1
|
Landeros-Rivera B, Hernández-Trujillo J. Control of Molecular Conformation and Crystal Packing of Biphenyl Derivatives. Chempluschem 2022; 87:e202100492. [PMID: 34984848 DOI: 10.1002/cplu.202100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This Review presents a discussion of the conformation of biphenyl derivatives in different chemical environments. The interplay between aromatic stabilization and steric repulsion, normally considered to explain the conformation of the molecule, is contrasted with the interpretation provided by models not based on molecular orbitals. The electronic control of conformation by means of appropriate hydrogen substitution is discussed by examples taken from chemistry and molecular electronics. Supramolecular synthons involving biphenyl are critically analyzed in terms of the molecular conformation, crystal packing and intermolecular forces. Some directions for future research on the control of the conformation of biphenyls are also presented.
Collapse
Affiliation(s)
- Bruno Landeros-Rivera
- Sorbonne Université & CNRS, Laboratoire de Chimie Théorique, UMR CNRS 7616, 4 Place Jussieu, 75005, Paris, France
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
2
|
Ilyin IY, Mirzaeva IV, Sukhikh TS, Bonegardt DV, Basova TV. STUDY OF THE CORRELATION BETWEEN THE STRUCTURE OF THE [Ir(сod)Cp] COMPLEX AND ITS THERMAL PROPERTIES. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Two Faces of Water in the Formation and Stabilization of Multicomponent Crystals of Zwitterionic Drug-Like Compounds. Symmetry (Basel) 2021. [DOI: 10.3390/sym13030425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two new hydrated multicomponent crystals of zwitterionic 2-aminonicotinic acid with maleic and fumaric acids have been obtained and thoroughly characterized by a variety of experimental (X-ray analysis and terahertz Raman spectroscopy) and theoretical periodic density functional theory calculations, followed by Bader analysis of the crystalline electron density) techniques. It has been found that the Raman-active band in the region of 300 cm−1 is due to the vibrations of the intramolecular O-H...O bond in the maleate anion. The energy/enthalpy of the intermolecular hydrogen bonds was estimated by several empirical approaches. An analysis of the interaction networks reflects the structure-directing role of the water molecule in the examined multicomponent crystals. A general scheme has been proposed to explain the proton transfer between the components during the formation of multicomponent crystals in water. Water molecules were found to play the key role in this process, forming a “water wire” between the COOH group of the dicarboxylic acid and the COO– group of the zwitterion and the rendering crystal lattice of the considered multicomponent crystals.
Collapse
|
4
|
Voronin AP, Surov AO, Churakov AV, Parashchuk OD, Rykounov AA, Vener MV. Combined X-ray Crystallographic, IR/Raman Spectroscopic, and Periodic DFT Investigations of New Multicomponent Crystalline Forms of Anthelmintic Drugs: A Case Study of Carbendazim Maleate. Molecules 2020; 25:E2386. [PMID: 32455564 PMCID: PMC7287603 DOI: 10.3390/molecules25102386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Synthesis of multicomponent solid forms is an important method of modifying and fine-tuning the most critical physicochemical properties of drug compounds. The design of new multicomponent pharmaceutical materials requires reliable information about the supramolecular arrangement of molecules and detailed description of the intermolecular interactions in the crystal structure. It implies the use of a combination of different experimental and theoretical investigation methods. Organic salts present new challenges for those who develop theoretical approaches describing the structure, spectral properties, and lattice energy Elatt. These crystals consist of closed-shell organic ions interacting through relatively strong hydrogen bonds, which leads to Elatt > 200 kJ/mol. Some technical problems that a user of periodic (solid-state) density functional theory (DFT) programs encounters when calculating the properties of these crystals still remain unsolved, for example, the influence of cell parameter optimization on the Elatt value, wave numbers, relative intensity of Raman-active vibrations in the low-frequency region, etc. In this work, various properties of a new two-component carbendazim maleate crystal were experimentally investigated, and the applicability of different DFT functionals and empirical Grimme corrections to the description of the obtained structural and spectroscopic properties was tested. Based on this, practical recommendations were developed for further theoretical studies of multicomponent organic pharmaceutical crystals.
