1
|
Ye ZT, Tseng SF, Tsou SX, Tsai CW. Spectral analysis with highly collimated mini-LEDs as light sources for quantitative detection of direct bilirubin. DISCOVER NANO 2024; 19:13. [PMID: 38238545 PMCID: PMC10796896 DOI: 10.1186/s11671-024-03957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Because the human eye cannot visually detect the results of direct bilirubin test papers accurately and quantitatively, this study proposes four different highly collimated mini light-emitting diodes (HC mini-LEDs) as light sources for detection. First, different concentrations of bilirubin were oxidized to biliverdin by FeCl3 on the test paper, and pictures were obtained with a smartphone. Next, the red, green, and blue (RGB) channels of the pictures were separated to average grayscale values, and their linear relationship with the direct bilirubin concentration was analyzed to detect bilirubin on the test paper noninvasively and quantitatively. The experimental results showed that when green HC mini-LEDs were used as the light sources and image analysis was performed using the G channel, for a direct bilirubin concentration range of 0.1-2 mg/dL, the G channel determination coefficient (R2) reached 0.9523 and limit of detection was 0.459 mg/dL. The detection method proposed herein has advantages such as rapid analysis, noninvasive detection, and digitization according to RGB grayscale changes in the images of the detection test paper.
Collapse
Affiliation(s)
- Zhi Ting Ye
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC.
| | - Shen Fu Tseng
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC
| | - Shang Xuan Tsou
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC
| | - Chun Wei Tsai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan, ROC.
| |
Collapse
|
2
|
Guirguis N, Bertrand A, Rose CF, Matoori S. 175 Years of Bilirubin Testing: Ready for Point-of-Care? Adv Healthc Mater 2023; 12:e2203380. [PMID: 37035945 PMCID: PMC11468846 DOI: 10.1002/adhm.202203380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/26/2023] [Indexed: 04/11/2023]
Abstract
Bilirubin was first detected in blood in 1847 and since then has become one of the most widely used biomarkers for liver disease. Clinical routine bilirubin testing is performed at the hospital laboratory, and the gold standard colorimetric test is prone to interferences. The absence of a bedside test for bilirubin delays critical clinical decisions for patients with liver disease. This clinical care gap has motivated the development of a new generation of bioengineered point-of-care bilirubin assays. In this Perspective, recently developed bilirubin assays are critically discussed, and their translational potential evaluated.
Collapse
Affiliation(s)
- Natalie Guirguis
- Faculté de PharmacieUniversité de MontréalMontrealQCH3T 1J4Canada
| | | | - Christopher F. Rose
- Hepato‐Neuro LaboratoryCentre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQCH2X 0A9Canada
- Department of MedicineUniversité de MontréalMontrealQCH3T 1J4Canada
| | - Simon Matoori
- Faculté de PharmacieUniversité de MontréalMontrealQCH3T 1J4Canada
| |
Collapse
|
3
|
Kokoskarova P, Stojanov L, Najkov K, Ristovska N, Ruskovska T, Skrzypek S, Mirceski V. Square-wave voltammetry of human blood serum. Sci Rep 2023; 13:8485. [PMID: 37231085 DOI: 10.1038/s41598-023-34350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
A study on voltammetric analysis of blood serum diluted in a phosphate buffer is presented using advanced square-wave voltammetry at an edge plane pyrolytic graphite electrode. The results demonstrate that even in a complex medium like human blood serum, electrochemical characterization can be achieved through the use of advanced voltammetric techniques in conjunction with an appropriate commercially available electrode, such as the edge plane pyrolytic graphite electrode, which boosts superior electrocatalytic properties. Without undergoing any chemical treatment of the serum sample, the square-wave voltammetry technique reveals, for the first time, the electrode reactions of uric acid, bilirubin, and albumin in a single experiment, as represented by well-defined, separated, and intense voltammetric signals. All electrode processes are surface-confined, indicating that the edge plane sites of the electrode serve as an ideal platform for the competitive adsorption of electroactive species, despite the extensive chemical complexity of the serum samples. The speed and differential nature of square-wave voltammetry are crucial for obtaining an outstanding resolution of the voltammetric peaks, maintaining the quasi-reversible nature of the underlying electrode processes, while reducing the impact of follow-up chemical reactions that are coupled to the initial electron transfer for all three detected species, and minimizing fouling of the electrode surface.
