1
|
Fuciños C, Rodríguez-Sanz A, García-Caamaño E, Gerbino E, Torrado A, Gómez-Zavaglia A, Rúa ML. Microfluidics potential for developing food-grade microstructures through emulsification processes and their application. Food Res Int 2023; 172:113086. [PMID: 37689862 DOI: 10.1016/j.foodres.2023.113086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 09/11/2023]
Abstract
The food sector continues to face challenges in developing techniques to increase the bioavailability of bioactive chemicals. Utilising microstructures capable of encapsulating diverse compounds has been proposed as a technological solution for their transport both in food and into the gastrointestinal tract. The present review discusses the primary elements that influence the emulsification process in microfluidic systems to form different microstructures for food applications. In microfluidic systems, reactions occur within small reaction channels (1-1000 μm), using small amounts of samples and reactants, ca. 102-103 times less than conventional assays. This geometry provides several advantages for emulsion and encapsulating structure production, like less waste generation, lower cost and gentle assays. Also, from a food application perspective, it allows the decrease in particle dispersion, resulting in a highly repeatable and efficient synthesis method that also improves the palatability of the food products into which the encapsulates are incorporated. However, it also entails some particular requirements. It is important to obtain a low Reynolds number (Re < approx. 250) for greater precision in droplet formation. Also, microfluidics requires fluid viscosity typically between 0.3 and 1400 mPa s at 20 °C. So, it is a challenge to find food-grade fluids that can operate at the micro-scale of these systems. Microfluidic systems can be used to synthesise different food-grade microstructures: microemulsions, solid lipid microparticles, microgels, or self-assembled structures like liposomes, niosomes, or polymersomes. Besides, microfluidics is particularly useful for accurately encapsulating bacterial cells to control their delivery and release on the action site. However, despite the significant advancement in these systems' development over the past several years, developing and implementing these systems on an industrial scale remains challenging for the food industry.
Collapse
Affiliation(s)
- Clara Fuciños
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain.
| | - Andrea Rodríguez-Sanz
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esther García-Caamaño
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina
| | - Ana Torrado
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina.
| | - María L Rúa
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| |
Collapse
|
2
|
Mohd Isa NS, El Kadri H, Vigolo D, Gkatzionis K. Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion. RSC Adv 2021; 11:7738-7749. [PMID: 35423274 PMCID: PMC8695039 DOI: 10.1039/d0ra10954a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
Application of droplet microfluidics for the encapsulation of bacteria in water-in-oil-in-water (W/O/W) emulsion allows for production of monodisperse droplets with controllable size. In this study the release of bacteria from W/O/W emulsion, the effect of the double emulsion structure on bacterial growth and metabolic activity, and the stability and mechanism of bacterial release were investigated. W/O/W emulsions were formed using a double flow-focusing junction microfluidic device under controlled pressure to produce droplets of approximately 100 μm in diameter containing an inner aqueous phase (W1) of about 40–50 μm in diameter. GFP-labelled Escherichia coli (E. coli-GFP) bacteria were encapsulated within the W1 droplets and the stability of emulsions was studied by monitoring droplet size and creaming behaviour. The double emulsions were stabilised using a hydrophilic (Tween 80) and a lipophilic surfactant (polyglycerol polyricinoleate) and were destabilised by altering the osmotic balance, adding NaCl either in the inner W1 phase (hypo-osmotic) or outer W2 phase (hyper-osmotic). The release of E. coli-GFP was monitored by plating on agar whereby the colony form unit (CFU) of the released bacteria was determined while fluorescent microscopy was employed to observe the mechanism of release from the droplets. The release of E. coli-GFP was significantly increased with higher concentrations of NaCl and lower amounts of Tween 80. Microscopic observation revealed a two-step mechanism for the release of bacteria: double W/O/W emulsion droplet splitting to release W1 droplets forming a secondary double emulsion followed by the collapse of W1 droplets to release E. coli-GFP into the continuous aqueous phase. Encapsulation enhanced viability and metabolic activity. Nutrients can cross the oil layer. Bacterial release increased while emulsion stability decreased at high osmotic pressure and low surfactant concentration. Two-step release mechanism observed.![]()
Collapse
Affiliation(s)
- Nur Suaidah Mohd Isa
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu 21030 Kuala Terengganu Terengganu Malaysia.,School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK.,School of Biomedical Engineering, University of Sydney NSW 2006 Australia
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK.,Department of Food Science and Nutrition, School of the Environment, University of the Aegean Metropolite Ioakeim 2 81400 Myrina Lemnos Greece
| |
Collapse
|
3
|