Collapse
Affiliation(s)
- Alexander P. Voronin
- Department of Physical Chemistry of Drugs, G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia; (A.P.V.); (A.O.S.)
| | - Artem O. Surov
- Department of Physical Chemistry of Drugs, G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia; (A.P.V.); (A.O.S.)
| | - Andrei V. Churakov
- Department of Crystal Chemistry and X-ray Diffraction, N.S. Kurnakov Institute of General and Inorganic Chemistry of RAS, 119991 Moscow, Russia;
| | - Olga D. Parashchuk
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Alexey A. Rykounov
- Theoretical Department, FSUE “RFNC-VNIITF Named after Academ. E.I. Zababakhin”, 456770 Snezhinsk, Russia;
| | - Mikhail V. Vener
- Department of Quantum Chemistry, D. Mendeleev University of Chemical Technology, 125047 Moscow, Russia
| |
Collapse
|
5
|
Linnemannstöns M, Schwabedissen J, Schultz AA, Neumann B, Stammler HG, Berger RJF, Mitzel NW. London dispersion-driven hetero-aryl-aryl interactions in 1,2-diaryldisilanes. Chem Commun (Camb) 2020; 56:2252-2255. [PMID: 31993595 DOI: 10.1039/c9cc09851h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-covalent aryl-aryl interactions for the molecular structures of three 1,2-diaryltetramethyldisilanes X5C6-(SiMe2)2-C6Y5 (X ≠ Y; X, Y = H, F, Cl) were studied by single crystal X-ray and gas electron diffraction as well as by SAPT calculations. Aryl-aryl interactions cause all to adopt exclusively rather untypical eclipsed syn-conformers in the gas phase, and C6F5-(SiMe2)2-C6Cl5 also in the solid state.
Collapse
Affiliation(s)
- Marvin Linnemannstöns
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Jan Schwabedissen
- Division of Materials Chemistry, Paris-Lodron-Universität Salzburg, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria
| | - Aaron A Schultz
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Beate Neumann
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Hans-Georg Stammler
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Raphael J F Berger
- Division of Materials Chemistry, Paris-Lodron-Universität Salzburg, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria
| | - Norbert W Mitzel
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
6
|
Melikova SM, Voronin AP, Panek J, Frolov NE, Shishkina AV, Rykounov AA, Tretyakov PY, Vener MV. Interplay of π-stacking and inter-stacking interactions in two-component crystals of neutral closed-shell aromatic compounds: periodic DFT study. RSC Adv 2020; 10:27899-27910. [PMID: 35519116 PMCID: PMC9055576 DOI: 10.1039/d0ra04799f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/13/2020] [Indexed: 01/19/2023] Open
Abstract
This paper bridges the gap between high-level ab initio computations of gas-phase models of 1 : 1 arene–arene complexes and calculations of the two-component (binary) organic crystals using atom–atom potentials. The studied crystals consist of electron-rich and electron-deficient compounds, which form infinite stacks (columns) of heterodimers. The sublimation enthalpy of crystals has been evaluated by DFT periodic calculations, while intermolecular interactions have been characterized by Bader analysis of the periodic electronic density. The consideration of aromatic compounds without a dipole moment makes it possible to reveal the contribution of quadrupole–quadrupole interactions to the π-stacking energy. These interactions are significant for heterodimers formed by arenes with more than 2 rings, with absolute values of the traceless quadrupole moment (Qzz) larger than 10 D Å. The further aggregation of neighboring stacks is due to the C–H⋯F interactions in arene/perfluoroarene crystals. In crystals consisting of arene and an electron-deficient compound such as pyromellitic dianhydride, aggregation occurs due to the C–H⋯O interactions. The C–H⋯F and C–H⋯O inter-stacking interactions make the main contribution to the sublimation enthalpy, which exceeds 150 kJ mol−1 for the two-component crystals formed by arenes with more than 2 rings. The interplay of π-stacking and inter-stacking interactions in two-component organic crystals without conventional hydrogen bonds.![]()
Collapse
|
7
|
Levina EO, Chernyshov IY, Voronin AP, Alekseiko LN, Stash AI, Vener MV. Solving the enigma of weak fluorine contacts in the solid state: a periodic DFT study of fluorinated organic crystals. RSC Adv 2019; 9:12520-12537. [PMID: 35515880 PMCID: PMC9063672 DOI: 10.1039/c9ra02116g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023] Open
Abstract
