1
|
Rahimi A, Dahlgren J, Faiyaz K, Stafslien SJ, VanderWal L, Bahr J, Safaripour M, Finlay JA, Clare AS, Webster DC. Amphiphilic Balance: Effect of the Hydrophilic-Hydrophobic Ratio on Fouling-Release Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1117-1129. [PMID: 38115197 DOI: 10.1021/acs.langmuir.3c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
This study demonstrated the importance of identifying the optimal balance of hydrophilic and hydrophobic moieties in amphiphilic coatings to achieve fouling-release (FR) performance that surpasses that of traditional hydrophobic marine coatings. While there have been many reports on fouling-release properties of amphiphilic surfaces, the offered understanding is often limited. Hence, this work is focused on further understanding of the amphiphilic surfaces. Poly(ethylene glycol) (PEG) and polydimethylsiloxane (PDMS) were used to create a series of noncross-linked amphiphilic additives that were then added to a hydrophobic-designed siloxane-polyurethane (SiPU) FR system. After being characterized by ATR-FTIR, XPS, contact angle analysis, and AFM, the FR performance was evaluated by using different marine organisms. The assessments showed that the closer the hydrophilic and hydrophobic moieties in a system reached a relatively equalized level, the more desirable the FR performance of the coating system became. A balanced ratio of hydrophilicity-hydrophobicity in the system at around 10-15 wt % of each component had the best FR performance and was comparable to or better than commercial FR coatings.
Collapse
Affiliation(s)
- AliReza Rahimi
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Joseph Dahlgren
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kinza Faiyaz
- Department of Statistics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Shane J Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Lyndsi VanderWal
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - James Bahr
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Maryam Safaripour
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
2
|
Medhi R, Cintora A, Guazzelli E, Narayan N, Leonardi AK, Galli G, Oliva M, Pretti C, Finlay JA, Clare AS, Martinelli E, Ober CK. Nitroxide-Containing Amphiphilic Random Terpolymers for Marine Antifouling and Fouling-Release Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11150-11162. [PMID: 36802475 DOI: 10.1021/acsami.2c23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two types of amphiphilic random terpolymers, poly(ethylene glycol methyl ether methacrylate)-ran-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-ran-poly(polydimethyl siloxane methacrylate) (PEGMEMA-r-PTMA-r-PDMSMA), were synthesized and evaluated for antifouling (AF) and fouling-release (FR) properties using diverse marine fouling organisms. In the first stage of production, the two respective precursor amine terpolymers containing (2,2,6,6-tetramethyl-4-piperidyl methacrylate) units (PEGMEMA-r-PTMPM-r-PDMSMA) were synthesized by atom transfer radical polymerization using various comonomer ratios and two initiators: alkyl halide and fluoroalkyl halide. In the second stage, these were selectively oxidized to introduce nitroxide radical functionalities. Finally, the terpolymers were incorporated into a PDMS host matrix to create coatings. AF and FR properties were examined using the alga Ulva linza, the barnacle Balanus improvisus, and the tubeworm Ficopomatus enigmaticus. The effects of comonomer ratios on surface properties and fouling assay results for each set of coatings are discussed in detail. There were marked differences in the effectiveness of these systems against the different fouling organisms. The terpolymers had distinct advantages over monopolymeric systems across the different organisms, and the nonfluorinated PEG and nitroxide combination was identified as the most effective formulation against B. improvisus and F. enigmaticus.
