1
|
Hachem S, Yehya A, El Masri J, Mavingire N, Johnson JR, Dwead AM, Kattour N, Bouchi Y, Kobeissy F, Rais-Bahrami S, Mechref Y, Abou-Kheir W, Woods-Burnham L. Contemporary Update on Clinical and Experimental Prostate Cancer Biomarkers: A Multi-Omics-Focused Approach to Detection and Risk Stratification. BIOLOGY 2024; 13:762. [PMID: 39452071 PMCID: PMC11504278 DOI: 10.3390/biology13100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Prostate cancer remains a significant health challenge, being the most prevalent non-cutaneous cancer in men worldwide. This review discusses the critical advancements in biomarker discovery using single-omics and multi-omics approaches. Multi-omics, integrating genomic, transcriptomic, proteomic, metabolomic, and epigenomic data, offers a comprehensive understanding of the molecular heterogeneity of prostate cancer, leading to the identification of novel biomarkers and therapeutic targets. This holistic approach not only enhances the specificity and sensitivity of prostate cancer detection but also supports the development of personalized treatment strategies. Key studies highlighted include the identification of novel genes, genetic mutations, peptides, metabolites, and potential biomarkers through multi-omics analyses, which have shown promise in improving prostate cancer management. The integration of multi-omics in clinical practice can potentially revolutionize prostate cancer prognosis and treatment, paving the way for precision medicine. This review underscores the importance of continued research and the application of multi-omics to overcome current challenges in prostate cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sana Hachem
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Nicole Mavingire
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.)
| | - Jabril R. Johnson
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Abdulrahman M. Dwead
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.)
| | - Naim Kattour
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Yazan Bouchi
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Firas Kobeissy
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Soroush Rais-Bahrami
- Department of Urology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Leanne Woods-Burnham
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.)
| |
Collapse
|
2
|
Hamed MA, Wasinger V, Wang Q, Graham P, Malouf D, Bucci J, Li Y. Prostate cancer-derived extracellular vesicles metabolic biomarkers: Emerging roles for diagnosis and prognosis. J Control Release 2024; 371:126-145. [PMID: 38768661 DOI: 10.1016/j.jconrel.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Prostate cancer (PCa) is a global health concern, ranking as the most common cancer among men in Western countries. Traditional diagnostic methods are invasive with adverse effects on patients. Due to the heterogeneous nature of PCa and their multifocality, tissue biopsies often yield false-negative results. To address these challenges, researchers are exploring innovative approaches, particularly in the realms of proteomics and metabolomics, to identify more reliable biomarkers and improve PCa diagnosis. Liquid biopsy (LB) has emerged as a promising non-invasive strategy for PCa early detection, biopsy selection, active surveillance for low-risk cases, and post-treatment and progression monitoring. Extracellular vesicles (EVs) are lipid-bilayer nanovesicles released by all cell types and play an important role in intercellular communication. EVs have garnered attention as a valuable biomarker resource in LB for PCa-specific biomarkers, enhancing diagnosis, prognostication, and treatment guidance. Metabolomics provides insight into the body's metabolic response to both internal and external stimuli, offering quantitative measurements of biochemical alterations. It excels at detecting non-genetic influences, aiding in the discovery of more accurate cancer biomarkers for early detection and disease progression monitoring. This review delves into the potential of EVs as a resource for LB in PCa across various clinical applications. It also explores cancer-related metabolic biomarkers, both within and outside EVs in PCa, and summarises previous metabolomic findings in PCa diagnosis and risk assessment. Finally, the article addresses the challenges and future directions in the evolving field of EV-based metabolomic analysis, offering a comprehensive overview of its potential in advancing PCa management.
Collapse
Affiliation(s)
- Mahmoud Assem Hamed
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Qi Wang
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - David Malouf
- Department of Urology, St, George Hospital, Kogarah, NSW 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.
| |
Collapse
|
3
|
Lu B, Liu Y, Yao Y, Yang T, Zhang H, Yang X, Huang R, Zhou W, Pan X, Cui X. Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications. Front Oncol 2024; 14:1355551. [PMID: 38800374 PMCID: PMC11116611 DOI: 10.3389/fonc.2024.1355551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Girel S, Markin PA, Tobolkina E, Boccard J, Moskaleva NE, Rudaz S, Appolonova SA. Comprehensive plasma steroidomics reveals subtle alterations of systemic steroid profile in patients at different stages of prostate cancer disease. Sci Rep 2024; 14:1577. [PMID: 38238434 PMCID: PMC10796437 DOI: 10.1038/s41598-024-51859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The steroid submetabolome, or steroidome, is of particular interest in prostate cancer (PCa) as the dependence of PCa growth on androgens is well known and has been routinely exploited in treatment for decades. Nevertheless, the community is still far from a comprehensive understanding of steroid involvement in PCa both at the tissue and at systemic level. In this study we used liquid chromatography/high resolution mass spectrometry (LC/HRMS) backed by a dynamic retention time database DynaSTI to obtain a readout on circulating steroids in a cohort reflecting a progression of the PCa. Hence, 60 relevant compounds were annotated in the resulting LC/HRMS data, including 22 unknown steroid isomers therein. Principal component analysis revealed only subtle alterations of the systemic steroidome in the study groups. Next, a supervised approach allowed for a differentiation between the healthy state and any of the stages of the disease. Subsequent clustering of steroid metabolites revealed two groups responsible for this outcome: one consisted primarily of the androgens, whereas another contained corticosterone and its metabolites. The androgen data supported the currently established involvement of a hypothalamic-pituitary-gonadal axis in the development of PCa, whereas biological role of corticosterone remained elusive. On top of that, current results suggested a need for improvement in the dynamic range of the analytical methods to better understand the role of low abundant steroids, as the analysis revealed an involvement of estrogen metabolites. In particular, 2-hydroxyestradiol-3-methylether, one of the compounds present in the disease phenotype, was annotated and reported for the first time in men.