The nature and strength of weak interactions with organic fluorine in the solid state are revealed by periodic density functional theory (periodic DFT) calculations coupled with experimental data on the structure and sublimation thermodynamics of crystalline organofluorine compounds. To minimize other intermolecular interactions, several sets of crystals of perfluorinated and partially fluorinated organic molecules are considered. This allows us to establish the theoretical levels providing an adequate description of the metric and electron-density parameters of the C–F⋯F–C interactions and the sublimation enthalpy of crystalline perfluorinated compounds. A detailed comparison of the C–F⋯F–C and C–H⋯F–C interactions is performed using the relaxed molecular geometry in the studied crystals. The change in the crystalline packing of aromatic compounds during their partial fluorination points to the structure-directing role of C–H⋯F–C interactions due to the dominant electrostatic contribution to these contacts. C–H⋯F–C and C–H⋯O interactions are found to be identical in nature and comparable in energy. The factors that determine the contribution of these interactions to the crystal packing are revealed. The reliability of the results is confirmed by considering the superposition of the electrostatic potential and electron density gradient fields in the area of the investigated intermolecular interactions. The nature and strength of weak C–H⋯F–C and C–F⋯F–C interactions and their role in organofluorine molecular crystals were studied using periodic DFT coupled with CSD data mining and experimental sublimation enthalpies.![]()
Collapse
Affiliation(s)
- Elena O. Levina
- Moscow Institute of Physics and Technology
- Russia
- Research Centre of Biotechnology
- Russian Academy of Sciences
- Moscow
| | | | | | | | | | | |
Collapse
|
8
|
Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCRJ 2017; 4:575-587. [PMID: 28932404 PMCID: PMC5600021 DOI: 10.1107/s205225251700848x] [Citation(s) in RCA: 592] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/07/2017] [Indexed: 05/22/2023]
Abstract
The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol-1 for pairwise energies that span a range of 3.75 MJ mol-1. The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools.
Collapse
Affiliation(s)
- Campbell F. Mackenzie
- School of Molecular Sciences, University of Western Australia, Perth, 6009, Australia
| | - Peter R. Spackman
- School of Molecular Sciences, University of Western Australia, Perth, 6009, Australia
| | - Dylan Jayatilaka
- School of Molecular Sciences, University of Western Australia, Perth, 6009, Australia
| | - Mark A. Spackman
- School of Molecular Sciences, University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
9
|
Vamhindi BSDR, Karton A. Can DFT and ab initio methods adequately describe binding energies in strongly interacting C6X6⋯C2X π–π complexes? Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Díaz-Gómez DG, Galindo-Murillo R, Cortés-Guzmán F. The Role of the DNA Backbone in Minor-Groove Ligand Binding. Chemphyschem 2017; 18:1909-1915. [PMID: 28463411 DOI: 10.1002/cphc.201700260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 11/08/2022]
Abstract
Molecular recognition between ligands and nucleic acids plays a key role in therapeutic activity. Some molecules interact with DNA in a nonbonded manner through intercalation or through the DNA grooves. The recognition of minor-groove binders is attributed to a set of hydrogen-bonding interactions between the binders and the hydrogen-bond-acceptor groups on the groove floor and walls. It is commonly considered that interactions with the sugar groups of the DNA backbone are insignificant and do not contribute to the binding affinity or the specificity. However, our group has found that the deoxyribose rings have a central function in the recognition and the intercalation of metal complexes into DNA. Herein, we determined the specific interactions between the binder CGP 40215A and the minor-groove atoms, based on the local properties of electron density. We found that specific interactions between the deoxyribose moiety within the backbone of DNA and the binder are essential for molecular recognition, and they are responsible for one third of the interaction energy.
Collapse
Affiliation(s)
- Dalia G Díaz-Gómez
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Col. Copilco Bajo, 4510, Mexico, Mexico
| | | | - Fernando Cortés-Guzmán
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Col. Copilco Bajo, 4510, Mexico, Mexico
| |
Collapse
|