a filter to select the most abundant features. At least one marker per herb was highlighted based on its specificity and abundance. A single large-scale fractionation from the enriched formula enabled the isolation and formal identification of most of them. The obtained markers allowed an improved annotation of associated features by manually propagating this information through the FBMN. These data were incorporated in the high-resolution metabolite profiling of the formula, which highlighted specific series of related components to each individual herb markers. These series of components, named multi-component signatures, may serve to improve the traceability of each herb in the formula. Altogether, the strategy provided highly informative compositional data of the TCM formula and detailed visualizations of the contribution of each herb by FBMN, filtered feature maps, and reconstituted chromatogram traces of all components linked to each specific marker. This comprehensive MS-based analytical workflow allowed a generic and unbiased selection of specific and abundant markers and the identification of multiple related sub-markers. This exploratory approach could serve as a starting point to develop more simple and targeted quality control methods with adapted marker specificity selection criteria to given TCM formula.
Collapse
Affiliation(s)
- Joëlle Houriet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Arnaud Gaudry
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Lennie Vallin
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | - Yu Lin
- Kunisawa Clinic, Gotsu-shi, Japan
| | - Ruwei Wang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
| | - Kenny Kuchta
- Forschungsstelle für Fernöstliche Medizin, Department of Vegetation Analysis and Phytodiversity, Albrecht von Haller Institute of Plant Sciences, Georg August University, Göttingen, Germany
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Yue J, Zuo Z, Huang H, Wang Y. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit Rev Anal Chem 2020; 51:373-398. [PMID: 32166968 DOI: 10.1080/10408347.2020.1736506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genus Panax, as worldwide medicinal plants, has a medical history for thousands of years. Most of the entire genus are traditional ethnobotanical medicine in China, Myanmar, Thailand, Vietnam and Laos, which have given rise to international attention and use. This paper reviewed more than 210 articles and related books on the research of Panax medicinal plants and their Chinese patent medicines published in the last 30 years. The purpose was to review and summarize the species classification, geographical distribution, and ethnic minorities medicinal records of the genus Panax, and further to review the analytical tools and data analysis methods for the authentication and quality assessment of Panax medicinal materials and Chinese patent medicines. Five main technologies applied in the identification and evaluation of Panax have been introduced and summarized. Chromatography was the most widely used one. Further research and development of molecular identification technology had the potential to become a mainstream identification technology. In addition, some novel, controversial, and worthy methods including electronic noses, electronic eyes, and DNA barcoding were also introduced. At the same time, more than 80% of the researches were carried out by a combination of chemometric pattern-recognition technologies and multi-analysis technologies. All the technologies and methods applied can provide strong support and guarantee for the identification and evaluation of genus Panax, and also conduce to excellent reference value for the development and in-depth research of new technologies in Panax.
Collapse
Affiliation(s)
- Jiaqi Yue
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hengyu Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
18
|
An offline two-dimensional supercritical fluid chromatography × reversed phase liquid chromatography tandem quadrupole time-of-flight mass spectrometry system for comprehensive gangliosides profiling in swine brain extract. Talanta 2020; 208:120366. [DOI: 10.1016/j.talanta.2019.120366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 11/23/2022]
|
19
|
An integrated approach for global profiling of multi-type constituents: Comprehensive chemical characterization of Lonicerae Japonicae Flos as a case study. J Chromatogr A 2020; 1613:460674. [DOI: 10.1016/j.chroma.2019.460674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/10/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022]
|
20
|
Zhao M, Dai Y, Li Q, Li P, Qin XM, Chen S. A Practical Quality Control Method for Saponins Without UV Absorption by UPLC-QDA. Front Pharmacol 2018; 9:1377. [PMID: 30618731 PMCID: PMC6298191 DOI: 10.3389/fphar.2018.01377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/09/2018] [Indexed: 11/18/2022] Open
Abstract
Saponins are a class of important active ingredients. Analysis of saponin-containing herbal medicines is a major challenge for the quality control of medicinal herbs in companies. Taking the medicine Astragali radix (AR) as an example, it has been shown that the existing evaporative light scattering detection (ELSD) methods of astragaloside IV (AG IV) has the disadvantages of time-consuming sample preparation and low sensitivity. The universality of ELSD results in an inapplicable fingerprint with huge signals from primary compounds and smaller signals from saponins. The purpose of this study was to provide a practical and comprehensive method for the quality control of the astragalosides in AR. A simple sample preparation method with sonication extraction and ammonia hydrolyzation was established, which shortens the preparation time from around 2 days to less than 2 h. A UPLC-QDA method with the SIM mode was established for the quantification of AG IV in AR. Methanol extract was subjected to UPLC-QDA for fingerprinting analysis, and the common peaks were assigned simultaneously with the QDA. The results showed that with the newly established method, the preparation time for a set of samples was less than 90 min. The fingerprints can simultaneously detect both saponins and flavonoids in AR. This simple, rapid, and comprehensive UPLC-QDA method is suitable for quality assessment of RA and its products in companies, and also provides references for the quality control of other saponin ingredients without UV absorption.