Chen XW, Ning XY, Yang XQ. Fabrication of Novel Hierarchical Multicompartment Highly Stable Triple Emulsions for the Segregation and Protection of Multiple Cargos by Spatial Co-encapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10904-10912. [PMID: 31508953 DOI: 10.1021/acs.jafc.9b03509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-order multiple emulsions are of great interest in both fundamental research and industrial applications as vehicles for their encapsulation capability of actives. In this work, we report a hierarchically multicompartmental highly stable triple emulsion by emulsifying and assembling of natural Quillaja saponin. Water-in-oil-in-(oil-in-water) (W2/O2/(O1/W1)) triple emulsion indicates that the compartmented system consisted of surfaced saponin-coated nanodroplets (SNDs) and dispersed oil globules, which in turn contained smaller aqueous droplets. The effects of formulation parameters, including lipophilic emulsifier content, oil fraction, and SND concentration, on the formation of multiple emulsions were systematically investigated. The assembly into fibrillar network of SNDs at the outer oil-water interface effectively protected the triple emulsion droplets against flocculation and coalescence, and strongly prevented the osmotic-driven water diffusion between the internal water droplets and the external water phase, thus contributing to superior stability during 180 days storage. All of these characteristics make the multicompartmentalized emulsions suitable to co-encapsulate a hydrophilic bioactive (gardenia blue) and two hydrophobic bioactives (eapsanthin and curcumin) in a single emulsion droplet hierarchically for the segregation and protection of multiple cargos. This approach offers a promising route toward accessing the next generation of functional deliveries and encapsulation strategies.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Lipid Technology and Engineering, School of Food Science and Engineering , Henan University of Technology , Lianhua Road 100 , Zhengzhou 450001 , Henan Province , P. R. China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Laboratory of Food Proteins and Colloids, Department of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R China
| | - Xue-Ying Ning
- Lipid Technology and Engineering, School of Food Science and Engineering , Henan University of Technology , Lianhua Road 100 , Zhengzhou 450001 , Henan Province , P. R. China
| | - Xiao-Quan Yang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Laboratory of Food Proteins and Colloids, Department of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R China
| |
Collapse
|
4
|
El Kadri H, Lalou S, Mantzouridou F, Gkatzionis K. Utilisation of water-in-oil-water (W 1 /O/W 2 ) double emulsion in a set-type yogurt model for the delivery of probiotic Lactobacillus paracasei. Food Res Int 2018; 107:325-336. [DOI: 10.1016/j.foodres.2018.02.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 12/25/2022]
|
5
|
Devanthi PVP, Linforth R, El Kadri H, Gkatzionis K. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce. Food Chem 2018; 257:243-251. [PMID: 29622206 DOI: 10.1016/j.foodchem.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
This study investigated the application of water-oil-water (W1/O/W2) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W1 and external W2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality.
Collapse
Affiliation(s)
| | - Robert Linforth
- Division of Food Sciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
6
|
Devanthi PVP, El Kadri H, Bowden A, Spyropoulos F, Gkatzionis K. Segregation of Tetragenococcus halophilus and Zygosaccharomyces rouxii using W 1/O/W 2 double emulsion for use in mixed culture fermentation. Food Res Int 2018; 105:333-343. [PMID: 29433222 DOI: 10.1016/j.foodres.2017.11.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 11/15/2022]
Abstract
Antagonism in mixed culture fermentation can result in undesirable metabolic activity and negatively affect the fermentation process. Water-oil-water (W1/O/W2) double emulsions (DE) could be utilized in fermentation for segregating multiple species and controlling their release and activity. Zygosaccharomyces rouxii and Tetragenococcus halophilus, two predominant microbial species in soy sauce fermentation, were incorporated in the internal W1 and external W2 phase of a W1/O/W2, respectively. The suitability of DE for controlling T. halophilus and Z. rouxii in soy sauce fermentation was studied in relation to emulsion stability and microbial release profile. The effects of varying concentrations of Z. rouxii cells (5 and 7logCFU/mL) and glucose (0%, 6%, 12%, 30% w/v) in the W2 phase were investigated. DE stability was determined by monitoring encapsulation stability (%), oil globule size, and microstructure with fluorescence and optical microscopy. Furthermore, the effect of DE on the interaction between T. halophilus and Z. rouxii was studied in Tryptic Soy Broth containing 10% w/v NaCl and 12% w/v glucose and physicochemical changes (glucose, ethanol, lactic acid, and acetic acid) were monitored. DE destabilization resulted in cell release which was proportional to the glucose concentration in W2. Encapsulated Z. rouxii presented higher survival during storage (~3 log). The application of DE affected microbial cells growth and physiology, which led to the elimination of antagonism. These results demonstrate the potential use of DE as a delivery system of mixed starter cultures in food fermentation, where multiple species are required to act sequentially in a controlled manner.
Collapse
Affiliation(s)
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Allen Bowden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Fotios Spyropoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
7
|
Incorporation of water-in-oil-in-water (W 1 /O/W 2 ) double emulsion in a set-type yogurt model. Food Res Int 2017; 100:122-131. [DOI: 10.1016/j.foodres.2017.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 11/18/2022]
|