1
|
Iqbal A, Javaid MA, Hussain MT, Raza ZA. Development of lactic acid based chain extender and soybean oil-derived polyurethanes for ecofriendly sustained drug delivery systems. Int J Biol Macromol 2024; 265:130717. [PMID: 38479673 DOI: 10.1016/j.ijbiomac.2024.130717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In the present study, a range of sustainable, biocompatible and biodegradable polyurethanes (PU-1 to PU-4) were synthesized using different combinations of biobased polyol (obtained through the epoxidation of soybean oil, followed by ring opening with ethanol) and polyethylene glycol (PEG) and isophorone diisocyanate. The sustainable chain extender used in this study was synthesized by the esterification of lactic acid with ethylene glycol (EG). The synthesized PU samples were characterized through scanning electron microscopy (SEM), Fourier transformed infrared (FTIR) and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy. Wetting ability and thermal degradation analysis (TGA) of the samples were also studied. Subsequently, these PUs were examined as potential drug delivery systems using Gabapentin as a model drug, which was loaded in the polymer matrix using the solvent evaporation method. The drug release studies were carried out in 0.06 N HCl as a release medium according to the method outlined in the United States Pharmacopeia. The maximum drug release was observed for sample PU-P1, which was found to be 53.0 % after 6 h. Moreover, a comparison of different PU samples revealed a trend wherein the values of drug release were decreased with an increase in the PEG content.
Collapse
Affiliation(s)
- Amer Iqbal
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| | - Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| | - Muhammad Tahir Hussain
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan.
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| |
Collapse
|
2
|
Cui Y, Wang X, Dong L, Liu Y, Chen S, Zhang J, Zhang X. Tunable and functional phosphonium-based deep eutectic solvents for synthesizing of cyclic carbonates from CO2 and epoxides under mild conditions. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
3
|
Epoxidized and Maleinized Hemp Oil to Develop Fully Bio-Based Epoxy Resin Based on Anhydride Hardeners. Polymers (Basel) 2023; 15:polym15061404. [PMID: 36987185 PMCID: PMC10054015 DOI: 10.3390/polym15061404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The present work aims to develop thermosetting resins using epoxidized hemp oil (EHO) as a bio-based epoxy matrix and a mixture of methyl nadic anhydride (MNA) and maleinized hemp oil (MHO) in different ratios as hardeners. The results show that the mixture with only MNA as a hardener is characterized by high stiffness and brittleness. In addition, this material is characterized by a high curing time of around 170 min. On the other hand, as the MHO content in the resin increases, the mechanical strength properties decrease and the ductile properties increase. Therefore, it can be stated that the presence of MHO confers flexible properties to the mixtures. In this case, it was determined that the thermosetting resin with balanced properties and high bio-based content contains 25% MHO and 75% MNA. Specifically, this mixture obtained a 180% higher impact energy absorption and a 195% lower Young’s modulus than the sample with 100% MNA. Also, it has been observed that this mixture has significantly shorter times than the mixture containing 100% MNA (around 78 min), which is of great concern at an industrial level. Therefore, thermosetting resins with different mechanical and thermal properties can be obtained by varying the MHO and MNA content.
Collapse
|
4
|
Polaczek K, Kurańska M. Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8891. [PMID: 36556696 PMCID: PMC9785633 DOI: 10.3390/ma15248891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
We report on the development of open-cell polyurethane foams based on bio-polyols from vegetable oils: hemp seed oil, oilseed radish oil, rapeseed oil and used rapeseed cooking oil. The crude oils were pressed from seeds and subjected to an optimal solvent-free epoxidation process. Bio-polyols were obtained by a ring-opening reaction using diethylene glycol and tetrafluoroboric acid as catalysts. The resultant foams were analysed in terms of their apparent density, thermal conductivity coefficient, mechanical strength, closed cell content, short-term water absorption and water vapour permeability, while their morphology was examined using scanning electron microscopy. It was found that regardless of the properties of the oils, especially the content of unsaturated bonds, it was possible to obtain bio-polyols with very similar properties. The foams were characterized by apparent densities ranging from 11.2 to 12.1 kg/m3, thermal conductivity of <39 mW/m∙K, open cell contents of >97% and high water vapour permeability.