Collapse
Affiliation(s)
- Riddhiman Medhi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alicia Cintora
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Nila Narayan
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Amanda K Leonardi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
| | - Carlo Pretti
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Polyethylene Glycol-b-poly(trialkylsilyl methacrylate-co-methyl methacrylate) Hydrolyzable Block Copolymers for Eco-Friendly Self-Polishing Marine Coatings. Polymers (Basel) 2022; 14:polym14214589. [PMID: 36365584 PMCID: PMC9656287 DOI: 10.3390/polym14214589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrolyzable block copolymers consisting of a polyethylene glycol (PEG) first block and a random poly(trialkylsilyl methacrylate (TRSiMA, R = butyl, isopropyl)-co-methyl methacrylate (MMA)) second block were synthesized by RAFT polymerization. Two PEGs with different molar masses (Mn = 750 g/mol (PEG1) and 2200 g/mol (PEG2)) were used as macro-chain transfer agents and the polymerization conditions were set in order to obtain copolymers with a comparable mole content of trialkylsilyl methacrylate (~30 mole%) and two different PEG mole percentages of 10 and 30 mole%. The hydrolysis rates of PEG-b-(TRSiMA-co-MMA) in a THF/basic (pH = 10) water solution were shown to drastically depend on the nature of the trialkylsilyl groups and the mole content of the PEG block. Films of selected copolymers were also found to undergo hydrolysis in artificial seawater (ASW), with tunable erosion kinetics that were modulated by varying the copolymer design. Measurements of the advancing and receding contact angles of water as a function of the immersion time in the ASW confirmed the ability of the copolymer film surfaces to respond to the water environment as a result of two different mechanisms: (i) the hydrolysis of the silylester groups that prevailed in TBSiMA-based copolymers; and (ii) a major surface exposure of hydrophilic PEG chains that was predominant for TPSiMA-based copolymers. AFM analysis revealed that the surface nano-roughness increased upon immersion in ASW. The erosion of copolymer film surfaces resulted in a self-polishing, antifouling behavior against the diatom Navicula salinicola. The amount of settled diatoms depended on the hydrolysis rate of the copolymers.
Collapse
|
4
|
Bueno-Alejo C, Santana Vega M, Chaplin AK, Farrow C, Axer A, Burley GA, Dominguez C, Kara H, Paschalis V, Tubasum S, Eperon IC, Clark AW, Hudson AJ. Surface Passivation with a Perfluoroalkane Brush Improves the Precision of Single-Molecule Measurements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49604-49616. [PMID: 36306432 PMCID: PMC9650645 DOI: 10.1021/acsami.2c16647] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Single-molecule imaging is invaluable for investigating the heterogeneous behavior and interactions of biological molecules. However, an impediment to precise sampling of single molecules is the irreversible adsorption of components onto the surfaces of cover glasses. This causes continuous changes in the concentrations of different molecules dissolved or suspended in the aqueous phase from the moment a sample is dispensed, which will shift, over time, the position of chemical equilibria between monomeric and multimeric components. Interferometric scattering microscopy (iSCAT) is a technique in the single-molecule toolkit that has the capability to detect unlabeled proteins and protein complexes both as they adsorb onto and desorb from a glass surface. Here, we examine the reversible and irreversible interactions between a number of different proteins and glass via analysis of the adsorption and desorption of protein at the single-molecule level. Furthermore, we present a method for surface passivation that virtually eliminates irreversible adsorption while still ensuring the residence time of molecules on surfaces is sufficient for detection of adsorption by iSCAT. By grafting high-density perfluoroalkane brushes on cover-glass surfaces, we observe approximately equal numbers of adsorption and desorption events for proteins at the measurement surface (±1%). The fluorous-aqueous interface also prevents the kinetic trapping of protein complexes and assists in establishing a thermodynamic equilibrium between monomeric and multimeric components. This surface passivation approach is valuable for in vitro single-molecule experiments using iSCAT microscopy because it allows for continuous monitoring of adsorption and desorption of protein without either a decline in detection events or a change in sample composition due to the irreversible binding of protein to surfaces.
Collapse
Affiliation(s)
- Carlos
J. Bueno-Alejo
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Marina Santana Vega
- School
of Engineering, Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, United Kingdom
| | - Amanda K. Chaplin
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Chloe Farrow
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Alexander Axer
- Strathclyde
Centre for Molecular Bioscience & Department of Pure & Applied
Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Glenn A. Burley
- Strathclyde
Centre for Molecular Bioscience & Department of Pure & Applied
Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Cyril Dominguez
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Hesna Kara
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Vasileios Paschalis
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Sumera Tubasum
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Ian C. Eperon
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Alasdair W. Clark
- School
of Engineering, Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, United Kingdom
| | - Andrew J. Hudson
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| |
Collapse
|
5
|
Guazzelli E, Lusiani N, Monni G, Oliva M, Pelosi C, Wurm FR, Pretti C, Martinelli E. Amphiphilic Polyphosphonate Copolymers as New Additives for PDMS-Based Antifouling Coatings. Polymers (Basel) 2021; 13:3414. [PMID: 34641229 PMCID: PMC8512855 DOI: 10.3390/polym13193414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023] Open
