1
|
Ejderyan N, Oz Y, Sanyal R, Sanyal A. Redox-Responsive Cleavable Polymeric Brush Coated Magnetic Nanoparticles: Fabrication and Post-Polymerization Modification for Cellular Targeting. Biomacromolecules 2025. [PMID: 39905722 DOI: 10.1021/acs.biomac.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Polymer brush-coated magnetic nanoparticles find applications in areas from diagnostics to drug delivery. Generally, the brushes are irreversibly tethered onto the nanoparticle surface through robust chemical linkages to withstand diverse environments. The ability to trigger the release of the polymer brushes from the nanoparticle surface once they reach the intracellular environment would be a useful attribute. In this study, we report polymer brushes that undergo release from the nanoparticle surface in a redox-responsive fashion. Furthermore, cleaving the polymer brush also enables precise determination of their molecular weight. Also, we show that fluorescently labeled polymer brushes undergo chain-end functionalization using maleimide-containing dye and peptides. Installing integrin-targeting peptides onto the surface enhances their cellular internalization. One could envision that the redox-responsive polymer brush-coated magnetic nanoparticles disclosed here would be an attractive platform for applications where intracellular cleavage of polymeric chains would enhance their performance.
Collapse
Affiliation(s)
- Nora Ejderyan
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Yavuz Oz
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center for Targeted Therapy Technologies, Bogazici University, Istanbul 34684, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center for Targeted Therapy Technologies, Bogazici University, Istanbul 34684, Türkiye
| |
Collapse
|
2
|
Hartmann D, Chowdhry R, Smith JM, Booth MJ. Orthogonal Light-Activated DNA for Patterned Biocomputing within Synthetic Cells. J Am Chem Soc 2023; 145:9471-9480. [PMID: 37125650 PMCID: PMC10161232 DOI: 10.1021/jacs.3c02350] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Indexed: 05/02/2023]
Abstract
Cell-free gene expression is a vital research tool to study biological systems in defined minimal environments and has promising applications in biotechnology. Developing methods to control DNA templates for cell-free expression will be important for precise regulation of complex biological pathways and use with synthetic cells, particularly using remote, nondamaging stimuli such as visible light. Here, we have synthesized blue light-activatable DNA parts that tightly regulate cell-free RNA and protein synthesis. We found that this blue light-activated DNA could initiate expression orthogonally to our previously generated ultraviolet (UV) light-activated DNA, which we used to generate a dual-wavelength light-controlled cell-free AND-gate. By encapsulating these orthogonal light-activated DNAs into synthetic cells, we used two overlapping patterns of blue and UV light to provide precise spatiotemporal control over the logic gate. Our blue and UV orthogonal light-activated DNAs will open the door for precise control of cell-free systems in biology and medicine.
Collapse
Affiliation(s)
- Denis Hartmann
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Razia Chowdhry
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jefferson M. Smith
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Michael J. Booth
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
3
|
Afrouz M, Ahmadi-Nouraldinvand F, Elias SG, Alebrahim MT, Tseng TM, Zahedian H. Green synthesis of spermine coated iron nanoparticles and its effect on biochemical properties of Rosmarinus officinalis. Sci Rep 2023; 13:775. [PMID: 36641537 PMCID: PMC9840625 DOI: 10.1038/s41598-023-27844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
In this study, aqueous spinach extract was used for the green synthesis of iron nanoparticles. The surface of iron oxide nanoparticles was coated with spermine. The physicochemical properties of nanoparticles were investigated using UV-Vis, TGA, FTIR, VSM, TEM, and DLS. The results showed that the nanoparticles had a spherical structure. The surface charge of the Fe3O4-NPs increased from -3.2 to 18.42 (mV) after Fe3O4 coating by spermine. In order to investigate the effect of nanoparticles on physicochemical properties of rosemary under drought stress conditions, an experiment was carried out in a completely randomized design. The results showed that the amount of antioxidant enzymes and secondary metabolites increased significantly under drought stress. Moreover, the use of spermine-coated iron nanoparticles can be useful in increasing resistance to drought stress in plants by increasing the activity of some antioxidant enzymes and secondary metabolites. The biocompatibility of Nanoparticles in cell suspension was investigated. the ability of Fe3O4-SM NPs to interact with DNA and protect it against DNaseI and ultrasonic waves using agarose gel electrophoresis was studied. The ability of Fe3O4-SM to neutralize the negative charge of DNA and protect it against DNaseΙ and ultrasonic waves was confirmed using an agarose gel electrophoresis assay.