Collapse
|
5
|
|
6
|
Iwassa IJ, Saldaña MDA, Cardozo‐Filho L, da Silva C. Epoxidation of crambe seed oil with peracetic acid formed in situ. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Isabela Julio Iwassa
- Programa de Pós‐graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| | - Marleny D. A. Saldaña
- Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta Canada
| | - Lucio Cardozo‐Filho
- Programa de Pós‐graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| | - Camila da Silva
- Programa de Pós‐graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| |
Collapse
|
7
|
Williamson K, Banker T, Zhao X, Ortega-Anaya J, Jimenez-Flores R, Vodovotz Y, Hatzakis E. Spent coffee ground oil as a valuable source of epoxides and epoxidation derivatives: Quantitation and characterization using low-field NMR. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Lakkoju B, Vemulapalli V. A novel class of bio-lubricants are synthesized by epoxidation of 10-undecylenic acid-based esters. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.0103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mineral-based lubricants are being supplanted by bio-based lubricants because of environmental concerns and the depletion of fossil resources. The derivatives of edible and non-edible oils are considered potential alternatives to existing natural mineral oil base stocks in certain lubricant applications, where immediate intraction with the environment is predicted. A new class of epoxides were synthesized from the undecylenic esters of 2-ethyl hexanol, neopentyl glycol (NPG), and trimethylolpropane (TMP). These unsaturated esters were epoxidized by using meta chloro perbenzoic acid. The synthesized epoxides were characterized by spectral studies (1HNMR, 13CNMR, IR) physio-chemical (density, specific gravity) and lubricant properties (kinematic viscosity, viscosity index, flash point, fire point, cloud point, pour point, copper strip corrosion). TMP epoxide has a high viscosity index, high flash point, and low pour point compared to 2-ethyl hexyl epoxide and NPG epoxide.
Collapse
|
9
|
Ti-PMO materials as selective catalysts for the epoxidation of cyclohexene and vernonia oil. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Dominguez-Candela I, Lerma-Canto A, Cardona SC, Lora J, Fombuena V. Physicochemical Characterization of Novel Epoxidized Vegetable Oil from Chia Seed Oil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3250. [PMID: 35591583 PMCID: PMC9100186 DOI: 10.3390/ma15093250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
In this study, a novel epoxidized vegetable oil (EVO) from chia seed oil (CSO) has been obtained, with the aim to be employed in a great variety of green products related to the polymeric industry, as plasticizers and compatibilizers. Previous to the epoxidation process characterization, the fatty acid (FA) composition of CSO was analyzed using gas chromatography (GC). Epoxidation of CSO has been performed using peracetic acid formed in situ with hydrogen peroxide and acetic acid, applying sulfuric acid as catalyst. The effects of key parameters as temperature (60, 70, and 75 °C), the molar ratio of hydrogen peroxide:double bond (H2O2:DB) (0.75:1.0 and 1.50:1.0), and reaction time (0-8 h) were evaluated to obtain the highest relative oxirane oxygen yield (Yoo). The evaluation of the epoxidation process was carried out through iodine value (IV), oxirane oxygen content (Oo), epoxy equivalent weight (EEW), and selectivity (S). The main functional groups were identified by means of FTIR and 1H NMR spectroscopy. Physical properties were compared in the different assays. The study of different parameters showed that the best epoxidation conditions were carried out at 75 °C and H2O2:DB (1.50:1), obtaining an Oo value of 8.26% and an EEW of 193 (g·eq-1). These high values, even higher than those obtained for commercial epoxidized oils such as soybean or linseed oil, show the potential of the chemical modification of chia seed oil to be used in the development of biopolymers.