Collapse
Affiliation(s)
- Manjia Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuntao Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengyue Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Systematic Profiling of the Multicomponents and Authentication of Erzhi Pill by UHPLC/Q-Orbitrap-MS Oriented Rapid Polarity-Switching Data-Dependent Acquisition and Selective Monitoring of the Chemical Markers Deduced from Fingerprint Analysis. Molecules 2018; 23:molecules23123143. [PMID: 30513579 PMCID: PMC6320785 DOI: 10.3390/molecules23123143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
The analytical platform UHPLC/Q-Orbitrap-MS offers a solution to quality investigation of TCM with high definiteness. Using Erzhi Pill (EZP) as a case, we developed UHPLC/Q-Orbitrap-MS based approaches to achieve systematic multicomponent identification and rapid authentication. Comprehensive multicomponent characterization of EZP was performed by negative/positive switching data-dependent high-energy collision-induced dissociation-MS2 (HCD-MS2) after 25 min chromatographic separation. By reference compounds comparison, elemental composition analysis, fragmentation pathways interpretation, and retrieval of an in-house library, 366 compounds were separated and detected from EZP, and 96 thereof were structurally characterized. The fingerprints of two component drugs (Ligustri Lucidi Fructus, LLF; Ecliptae Herba, EH) for EZP were analyzed under the same LC-MS condition by full scan in negative mode. In combination with currently available pharmacological reports, eight compounds were deduced as the ‘identity markers’ of EZP. Selective ion monitoring (SIM) of eight marker compounds was conducted to authenticate six batches of EZP samples. Both LLF and EH could be detected from all EZP samples by analyzing the SIM spectra, which could indicate their authenticity. Conclusively, UHPLC/Q-Orbitrap-MS by rapid polarity switching could greatly expand the potency of untargeted profiling with high efficiency, and SIM of multiple chemical markers rendered a practical approach enabling the authentication of TCM formulae.
Collapse
|
22
|
Wei W, Wang X, Hou J, Yao C, Feng Z, Zhang J, Han S, Deng Y, Huang Y, Wu W, Guo D. Implementation of a Single Quadrupole Mass Spectrometer for Fingerprint Analysis: Venenum bufonis as a Case Study. Molecules 2018; 23:E3020. [PMID: 30463184 PMCID: PMC6278474 DOI: 10.3390/molecules23113020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
The mass spectrometry (MS) has been widely used for profiling chemical components of traditional Chinese medicine (TCM). However, there are few studies reporting quality control of TCM based on mass spectrometry fingerprint (MSF) due to its complicated operation and high cost. The aim of this study was to extend the application of MSF for quality evaluation of TCM. In this study, an MSF based on single quadrupole mass spectrometry method was established, and was successfully used for the quality control of Venenum bufonis (VB), a famous TCM which was used clinically for cancer treatment in China. The results showed that the superiority of MSF for more chemical information exposure and the finding of more potential chemical markers (eight versus four) compared with the traditional photo-diode array (a kind of ultra violet detector, PDA). Besides, the performance of MSF was also validated by similarity and principle component analysis (PCA) of MS data acquired on two other mass spectrometry (low-resolution, triple quadrupole, QQQ, and high-resolution, quadruple time-of-flight, Q-TOF), showing high consistency with QQQ and Q-TOF, but robustness with few parameters' settings. Based on our study, MSF could be widely applied for the quality control of TCM.