Collapse
Affiliation(s)
- Pavlinka Kokoskarova
- Faculty of Medical Sciences, Goce Delcev University, Krste Misirkov 10A, 2000, Stip, Republic of North Macedonia
| | - Leon Stojanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, "Ss Cyril and Methodius" University in Skopje, P.O. Box 162, 1000, Skopje, Republic of North Macedonia
| | - Kosta Najkov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, "Ss Cyril and Methodius" University in Skopje, P.O. Box 162, 1000, Skopje, Republic of North Macedonia
| | - Natasha Ristovska
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, "Ss Cyril and Methodius" University in Skopje, P.O. Box 162, 1000, Skopje, Republic of North Macedonia
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Krste Misirkov 10A, 2000, Stip, Republic of North Macedonia
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Valentin Mirceski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, "Ss Cyril and Methodius" University in Skopje, P.O. Box 162, 1000, Skopje, Republic of North Macedonia.
- Department of Inorganic and Analytical Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000, Skopje, Republic of North Macedonia.
| |
Collapse
|
4
|
Nanomaterials for fluorescent assay of bilirubin. Anal Biochem 2023; 666:115078. [PMID: 36754137 DOI: 10.1016/j.ab.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The accumulation of bilirubin in blood is associated with many diseases. Sensitive and accurate detection of bilirubin is of great significance for personal health care. The rapid development of fluorescent nanomaterials promotes rapid development in the bilirubin assay. In this review, traditional methods for detection of bilirubin are briefly presented to compare with fluorescent nanosensors. Subsequently, the recent progress of different types of fluorescent nanomaterials for determination of bilirubin is summarized. Further, the performance of fluorescent nanosensors and conventional techniques for sensing bilirubin are compared. To this end, the challenges and prospects concerning the topics are discussed. This review will provide some introductory knowledge for researchers to understand the status and importance of fluorescent nanosensors for sensing bilirubin.
Collapse
|
5
|
Zhang W, Zhang J, Fan S, Zhang L, Liu C, Liu J. Oxygen reduction catalyzed by bilirubin oxidase and applications in biosensors and biofuel cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Ultrasensitive electrochemical sensor based on molecular imprinted polymer and ferromagnetic nanocomposite for bilirubin analysis in the saliva and serum of newborns. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Thomas M, Greaves RF, Tingay DG, Loh TP, Ignjatovic V, Newall F, Oeum M, Tran MTC, Rajapaksa AE. Current and emerging technologies for the timely screening and diagnosis of neonatal jaundice. Crit Rev Clin Lab Sci 2022; 59:332-352. [PMID: 35188857 DOI: 10.1080/10408363.2022.2038074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Neonatal jaundice is one of the most common clinical conditions affecting newborns. For most newborns, jaundice is harmless, however, a proportion of newborns develops severe neonatal jaundice requiring therapeutic interventions, accentuating the need to have reliable and accurate screening tools for timely recognition across different health settings. The gold standard method in diagnosing jaundice involves a blood test and requires specialized hospital-based laboratory instruments. Despite technological advancements in point-of-care laboratory medicine, there is limited accessibility of the specialized devices and sample stability in geographically remote areas. Lack of suitable testing options leads to delays in timely diagnosis and treatment of clinically significant jaundice in developed and developing countries alike. There has been an ever-increasing need for a low-cost, simple to use screening technology to improve timely diagnosis and management of neonatal jaundice. Consequently, several point-of-care (POC) devices have been developed to address this concern. This paper aims to review the literature, focusing on emerging technologies in the screening and diagnosing of neonatal jaundice. We report on the challenges associated with the existing screening tools, followed by an overview of emerging sensors currently in pre-clinical development and the emerging POC devices in clinical trials to advance the screening of neonatal jaundice. The benefits offered by emerging POC devices include their ease of use, low cost, and the accessibility of rapid response test results. However, further clinical trials are required to overcome the current limitations of the emerging POC's before their implementation in clinical settings. Hence, the need for a simple to use, low-cost POC jaundice detection technology for newborns remains an unsolved challenge globally.