Collapse
Affiliation(s)
- Ivan Dominguez-Candela
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Alejandro Lerma-Canto
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| | - Salvador Cayetano Cardona
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Jaime Lora
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Vicent Fombuena
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| |
Collapse
|
11
|
Jadhav PD, Patwardhan AV, Kulkarni RD. Kinetic study of in situ epoxidation of mustard oil. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Flores M, Reyes-García L, Ortiz-Viedma J, Romero N, Vilcanqui Y, Rogel C, Echeverría J, Forero-Doria O. Thermal Behavior Improvement of Fortified Commercial Avocado ( Persea americana Mill.) Oil with Maqui ( Aristotelia chilensis) Leaf Extracts. Antioxidants (Basel) 2021; 10:664. [PMID: 33923315 PMCID: PMC8145251 DOI: 10.3390/antiox10050664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Avocado oil is considered a highly prized food due to its nutritional contribution. On the other hand, Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae), common name "maqui", is an endemic fruit in Chile, well known for its exceptional antioxidant properties. In general, maqui by-products such as leaves are considered as waste. Thus, maqui leaves extracts were used to improve the stability of vegetable oils, particularly avocado oil. Hence, avocado oil was fortified with two extracts (ethyl ether and methanol) obtained of maqui leaves and exposed to 120 °C for 386 h in an oven. The results showed a high content of monounsaturated fatty acids (69.46%, mainly oleic acid), followed by polyunsaturated fatty acids (16.41%, mainly linoleic acid) and finally saturated fatty acids (14.13%). The concentration of the total phenolic compounds in the pure oil, ethyl ether and methanol maqui leaves extracts were 45.8, 83.7, and 4100.9 ppm, respectively. In addition, the antioxidant activity was 5091.6 and 19,452.5 µmol Trolox eq/g for the ethyl ether and methanol extracts, respectively. The secondary degradation compounds showed significant differences between the fortified and non-fortified samples after 144 h and the TG/DTG analysis showed a significant increment of 7 °C in the degradation temperature (Tonset) of avocado oil fortified with the methanol extract when compared to the non-fortified oil and fortified oil with ethyl ether extract. After heating for 336 h, fortified oil with methanol extract reached the limit percentages of polar compounds, while pure oil reached it in a shorter time, i.e., 240 h. Based on the results, avocado oil can be protected with natural additives such as extracts obtained from maqui leaves, leading to an increase in its thermo-oxidative stability.
Collapse
Affiliation(s)
- Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Talca 3460000, Chile;
| | - Luis Reyes-García
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Talca 3460000, Chile;
| | - Jaime Ortiz-Viedma
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 8320000, Chile; (J.O.-V.); (N.R.)
| | - Nalda Romero
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago 8320000, Chile; (J.O.-V.); (N.R.)
| | - Yesica Vilcanqui
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash S/N, Moquegua 18001, Peru;
| | - Cristian Rogel
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción 4030000, Chile;
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad Santiago de Chile, Santiago 9170022, Chile;
| | - Oscar Forero-Doria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad Santiago de Chile, Santiago 9170022, Chile;
| |
Collapse
|
13
|
Abolins A, Pomilovskis R, Vanags E, Mierina I, Michalowski S, Fridrihsone A, Kirpluks M. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation. MATERIALS 2021; 14:ma14040894. [PMID: 33668608 PMCID: PMC7918627 DOI: 10.3390/ma14040894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
A second-generation bio-based feedstock-tall oil fatty acids-was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst Candida antarctica lipase B under the trade name Novozym® 435. High functionality bio-polyols were synthesised from the obtained epoxidated tall oil fatty acids by oxirane ring-opening and subsequent esterification reactions with different polyfunctional alcohols: trimethylolpropane and triethanolamine. The synthesised epoxidised tall oil fatty acids (ETOFA) were studied by proton nuclear magnetic resonance. The chemical structure of obtained polyols was studied by Fourier-transform infrared spectroscopy and size exclusion chromatography. Average molecular weight and polydispersity of polyols were determined from size exclusion chromatography data. The obtained polyols were used to develop rigid polyurethane (PU) foam thermal insulation material with an approximate density of 40 kg/m3. Thermal conductivity, apparent density and compression strength of the rigid PU foams were determined. The rigid PU foams obtained from polyols synthesised using Novozym® 435 catalyst had superior properties in comparison to rigid PU foams obtained from polyols synthesised using Amberlite IR-120 H. The developed rigid PU foams had an excellent thermal conductivity of 21.2-25.9 mW/(m·K).