Abstract
Poly(ethyl ethylene phosphonate)-based methacrylic copolymers containing polysiloxane methacrylate (SiMA) co-units are proposed as surface-active additives as alternative solutions to the more investigated polyzwitterionic and polyethylene glycol counterparts for the fabrication of novel PDMS-based coatings for marine antifouling applications. In particular, the same hydrophobic SiMA macromonomer was copolymerized with a methacrylate carrying a poly(ethyl ethylene phosphonate) (PEtEPMA), a phosphorylcholine (MPC), and a poly(ethylene glycol) (PEGMA) side chain to obtain non-water soluble copolymers with similar mole content of the different hydrophilic units. The hydrolysis of poly(ethyl ethylene phosphonate)-based polymers was also studied in conditions similar to those of the marine environment to investigate their potential as erodible films. Copolymers of the three classes were blended into a condensation cure PDMS matrix in two different loadings (10 and 20 wt%) to prepare the top-coat of three-layer films to be subjected to wettability analysis and bioassays with marine model organisms. Water contact angle measurements showed that all of the films underwent surface reconstruction upon prolonged immersion in water, becoming much more hydrophilic. Interestingly, the extent of surface modification appeared to be affected by the type of hydrophilic units, showing a tendency to increase according to the order PEGMA < MPC < PEtEPMA. Biological tests showed that Ficopomatus enigmaticus release was maximized on the most hydrophilic film containing 10 wt% of the PEtEP-based copolymer. Moreover, coatings with a 10 wt% loading of the copolymer performed better than those containing 20 wt% for the removal of both Ficopomatus and Navicula, independent from the copolymer nature.
Collapse
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| | - Niccolò Lusiani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| | - Gianfranca Monni
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy; (G.M.); (C.P.)
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata ‘‘G. Bacci’’, 57128 Livorno, Italy;
| | - Chiara Pelosi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy; (G.M.); (C.P.)
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| |
Collapse
|
6
|
Guazzelli E, Perondi F, Criscitiello F, Pretti C, Oliva M, Casu V, Maniero F, Gazzera L, Galli G, Martinelli E. New amphiphilic copolymers for PDMS-based nanocomposite films with long-term marine antifouling performance. J Mater Chem B 2020; 8:9764-9776. [PMID: 33021610 DOI: 10.1039/d0tb01905d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amphiphilic methacrylate copolymers (Si-co-EF) containing polysiloxane (Si) and mixed poly(oxyethylene)-perfluorohexyl (EF) side chains were synthesized with different compositions and used together with polysiloxane-functionalized nanoparticles as additives of condensation cured nanocomposite poly(siloxane) films. The mechanical properties of the nanocomposite films were consistent with the elastomeric behavior of the poly(siloxane) matrix without significant detriment from either the copolymer or the nanoparticles. Films were found to be markedly hydrophobic and liphophobic, with both properties being maximized at an intermediate content of EF units. The high enrichment in fluorine at the film surface was proven by angle-resolved X-ray photoelectron spectroscopy (AR-XPS). Long-term marine antifouling performance was evaluated in field immersion trials of test panels for up to 10 months of immersion. Both nanoparticles and amphiphilic copolymer were found to be highly effective in reducing the colonization of foulants, especially hard macrofoulants, when compared with control panels. Lowest percentage of surface coverage was 20% after 10 months of immersion (films with 4 wt% copolymer and 0.5 wt% nanoparticles), which was further decreased to less than 10% after exposure to a water jet for 10 s. The enhanced antifouling properties of coatings containing both nanoparticles and copolymer were confirmed by laboratory assays against the polychaete Ficopomatus enigmaticus and the diatom Navicula salinicola.
Collapse
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| | - Federico Perondi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy and Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", 57128 Livorno, Italy
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", 57128 Livorno, Italy
| | - Valentina Casu
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | | | | | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| |
Collapse
|
7
|
Guazzelli E, Martinelli E, Pelloquet L, Briand JF, Margaillan A, Bunet R, Galli G, Bressy C. Amphiphilic hydrolyzable polydimethylsiloxane- b-poly(ethyleneglycol methacrylate- co-trialkylsilyl methacrylate) block copolymers for marine coatings. II. Antifouling laboratory tests and field trials. BIOFOULING 2020; 36:378-388. [PMID: 32425065 DOI: 10.1080/08927014.2020.1762868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) elastomer coatings containing an amphiphilic hydrolyzable diblock copolymer additive were prepared and their potential as marine antifouling and antiadhesion materials was tested. The block copolymer additive consisted of a PDMS first block and a random poly(trialkylsilyl methacrylate (TRSiMA, R = butyl, isopropyl)-co-poly(ethyleneglycol) methacrylate (PEGMA) copolymer second block. PDMS-b-TRSiMA block copolymer additives without PEGMA units were also used as additives. The amphiphilic character of the coating surface was assessed in water using the captive air bubble technique for measurements of static and dynamic contact angles. The attachment of macro- and microorganisms on the coatings was evaluated by field tests and by performing adhesion tests to the barnacle Amphibalanus amphitrite and the green alga Ulva rigida. All the additive-based PDMS coatings showed better antiadhesion properties to A. amphitrite larvae than to U. rigida spores. Field tests provided meaningful information on the antifouling and fouling release activity of coatings over an immersion period of 23 months.