Collapse
Affiliation(s)
- Mercy Thomas
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Newborn Research Centre, Royal Women's Hospital, Melbourne, Australia.,Department of Nursing, Royal Children's Hospital, Melbourne, Australia
| | - Ronda F Greaves
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Victorian Clinical Genetics Services, Melbourne, Australia.,International Federation of Clinical Chemistry and Laboratory Medicine-Emerging Technologies Division (C-ETPLM), Milan, Italy
| | - David G Tingay
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Newborn Research Centre, Royal Women's Hospital, Melbourne, Australia.,Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Neonatology, Royal Children's Hospital, Melbourne, Australia
| | - Tze Ping Loh
- International Federation of Clinical Chemistry and Laboratory Medicine-Emerging Technologies Division (C-ETPLM), Milan, Italy.,Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Vera Ignjatovic
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Hematology, Murdoch Children's Research Institute, Melbourne, Australia
| | - Fiona Newall
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Department of Nursing, Royal Children's Hospital, Melbourne, Australia
| | - Michelle Oeum
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia
| | - Mai Thi Chi Tran
- International Federation of Clinical Chemistry and Laboratory Medicine-Emerging Technologies Division (C-ETPLM), Milan, Italy.,National Children's Hospital, Hanoi, Vietnam.,Hanoi Medical University, Hanoi, Vietnam
| | - Anushi E Rajapaksa
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Newborn Research Centre, Royal Women's Hospital, Melbourne, Australia.,Think Project Global, Melbourne, Australia
| |
Collapse
|
8
|
|
9
|
Parnianchi F, Kashanian S, Nazari M, Santoro C, Bollella P, Varmira K. Highly selective and sensitive molecularly imprinting electrochemical sensing platform for bilirubin detection in saliva. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Narwal V, Batra B, Kalra V, Jalandra R, Ahlawat J, Hooda R, Sharma M, Rana J. Bilirubin detection by different methods with special emphasis on biosensing: A review. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11
|
Karmakar S, Das TK, Kundu S, Maiti S, Saha A. Physicochemical Understanding of Protein-Bound Quantum Dot-Based Sensitive Probing of Bilirubin: Validation with Real Samples and Implications of Protein Conformation in Sensing. ACS APPLIED BIO MATERIALS 2020; 3:8820-8829. [PMID: 35019557 DOI: 10.1021/acsabm.0c01165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Precise and rapid determination of free bilirubin (BR), a key biomarker of pathological conditions of the liver, is important clinical issue. The present study demonstrates that the combination of the strong specific affinic properties of protein, bovine serum albumin (BSA), toward bilirubin and luminescence of well-characterized semiconductor quantum dots (QDs) can offer a simple, fast, and sensitive technique for the determination of free bilirubin through quenching analysis. Here, BSA molecule not only stabilizes the quantum dots in an aqueous environment but also helps bring BR closer to QDs during the interactions of CdSe-BSA QDs with BR. Further, it is revealed through photophysical investigation that the conformation of protein molecule may play an important role in biomolecular sensing considering bilirubin as a model target molecule. The luminescence of CdSe-BSA QDs was highly responsive toward bilirubin, where nearly 90% of emission intensity was quenched on adding only 40 μM bilirubin, suggesting strong interactions involved between synthesized QDs and bilirubin. Solvent polarity dependence on luminescence changes confirms strong electrostatic interaction between the QDs and BR. The applicability of the synthesized quantum dots in sensing bilirubin has been checked in the presence of different possible interfering agents and also with plasma isolated from real blood samples of both normal and hepatitis patients. It was observed that bilirubin as control sample as well as in human serum sample can be optimally measured at pH 7.5, 25 °C. Thus, the proposed strategy being able to measure free BR even at least two orders of magnitude lower than bilirubin level in normal blood may provide a reasonable protocol to determine BR in the pathophysiology of many critical human diseases, like hepatitis and Gilbert's syndrome in the near future.