Collapse
Affiliation(s)
- Arnis Abolins
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
| | - Ralfs Pomilovskis
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7 St., LV-1048 Riga, Latvia;
| | - Edgars Vanags
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
| | - Inese Mierina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7 St., LV-1048 Riga, Latvia;
| | - Slawomir Michalowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Anda Fridrihsone
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
| | - Mikelis Kirpluks
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
- Correspondence:
| |
Collapse
|
14
|
Studies on Epoxidation of Tung oil with Hydrogen Peroxide Catalyzed by Sulfuric Acid. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2020. [DOI: 10.9767/bcrec.15.3.8243.674-686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tung oil with an iodine value (IV) of 99.63 g I2/100 g was epoxidized in-situ with glacial acetic acid and hydrogen peroxide (H2O2), in the presence sulfuric acid as catalyst. The objective of this research was to evaluate the effect of mole ratio of H2O2 to unsaturated fatty acids (UFA), reaction time and catalyst concentration in Tung oil epoxidation. The reaction kinetics were also studied. Epoxidation was carried out for 4 h. The reaction rates and side reactions were evaluated based on the IV and the conversion of the epoxidized Tung oil to oxirane. Catalytic reactions resulted in higher reaction rate than did non-catalytic reactions. Increasing the catalyst concentration resulted in a large decrease in the IV and an increase in the conversion to oxirane at the initial reaction stage. However, higher catalyst concentration in the epoxidation reaction caused to a decrease in reaction selectivity. The mole ratio of H2O2 to UFA had an influence identical to the catalyst concentration. The recommended optimum mole ratio and catalyst concentration in this study were 1.6 and 1.5%, respectively. The highest conversion was 48.94% for a mole ratio of 1.6. The proposed kinetic model provided good results and was suitable for all variations in reaction temperature. The activation energy (Ea) values were around 5.7663 to 76.2442 kcal/mol. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
15
|
Yadav C, Chhajed M, Choudhury P, Sahu RP, Patel A, Chawla S, Goswami L, Goswami C, Li X, Agrawal AK, Saini A, Maji PK. Bio-extract amalgamated sodium alginate-cellulose nanofibres based 3D-sponges with interpenetrating BioPU coating as potential wound care scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111348. [PMID: 33254970 DOI: 10.1016/j.msec.2020.111348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
Abstract
In this work, sodium alginate (SA) based "all-natural" composite bio-sponges were designed for potential application as wound care scaffold. The composite bio-sponges were developed from the aqueous amalgamation of SA and cellulose nanofibres (CNFs) in bio-extracts like Rice water (Rw) and Giloy extract (Ge). These sponges were modified by employing a simple coating strategy using vegetable oil-based bio-polyurethane (BioPU) to tailor their physicochemical and biological properties so as to match the specific requirements of a wound care scaffold. Bio-sponges with shared interpenetrating polymeric network structures were attained at optimized BioPU coating formulation. The interpenetration of BioPU chains within the sponge construct resulted in the formation of numerous micro-networks in the interconnected microporous structure of sponges (porosity ≥75%). The coated sponge showed a superior mechanical strength (compressive strength ~3.8 MPa, compressive modulus ~35 MPa) with appreciable flexibility and recoverability under repeated compressive loading-unloading cycles. A tunable degradation behaviour was achieved by varying BioPU coating concentrations owing to the different degree of polymer chain entanglement within the sponge construct. The physical entanglement of BioPU chains with core structural components of sponge improved their structural stability by suppressing their full fragmentation in water-based medium without affecting its swelling behaviour (swelling ratio > 1000%). The coated sponge surface has provided a suitable moist-adherent physical environment to support the adhesion and growth of skin cells (HaCaT cells). The MTT (3-(4,5-dimethyl thiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and hemolytic assay revealed the non-toxic and biocompatible nature of coated sponges in vitro. Moreover, no signs of skin erythema or edema were observed during in vivo dermal irritation and corrosion test performed on the skin of Sprague Dawley (SD) rats. Our initial observations revealed the credibility of these sponges as functional wound care scaffolds as well as its diverse potential as a suitable substrate for various tissue engineering applications.
Collapse
Affiliation(s)
- Chandravati Yadav
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China; Indian Institute of Technology Roorkee, Department of Polymer and Process Engineering, Saharanpur Campus, Saharanpur 247001, U.P., India.
| | - Monika Chhajed
- Indian Institute of Technology Roorkee, Department of Polymer and Process Engineering, Saharanpur Campus, Saharanpur 247001, U.P., India
| | - Priyanka Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology, Patia, Bhubaneswar 751024, India
| | - Ram Prasad Sahu
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Amit Patel
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Luna Goswami
- School of Biotechnology, Kalinga Institute of Industrial Technology, Patia, Bhubaneswar 751024, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Xinping Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Ashish K Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Arun Saini
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Pradip K Maji
- Indian Institute of Technology Roorkee, Department of Polymer and Process Engineering, Saharanpur Campus, Saharanpur 247001, U.P., India.