Collapse
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Lucile Pelloquet
- Laboratoire MAPIEM, E.A.4323, SeaTech Ecole d'Ingénieur, Université de Toulon, Toulon Cedex 9, France
| | - Jean-François Briand
- Laboratoire MAPIEM, E.A.4323, SeaTech Ecole d'Ingénieur, Université de Toulon, Toulon Cedex 9, France
| | - André Margaillan
- Laboratoire MAPIEM, E.A.4323, SeaTech Ecole d'Ingénieur, Université de Toulon, Toulon Cedex 9, France
| | - Robert Bunet
- Institut Océanographique Paul Ricard, Six-Fours-les-Plages, France
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Christine Bressy
- Laboratoire MAPIEM, E.A.4323, SeaTech Ecole d'Ingénieur, Université de Toulon, Toulon Cedex 9, France
| |
Collapse
|
8
|
Mishra MK, Schöttle C, Van Dyk A, Beshah K, Bohling JC, Roper JA, Radke CJ, Katz A. Wettability Reversal of Hydrophobic Pigment Particles Comprising Nanoscale Organosilane Shells: Concentrated Aqueous Dispersions and Corrosion-Resistant Waterborne Coatings. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44851-44864. [PMID: 31657200 DOI: 10.1021/acsami.9b14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate the synthesis of polysiloxane-modified inorganic-oxide nanoparticles comprising a TiO2-based pigment (Ti-Pure R-706), which undergo drastic wettability reversal from a hydrophilic wet state to a hydrophobic state upon drying. Furthermore, the dry hydrophobic pigment particles can be reversibly converted back to a hydrophilic form by the application of high shear aqueous milling. Our synthetic approach involves first condensing the cross-linking monomer CH3Si(OH)3 onto the surface of Ti-Pure R-706 at pH 9.5 ± 0.2 in an aqueous suspension. After drying this surface-modified material in the presence of a polyanionic dispersant so as to preserve the primary particle size via dynamic light scattering, it is trimethylsilyl-capped with (CH3)3SiOH, which consumes some residual Si-OH functionalities, and washed to remove all dispersant and excess reagents. Transmission electron microscopy demonstrates a ∼6 nm polysiloxane coating uniformly surrounding the surface of the pigment particle. A 70 wt % (37 vol %) concentrated aqueous slurry of the hydrophobically modified pigment particles prepared in the absence of dispersant exhibits rheological characteristics that are nearly the same as an aqueous dispersion of native unmodified hydrophilic Ti-Pure R-706 comprising an optimal amount of the organic anionic dispersant. It is also possible to synthesize dispersions without the use of an added surfactant and/or dispersant at even higher solid concentrations of up to 75 wt % (43 vol %) in water, conditions at which even the hydrophilic native Ti-Pure R-706 oxide pigment yields a gel-like paste in the absence of a dispersant. Films prepared by drying an aqueous suspension of these pigment particles exhibited a hydrophobic contact angle of ∼125°. When acrylic-based waterborne coatings were prepared comprising these surface-modified Ti Pure R-706 pigments, they showed excellent corrosion protection of a mild steel substrate. These data point to a wettability reversal in which the particles change from hydrophobic to hydrophilic upon high-shear aqueous milling and vice versa upon drying. 29Si CP/MAS NMR spectroscopy highlights the importance of flexibility of the polysiloxane coating for achieving this wettability reversal, a result that emphasizes the importance of surface reconstruction.