Collapse
Affiliation(s)
- Wenlong Wei
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Xia Wang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Jinjun Hou
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Changliang Yao
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Zijin Feng
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Jianqing Zhang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Sumei Han
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Yanping Deng
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Yong Huang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Wanying Wu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| | - Dean Guo
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203 China.
| |
Collapse
|
23
|
Simultaneous quantification of lipopeptide isoforms by UPLC-MS in the fermentation broth from Bacillus subtilis CNPMS22. Anal Bioanal Chem 2018; 410:6827-6836. [PMID: 30074087 DOI: 10.1007/s00216-018-1281-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 01/28/2023]
Abstract
The rapid and accurate quantification of lipopeptide families in biological samples are challenging. We present the development and validation of a method for simultaneous quantification of three families of lipopeptides (iturins, fengycins, and surfactins) and their isoforms, as well as the homologous series. The method was optimized in UPLC-MS for a column temperature at 65 °C, injection volume of 5 μL, and sample temperature of 10 °C. The SIM mode was used for detection and quantification of lipopeptides exhibiting ions [M + H]+ and [M + 2H]2+. Since the maximum mass detection threshold of the equipment is 1250 Da and the fengycins have ions between 1435 and 1505 Da, the ions [M + 2H]2+ were chosen for fengycin identification. The monitored ions were as follows: m/z 1043.5, 1057.5, 1071.5, 718.3, 725.4, 739.4, 732.4, 746.4, 753.4, 1008.6, 1022.6, and 1036.6. The compounds were separated by reverse-phase chromatography using a C18 analytical column in a total time of 19 min. Standard curves were linear with rw 0.99 for all analytes. Intra- and inter-day precision for samples (50, 250, and 750 μg L-1) were within recommended limits. The proposed analytical method was capable of simultaneously quantifying 12 isoforms and homologous series of lipopeptide families in biological samples, thus making it an important industrial tool in the evaluation of lipopeptide production processes. Graphical abstract ᅟ.
Collapse
|
24
|
Yang W, Zhang Y, Wu W, Huang L, Guo D, Liu C. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines. Acta Pharm Sin B 2017; 7:439-446. [PMID: 28752028 PMCID: PMC5518652 DOI: 10.1016/j.apsb.2017.04.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 10/25/2022] Open
Abstract
Traditional Chinese medicine (TCM) has played a pivotal role in maintaining the health of Chinese people and is now gaining increasing acceptance around the global scope. However, TCM is confronting more and more concerns with respect to its quality. The intrinsic "multicomponent and multitarget" feature of TCM necessitates the establishment of a unique quality and bioactivity evaluation system, which is different from that of the Western medicine. However, TCM is investigated essentially as "herbal medicine" or "natural product", and the pharmacopoeia quality monographs are actually chemical-markers-based, which can ensure the consistency only in the assigned chemical markers, but, to some extent, have deviated from the basic TCM theory. A concept of "quality marker" (Q-marker), following the "property-effect-component" theory, is proposed. The establishment of Q-marker integrates multidisciplinary technologies like natural products chemistry, analytical chemistry, bionics, chemometrics, pharmacology, systems biology, and pharmacodynamics, etc. Q-marker-based fingerprint and multicomponent determination conduce to the construction of more scientific quality control system of TCM. This review delineates the background, definition, and properties of Q-marker, and the associated technologies applied for its establishment. Strategies and approaches for establishing Q-marker-based TCM quality control system are presented and highlighted with a few TCM examples.
Collapse
|