Collapse
Affiliation(s)
- Mehdi Afrouz
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Sabry G Elias
- Department of Crop and Soil Science, Oregon State University, Corvallis, USA
| | | | - Te Ming Tseng
- Department of Plant and Soil Science, Mississippi State University, Starkville, USA
| | - Hoda Zahedian
- Department of Deutsch-Sprachen, Volkshochschule, Gütersloh, Germany
| |
Collapse
|
4
|
Sütekin SD, Demirci S, Kurt SB, Güven O, Sahiner N. Tunable fluorescent and antimicrobial properties of poly(vinyl amine) affected by the acidic or basic hydrolysis of poly(N‐vinylformamide). J Appl Polym Sci 2021. [DOI: 10.1002/app.51234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Sahin Demirci
- Faculty of Science and Arts, Department of Chemistry Canakkale Onsekiz Mart University Canakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC) Canakkale Onsekiz Mart University Canakkale Turkey
| | - Saliha B. Kurt
- Faculty of Science and Arts, Department of Chemistry Canakkale Onsekiz Mart University Canakkale Turkey
| | - Olgun Güven
- Department of Chemistry Hacettepe University Ankara Turkey
| | - Nurettin Sahiner
- Faculty of Science and Arts, Department of Chemistry Canakkale Onsekiz Mart University Canakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC) Canakkale Onsekiz Mart University Canakkale Turkey
- Department of Chemical and Biomolecular Engineering University of South Florida Tampa Florida USA
- Department of Ophthalmology, Morsani College of Medicine University of South Florida Tampa Florida USA
| |
Collapse
|
5
|
Xu K, Xu S, Wei F. Recent progress in magnetic applications for micro- and nanorobots. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:744-755. [PMID: 34367858 PMCID: PMC8313977 DOI: 10.3762/bjnano.12.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In recent years, magnetic micro- and nanorobots have been developed and extensively used in many fields. Actuated by magnetic fields, micro- and nanorobots can achieve controllable motion, targeted transportation of cargo, and energy transmission. The proper use of magnetic fields is essential for the further research and development of micro- and nanorobotics. In this article, recent progress in magnetic applications in the field of micro- and nanorobots is reviewed. First, the achievements of manufacturing micro- and nanorobots by incorporating different magnetic nanoparticles, such as diamagnetic, paramagnetic, and ferromagnetic materials, are discussed in detail, highlighting the importance of a rational use of magnetic materials. Then the innovative breakthroughs of using different magnetoelectric devices and magnetic drive structures to improve the micro- and nanorobots are reviewed. Finally, based on the biofriendliness and the precise and stable performance of magnetic micro- and nanorobots in microbial environments, some future challenges are outlined, and the prospects of magnetic applications for micro- and nanorobots are presented.
Collapse
Affiliation(s)
- Ke Xu
- School of Information & Control Engineering, Shenyang Jianzhu University, Shenyang, China
| | - Shuang Xu
- School of Information & Control Engineering, Shenyang Jianzhu University, Shenyang, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| |
Collapse
|
6
|
Nasab SH, Amani A, Ebrahimi HA, Hamidi AA. Design and preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of siRNA and paclitaxel. J Pharm Anal 2021; 11:163-173. [PMID: 34012692 PMCID: PMC8116215 DOI: 10.1016/j.jpha.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/04/2023] Open
Abstract
Drug resistance is a great challenge in cancer therapy using chemotherapeutic agents. Administration of these drugs with siRNA is an efficacious strategy in this battle. Here, the present study tried to incorporate siRNA and paclitaxel (PTX) simultaneously into a novel nanocarrier. The selectivity of carrier to target cancer tissues was optimized through conjugation of folic acid (FA) and glucose (Glu) onto its surface. The structure of nanocarrier was formed from ternary magnetic copolymers based on FeCo-polyethyleneimine (FeCo-PEI) nanoparticles and polylactic acid-polyethylene glycol (PLA-PEG) gene delivery system. Biocompatibility of FeCo-PEI-PLA-PEG-FA(NPsA), FeCo-PEI-PLA-PEG-Glu (NPsB) and FeCo-PEI-PLA-PEG-FA/Glu (NPsAB) nanoparticles and also influence of PTX-loaded nanoparticles on in vitro cytotoxicity were examined using MTT assay. Besides, siRNA-FAM internalization was investigated by fluorescence microscopy. The results showed the blank nanoparticles were significantly less cytotoxic at various concentrations. Meanwhile, siRNA-FAM/PTX encapsulated nanoparticles exhibited significant anticancer activity against MCF-7 and BT-474 cell lines. NPsAB/siRNA/PTX nanoparticles showed greater effects on MCF-7 and BT-474 cells viability than NPsA/siRNA/PTX and NPsB/siRNA/PTX. Also, they induced significantly higher anticancer effects on cancer cells compared with NPsA/siRNA/PTX and NPsB/siRNA/PTX due to their multi-targeted properties using FA and Glu. We concluded that NPsAB nanoparticles have a great potential for co-delivery of both drugs and genes for use in gene therapy and chemotherapy.