Collapse
Affiliation(s)
- Manish K Mishra
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 201 Gilman Hall, Berkeley , California 94720-1462 , United States
| | - Christian Schöttle
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 201 Gilman Hall, Berkeley , California 94720-1462 , United States
| | - Antony Van Dyk
- Dow Chemical Company , Midland , Michigan 48674 , United States
| | - Kebede Beshah
- Dow Chemical Company , Midland , Michigan 48674 , United States
| | - James C Bohling
- Dow Chemical Company , Midland , Michigan 48674 , United States
| | - John A Roper
- Dow Chemical Company , Midland , Michigan 48674 , United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 201 Gilman Hall, Berkeley , California 94720-1462 , United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 201 Gilman Hall, Berkeley , California 94720-1462 , United States
| |
Collapse
|
9
|
Leonardi AK, Ober CK. Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. Annu Rev Chem Biomol Eng 2019; 10:241-264. [DOI: 10.1146/annurev-chembioeng-060718-030401] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In marine industries, the accumulation of organic matter and marine organisms on ship hulls and instruments limits performance, requiring frequent maintenance and increasing fuel costs. Current coatings technology to combat this biofouling relies heavily on the use of toxic, biocide-containing paints. These pose a serious threat to marine ecosystems, affecting both target and nontarget organisms. Innovation in the design of polymers offers an excellent platform for the development of alternatives, but the creation of a broad-spectrum, nontoxic material still poses quite a hurdle for researchers. Surface chemistry, physical properties, durability, and attachment scheme have been shown to play a vital role in the construction of a successful coating. This review explores why these characteristics are important and how recent research accounts for them in the design and synthesis of new environmentally benign antifouling and fouling release materials.
Collapse
Affiliation(s)
- Amanda K. Leonardi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Christopher K. Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
10
|
Surface Segregation of Amphiphilic PDMS-Based Films Containing Terpolymers with Siloxane, Fluorinated and Ethoxylated Side Chains. COATINGS 2019. [DOI: 10.3390/coatings9030153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
(Meth)acrylic terpolymers carrying siloxane (Si), fluoroalkyl (F) and ethoxylated (EG) side chains were synthesized with comparable molar compositions and different lengths of the Si and EG side chains, while the length of the fluorinated side chain was kept constant. Such terpolymers were used as surface-active modifiers of polydimethylsiloxane (PDMS)-based films with a loading of 4 wt%. The surface chemical compositions of both the films and the pristine terpolymers were determined by angle-resolved X-ray photoelectron spectroscopy (AR-XPS) at different photoemission angles. The terpolymer was effectively segregated to the polymer−air interface of the films independent of the length of the constituent side chains. However, the specific details of the film surface modification depended upon the chemical structure of the terpolymer itself. The exceptionally high enrichment in F chains at the surface caused the accumulation of EG chains at the surface as well. The response of the films to the water environment was also proven to strictly depend on the type of terpolymer contained. While terpolymers with shorter EG chains appeared not to be affected by immersion in water for seven days, those containing longer EG chains underwent a massive surface reconstruction.
Collapse
|
11
|
La Manna P, Musto P, Galli G, Martinelli E. In Situ FT-IR Spectroscopy Investigation of the Water Sorption of Amphiphilic PDMS Crosslinked Networks. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pietro La Manna
- Institute of Chemistry and Technology of Polymers; National Research Council of Italy; 80078 Pozzuoli Naples Italy
| | - Pellegrino Musto
- Institute of Chemistry and Technology of Polymers; National Research Council of Italy; 80078 Pozzuoli Naples Italy
| | - Giancarlo Galli
- Department of Chemistry and Industrial Chemistry; University of Pisa; 56124 Pisa Italy
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry; University of Pisa; 56124 Pisa Italy
| |
Collapse
|
12
|
Galli G, Martinelli E. Amphiphilic Polymer Platforms: Surface Engineering of Films for Marine Antibiofouling. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600704] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/31/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM; Università di Pisa; 56124 Pisa Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM; Università di Pisa; 56124 Pisa Italy
| |
Collapse
|
13
|
Zhu P, Meng W, Huang Y. Synthesis and antibiofouling properties of crosslinkable copolymers grafted with fluorinated aromatic side chains. RSC Adv 2017. [DOI: 10.1039/c6ra26409c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To obtain highly effective antifouling coatings, ternary copolymers grafted with short fluoroalkyl or perfluoropolyether modified fluorinated aromatic side chains and cross-linkable functional groups were prepared via radical polymerization.
Collapse
Affiliation(s)
- Pengcheng Zhu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- 201620 Shanghai
- China
| | - Weidong Meng
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- 201620 Shanghai
- China
| | - Yangen Huang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- 201620 Shanghai
- China
| |
Collapse
|