Collapse
Affiliation(s)
- Sudip Karmakar
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 106, India
| | - Tushar Kanti Das
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 106, India
| | - Somashree Kundu
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 106, India
| | - Susmita Maiti
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 106, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 106, India
| |
Collapse
|
12
|
Rawal R, Kharangarh PR, Dawra S, Tomar M, Gupta V, Pundir C. A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Akhoundian M, Alizadeh T, Pan G. Fabrication of the Enzyme‐less Voltammetric Bilirubin Sensor Based on Sol‐gel Imprinted Polymer. ELECTROANAL 2019. [DOI: 10.1002/elan.201900410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maedeh Akhoundian
- Department of Analytical Chemistry, Faculty of Chemistry, University College of ScienceUniversity of Tehran, P.O. Box 14155-6455 Tehran Iran
| | - Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University College of ScienceUniversity of Tehran, P.O. Box 14155-6455 Tehran Iran
| | - Guoqing Pan
- Institute for Advanced Materials, School of Material Science and EngineeringJiangsu University Zhenjiang 212013 China
| |
Collapse
|
14
|
Ko W, Chen Y, Li M, Lai J, Lin K. A Novel Hydrogen Peroxide Amperometric Sensor Based on Hierarchical 3D Porous MnO
2
−TiO
2
Composites. ELECTROANAL 2019. [DOI: 10.1002/elan.201800783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wen‐Yin Ko
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung 402 Taiwan
| | - Yi‐Shin Chen
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung 402 Taiwan
| | - Meng‐Shan Li
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung 402 Taiwan
| | - Jun‐Yan Lai
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung 402 Taiwan
| | - Kuan‐Jiuh Lin
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung 402 Taiwan
| |
Collapse
|
15
|
Nandi S, Biswas S. A recyclable post-synthetically modified Al(iii) based metal–organic framework for fast and selective fluorogenic recognition of bilirubin in human biofluids. Dalton Trans 2019; 48:9266-9275. [DOI: 10.1039/c9dt01180c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ultra-fast, highly sensitive and selective sensing features of bilirubin in human biofluids by a post-synthetically modified Al(iii) MOF are presented.
Collapse
Affiliation(s)
- Soutick Nandi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
16
|
EGFET-Based Sensors for Bioanalytical Applications: A Review. SENSORS 2018; 18:s18114042. [PMID: 30463318 PMCID: PMC6263563 DOI: 10.3390/s18114042] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
Abstract
Since the 1970s, a great deal of attention has been paid to the development of semiconductor-based biosensors because of the numerous advantages they offer, including high sensitivity, faster response time, miniaturization, and low-cost manufacturing for quick biospecific analysis with reusable features. Commercial biosensors have become highly desirable in the fields of medicine, food, and environmental monitoring as well as military applications, whereas increasing concerns about food safety and health issues have resulted in the introduction of novel legislative standards for these sensors. Numerous devices have been developed for monitoring biological processes such as nucleic acid hybridization, protein–protein interaction, antigen–antibody bonds, and substrate–enzyme reactions, just to name a few. Since the 1980s, scientific interest moved to the development of semiconductor-based devices, which also include integrated front-end electronics, such as the extended-gate field-effect transistor (EGFET) biosensor, one of the first miniaturized chemical sensors. This work is intended to be a review of the state of the art focused on the development of biosensors and chemosensors based on extended-gate field-effect transistor within the field of bioanalytical applications, which will highlight the most recent research reported in the literature. Moreover, a comparison among the diverse EGFET devices will be presented, giving particular attention to the materials and technologies.
Collapse
|
17
|
Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology 2018; 16:75. [PMID: 30243292 PMCID: PMC6150956 DOI: 10.1186/s12951-018-0400-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
Graphene's unique physical structure, as well as its chemical and electrical properties, make it ideal for use in sensor technologies. In the past years, novel sensing platforms have been proposed with pristine and modified graphene with nanoparticles and polymers. Several of these platforms were used to immobilize biomolecules, such as antibodies, DNA, and enzymes to create highly sensitive and selective biosensors. Strategies to attach these biomolecules onto the surface of graphene have been employed based on its chemical composition. These methods include covalent bonding, such as the coupling of the biomolecules via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide reactions, and physisorption. In the literature, several detection methods are employed; however, the most common is electrochemical. The main reason for researchers to use this detection approach is because this method is simple, rapid and presents good sensitivity. These biosensors can be particularly useful in life sciences and medicine since in clinical practice, biosensors with high sensitivity and specificity can significantly enhance patient care, early diagnosis of diseases and pathogen detection. In this review, we will present the research conducted with antibodies, DNA molecules and, enzymes to develop biosensors that use graphene and its derivatives as scaffolds to produce effective biosensors able to detect and identify a variety of diseases, pathogens, and biomolecules linked to diseases.