| |
Collapse
|
16
|
Omonov TS, Patel V, Curtis JM. The Development of Epoxidized Hemp Oil Prepolymers for the Preparation of Thermoset Networks. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tolibjon S. Omonov
- Lipid Chemistry Group (LCG), Department of Agricultural, Food and Nutritional Science (AFNS)University of Alberta, 3‐60D South Academic Building (SAB) Edmonton Alberta T6G 2P5 Canada
| | - Vinay Patel
- Lipid Chemistry Group (LCG), Department of Agricultural, Food and Nutritional Science (AFNS)University of Alberta, 3‐60D South Academic Building (SAB) Edmonton Alberta T6G 2P5 Canada
| | - Jonathan M. Curtis
- Lipid Chemistry Group (LCG), Department of Agricultural, Food and Nutritional Science (AFNS)University of Alberta, 3‐60D South Academic Building (SAB) Edmonton Alberta T6G 2P5 Canada
| |
Collapse
|
17
|
Epoxidation Kinetics of High-Linolenic Triglyceride Catalyzed by Solid Acidic-Ion Exchange Resin. Sci Rep 2019; 9:8987. [PMID: 31222144 PMCID: PMC6586624 DOI: 10.1038/s41598-019-45458-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/05/2019] [Indexed: 11/20/2022] Open
Abstract
Epoxidation of high-linolenic perilla oil was carried out in the presence of solid acidic ion-exchange resin at varying reaction temperatures for 8 h. A pseudo two-phase kinetic model that captures the differences in reactivity of double bonds at various positions in the fatty acid of a triglyceride molecule during both epoxy formation and cleavage was developed. The proposed model is based on the Langmuir-Hinshelwood-Hougen-Watson (L-H-H-W) postulates and considers the adsorption of formic acid on the catalyst as the rate-determining step. To estimate the kinetic rate constants of various reactions, genetic algorithm was used to fit experimentally obtained iodine and epoxy values of epoxidized perilla oil. A re-parametrized form of Arrhenius equation was used in the proposed model to facilitate the precise estimation of parameters with least computational effort. The obtainment of the least error between experimentally determined and theoretically predicted iodine and epoxy values indicates the robustness of the proposed model.
Collapse
|
18
|
Cai X, Matos M, Leveneur S. Structure–Reactivity: Comparison between the Carbonation of Epoxidized Vegetable Oils and the Corresponding Epoxidized Fatty Acid Methyl Ester. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoshuang Cai
- LSPC—Laboratoire de sécurité des procédés chimiques, Normandie Université, INSA Rouen, UNIROUEN, EA4704, 76000 Rouen, France
| | - Manoelito Matos
- LSPC—Laboratoire de sécurité des procédés chimiques, Normandie Université, INSA Rouen, UNIROUEN, EA4704, 76000 Rouen, France
| | - Sébastien Leveneur
- LSPC—Laboratoire de sécurité des procédés chimiques, Normandie Université, INSA Rouen, UNIROUEN, EA4704, 76000 Rouen, France
- Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo/Turku, Finland
| |
Collapse
|
19
|
Chemical/Structural Modification of Canola Oil and Canola Biodiesel: Kinetic Studies and Biodegradability of the Alkoxides. LUBRICANTS 2017. [DOI: 10.3390/lubricants5020011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Canola oil and canola biodiesel derived alkoxides are prepared in the present investigation through a series of structural modifications. Epoxidation of canola oil and canola biodiesel were carried out by hydrogen peroxide using IR-120 as an acidic catalyst. The alkoxylation of epoxidized feedstocks was promoted using 2-propanol and tert-Butyl alcohol in the presence of montmorillonite catalyst and optimum reaction conditions were obtained for complete epoxide conversion to alkoxylated products as follows: reaction temperature of 90 °C, epoxide to alcohol molar ratio of 1:6, and reaction time between 6 and 8 h. The products were identified with one- and two-dimensional Nuclear Magnetic Resonance (NMR) techniques, and the kinetic and thermodynamic parameters of the alkoxylation reactions were also investigated. The thermo-oxidative stability, rheology, biodegradability and lubricity properties of the prepared alkoxides were determined using American Society for Testing and Materials (ASTM) and American Oil Chemists Society (AOCS) standard methods. Structural modification of the feedstocks enhanced the significant properties for lubrication and exhibited their potential application as gear and engine oils.
Collapse
|