Collapse
Affiliation(s)
- Sara Hosayni Nasab
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asghar Hamidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Design and fabrication of novel multi-targeted magnetic nanoparticles for gene delivery to breast cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Singh S, Chawla H, Chandra A, Garg S. Magnetic hybrid nanoparticles for drug delivery. MAGNETIC NANOPARTICLE-BASED HYBRID MATERIALS 2021:319-342. [DOI: 10.1016/b978-0-12-823688-8.00034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Kumari M, Liu CH, Wu WC. Oligochitosan modified albumin as plasmid DNA delivery vector: Endocytic trafficking, polyplex fate, in vivo compatibility. Int J Biol Macromol 2020; 142:492-502. [DOI: 10.1016/j.ijbiomac.2019.09.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/12/2023]
|
10
|
Song W, Gregory DA, Al-Janabi H, Muthana M, Cai Z, Zhao X. Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. Int J Pharm 2019; 555:322-336. [PMID: 30448314 DOI: 10.1016/j.ijpharm.2018.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
The lack of efficient and cost-effective methods for gene delivery has significantly hindered the applications of gene therapy. In this paper, a simple one step and cost effective salting-out method has been explored to fabricate silk-PEI nanoparticles (SPPs) and magnetic-silk/PEI core-shell nanoparticles (MSPPs) for targeted delivery of c-myc antisense oligodeoxynucleotides (ODNs) into MDA-MB-231 breast cancer cells. The size and zeta potential of the particles were controlled by adjusting the amount of silk fibroin in particle synthesis. Lower surface charges and reduced cytotoxicity were achieved for MSPPs compared with PEI coated magnetic nanoparticles (MPPs). Both SPPs and MSPPs were capable of delivering the ODNs into MDA-MB-231 cells and significantly inhibited the cell growth. Through magnetofection, high ODN uptake efficiencies (over 70%) were achieved within 20 min using MSPPs as carriers, exhibiting a significantly enhanced uptake effect compared to the same carriers via non-magnetofection. Both SPPs and MSPPs exhibited a significantly higher inhibition effect against MDA-MB-231 breast cancer cells compared to human dermal fibroblast (HDF) cells. Targeted ODN delivery was achieved using MSPPs with the help of a magnet, making them promising candidates for targeted gene therapy applications.
Collapse
Affiliation(s)
- Wenxing Song
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - David A Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Haider Al-Janabi
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Zhiqiang Cai
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
11
|
Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018; 16:74. [PMID: 30243297 PMCID: PMC6151045 DOI: 10.1186/s12951-018-0398-2] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/11/2018] [Indexed: 01/05/2023] Open
Abstract
With the improvement of nanotechnology and nanomaterials, redox-responsive delivery systems have been studied extensively in some critical areas, especially in the field of biomedicine. The system constructed by redox-responsive delivery can be much stable when in circulation. In addition, redox-responsive vectors can respond to the high intracellular level of glutathione and release the loaded cargoes rapidly, only if they reach the site of tumor tissue or targeted cells. Moreover, redox-responsive delivery systems are often applied to significantly improve drug concentrations in targeted cells, increase the therapeutic efficiency and reduce side effects or toxicity of primary drugs. In this review, we focused on the structures and types of current redox-responsive delivery systems and provided a comprehensive overview of relevant researches, in which the disulfide bond containing delivery systems are of the utmost discussion.
Collapse
Affiliation(s)
- Xiaoshuang Guo
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan RD, Shanghai, 200240 China
| | - Yuan Cheng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan RD, Shanghai, 200240 China
| | - Xiaotian Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan RD, Shanghai, 200240 China
| | - Yanli Luo
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yi-Shan Road, Shanghai, 200233 People’s Republic of China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan RD, Shanghai, 200240 China
| |
Collapse
|
12
|
|
13
|
Bahadur A, Iqbal S, Saeed A, Bashir MI, Shoaib M, Waqas M, Shabir G, Jabbar A. Green synthesis of ultrafine super-paramagnetic magnetite nano-fluid: a magnetic and dielectric study. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0138-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|