Collapse
Affiliation(s)
- Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Hang N. Nguyen
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Sofia K. Fanourakis
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Debora F. Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| |
Collapse
|
18
|
Ngashangva L, Bachu V, Goswami P. Development of new methods for determination of bilirubin. J Pharm Biomed Anal 2018; 162:272-285. [PMID: 30273817 DOI: 10.1016/j.jpba.2018.09.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 02/06/2023]
Abstract
The ever-increasing demand for a sensitive, rapid and reliable method for determination of serum bilirubin level has been inciting the interest of the researchers to develop new methods for both laboratory set up and point of care applications. These efforts embrace measurement of different forms of bilirubin, such as, unconjugated (free and albumin bound) bilirubin, conjugated (direct) bilirubin, and total (both conjugated and unconjugated) bilirubin in the serum that may provide critical information useful for diagnosis of many diseases and metabolic disorders. Herein, an effort has been made to provide a broad overview on the subject starting from the conventional spectroscopy based analytical methods widely practiced in the laboratory setup along with the sophisticated instrument based sensitive methods suitable for determination of different forms of bilirubin to various portable low cost systems applicable in point of care (POC) settings. In all these discussions emphasis is given on the novel methods and techniques bearing potential to measure the bilirubin level in biological samples reliably with less technical complexity and cost. We expect that this review will serve as a ready reference for the researchers and clinical professionals working on the subject and allied fields.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
19
|
Yang S, Liu J, Quan X, Zhou J. Bilirubin Oxidase Adsorption onto Charged Self-Assembled Monolayers: Insights from Multiscale Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9818-9828. [PMID: 30044918 DOI: 10.1021/acs.langmuir.8b01974] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficient immobilization and orientation of bilirubin oxidase (BOx) on different solid substrates are essential for its application in biotechnology. The T1 copper site within BOx is responsible for the electron transfer. In order to obtain quick direct electron transfer (DET), it is important to keep the distance between the T1 copper site and electrode surface small and to maintain the natural structure of BOx at the same time. In this work, the combined parallel tempering Monte Carlo simulation with the all-atom molecular dynamics simulation approach was adopted to reveal the adsorption mechanism, orientation, and conformational changes of BOx from Myrothecium verrucaria (MvBOx) adsorbed on charged self-assembled monolayers (SAMs), including COOH-SAM and NH2-SAM with different surface charge densities (±0.05 and ±0.19 C·m-2). The results show that MvBOx adsorbs on negatively charged surfaces with a "back-on" orientation, whereas on positively charged surfaces, MvBOx binds with a "lying-on" orientation. The locations of the T1 copper site are closer to negatively charged surfaces. Furthermore, for negatively charged surfaces, the T1 copper site prefers to orient closer to the surface with lower surface charge density. Therefore, the negatively charged surface with low surface charge density is more suitable for the DET of MvBOx on electrodes. Besides, the structural changes primarily take place on the relatively flexible turns, coils, and α-helix. The native structure of MvBOx is well preserved when it adsorbs on both charged surfaces. This work sheds light on the controlling orientation and conformational information on MvBOx on charged surfaces at the atomistic level. This understanding would certainly promote our understanding of the mechanism of MvBOx immobilization and provide theoretical support for BOx-based bioelectrode design.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430073 , P. R. China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
20
|
Kaur J, Jiang C, Liu G. Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens Bioelectron 2018; 123:85-100. [PMID: 29903690 DOI: 10.1016/j.bios.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Measurement of glycosylated hemoglobin (HbA1c) is a gold standard procedure for assessing long term glycemic control in individuals with diabetes mellitus as it gives the stable and reliable value of blood glucose levels for a period of 90-120 days. HbA1c is formed by the non-enzymatic glycation of terminal valine of hemoglobin. The analysis of HbA1c tends to be complicated because there are more than 300 different assay methods for measuring HbA1c which leads to variations in reported values from same samples. Therefore, standardization of detection methods is recommended. The review outlines the current research activities on developing assays including biosensors for the detection of HbA1c. The pros and cons of different techniques for measuring HbA1c are outlined. The performance of current point-of-care HbA1c analyzers available on the market are also compared and discussed. The future perspectives for HbA1c detection and diabetes management are proposed.
Collapse
Affiliation(s)
- Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, Department of Chemistry, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
21
|
Thangamuthu M, Gabriel WE, Santschi C, Martin OJF. Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene. SENSORS 2018. [PMID: 29518901 PMCID: PMC5876756 DOI: 10.3390/s18030800] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Practice oriented point-of-care diagnostics require easy-to-handle, miniaturized, and low-cost analytical tools. In a novel approach, screen printed carbon electrodes (SPEs), which were functionalized with nanomaterials, are employed for selective measurements of bilirubin, which is an important biomarker for jaundice. Multi-walled carbon nanotubes (MWCNT) and graphene separately deposited on SPEs provide the core of an electrochemical sensor for bilirubin. The electrocatalytic activity towards bilirubin oxidation (bilirubin to biliverdin) was observed at +0.25 V. In addition, a further peak corresponding to the electrochemical conversion of biliverdin into purpurin appeared at +0.48 V. When compared to MWCNT, the graphene type shows a 3-fold lower detection limit (0.3 ± 0.022 nM and 0.1 ± 0.018 nM, respectively), moreover, the graphene type exhibits a larger linear range (0.1-600 µM) than MWCNT (0.5-500 µM) with a two-fold better sensitivity, i.e., 30 nA µM-1 cm-2, and 15 nA µM-1 cm-2, respectively. The viability is validated through measurements of bilirubin in blood serum samples and the selectivity is ensured by inhibiting common interfering biological substrates using an ionic nafion membrane. The presented approach enables the design and implementation of low cost and miniaturized electrochemical sensors.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Willimann Eric Gabriel
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
22
|
Enzyme–Graphene Platforms for Electrochemical Biosensor Design With Biomedical Applications. Methods Enzymol 2018; 609:293-333. [DOI: 10.1016/bs.mie.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
A contrivance based on electrochemical integration of graphene oxide nanoparticles/nickel nanoparticles for bilirubin biosensing. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Bilirubin enzyme biosensor: potentiality and recent advances towards clinical bioanalysis. Biotechnol Lett 2017; 39:1453-1462. [DOI: 10.1007/s10529-017-2396-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
25
|
Jain U, Gupta S, Chauhan N. Detection of glycated hemoglobin with voltammetric sensing amplified by 3D-structured nanocomposites. Int J Biol Macromol 2017; 101:896-903. [PMID: 28365286 DOI: 10.1016/j.ijbiomac.2017.03.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Glycated hemoglobin (HbA1c), a marker for glycine level in blood, while detecting over a long period of time (up to 2-3 months) shows consistency. Therefore, HbA1c has been mostly used and indeed an established test for monitoring the glycemic control in persons suffering from diabetes. 3D-structured reduced graphene oxide (rGO), multiwalled carbon nanotubes (MWCNT) and platinum nanoparticles (PtNPs) composite (PtNPs/rGO-MWCNT) were synthesized and used as interface for the development of an electrochemical HbA1c biosensor. The network structure of rGO-MWCNT nanocomposite provides more active sites for Pt deposition and the synergistic effect of rGO, MWCNTs and PtNPs significantly improved the electrochemical performance of the working electrode. The structure of PtNPs/rGO-MWCNT nanocomposite was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance study (EIS). This biosensor exhibited a response time of less than 3s, a wide linear concentration range of 0.05-1000μM with detection limit of 0.1μM, good repeatability and satisfactory reproducibility. The biosensor retained 50% of its initial response after 12 weeks at 25°C. The proposed biosensor was successfully applied for the determination of HbA1c concentration in human blood samples with recoveries between 93.7 and 98.3%.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity Institute of Nanotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Shaivya Gupta
- Amity Institute of Nanotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology, Amity University, Noida 201303, Uttar Pradesh, India.
| |
Collapse
|
26
|
Anik Ü, Timur S. Towards the electrochemical diagnosis of cancer: nanomaterial-based immunosensors and cytosensors. RSC Adv 2016. [DOI: 10.1039/c6ra23686c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, nanomaterial based electrochemical biosensors including electrochemical immunosensors and cytosensors towards cancer detection are covered.
Collapse
Affiliation(s)
- Ülkü Anik
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- 48000 Mugla
- Turkey
| | - Suna Timur
- Ege University
- Faculty of Science
- Biochemistry Department
- İzmir
- Turkey
| |
Collapse
|