Collapse
Affiliation(s)
- Sergey Girel
- School of Pharmaceutical Sciences, University of Geneva, 1211, Geneva 4, Switzerland
| | - Pavel A Markin
- World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University, 119435, Moscow, Russia
| | - Elena Tobolkina
- School of Pharmaceutical Sciences, University of Geneva, 1211, Geneva 4, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, 1211, Geneva 4, Switzerland
| | - Natalia E Moskaleva
- World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University, 119435, Moscow, Russia
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, 1211, Geneva 4, Switzerland.
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 119435, Moscow, Russia
| |
Collapse
|
5
|
Yu CT, Farhat Z, Livinski AA, Loftfield E, Zanetti KA. Characteristics of Cancer Epidemiology Studies That Employ Metabolomics: A Scoping Review. Cancer Epidemiol Biomarkers Prev 2023; 32:1130-1145. [PMID: 37410086 PMCID: PMC10472112 DOI: 10.1158/1055-9965.epi-23-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
An increasing number of cancer epidemiology studies use metabolomics assays. This scoping review characterizes trends in the literature in terms of study design, population characteristics, and metabolomics approaches and identifies opportunities for future growth and improvement. We searched PubMed/MEDLINE, Embase, Scopus, and Web of Science: Core Collection databases and included research articles that used metabolomics to primarily study cancer, contained a minimum of 100 cases in each main analysis stratum, used an epidemiologic study design, and were published in English from 1998 to June 2021. A total of 2,048 articles were screened, of which 314 full texts were further assessed resulting in 77 included articles. The most well-studied cancers were colorectal (19.5%), prostate (19.5%), and breast (19.5%). Most studies used a nested case-control design to estimate associations between individual metabolites and cancer risk and a liquid chromatography-tandem mass spectrometry untargeted or semi-targeted approach to measure metabolites in blood. Studies were geographically diverse, including countries in Asia, Europe, and North America; 27.3% of studies reported on participant race, the majority reporting White participants. Most studies (70.2%) included fewer than 300 cancer cases in their main analysis. This scoping review identified key areas for improvement, including needs for standardized race and ethnicity reporting, more diverse study populations, and larger studies.
Collapse
Affiliation(s)
- Catherine T Yu
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland
| | - Zeinab Farhat
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Alicia A Livinski
- National Institutes of Health Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Krista A Zanetti
- Office of Nutrition Research, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Krishnan S, Kanthaje S, Punchappady DR, Mujeeburahiman M, Ratnacaram CK. Circulating metabolite biomarkers: a game changer in the human prostate cancer diagnosis. J Cancer Res Clin Oncol 2023; 149:951-967. [PMID: 35764700 DOI: 10.1007/s00432-022-04113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Prostate cancer (PCa) is the second most commonly diagnosed cancer in men in Western and Asian countries. Serum prostate-specific antigen (PSA) test has been the routine diagnostic method despite the tremendous research in diagnostic markers for early detection of PCa. A shift towards a promising and potential biomarker for PCa detection is through metabolomic profiling of biofluids, particularly the blood and urine samples. Finding reliable, routinely usable circulating metabolite biomarkers may not be a distant reality. METHODS We performed a PubMed-based literature search of metabolite biomarkers in blood and urine for the early detection of prostate cancer. The timeline of these searches was limited between 2007 and 2022 and the following keywords were used: 'metabolomics', 'liquid biopsy', 'circulating metabolites', 'serum metabolite', 'plasma metabolite', and 'urine metabolite' with respect to 'prostate cancer'. We focussed only on diagnosis-based studies with only the subject-relevant articles published in the English language and excluded all of the other irrelevant publications that included prostate tissue biomarkers and cell line biomarkers. RESULTS We have consolidated all the blood and urine-based potential metabolite candidates in individual as well as panels, including lipid classes, fatty acids, amino acids, and volatile organic compounds which may become useful for PCa diagnosis. CONCLUSION All these metabolome findings unveil the impact of different dimensions of PCa development, giving a promising strategy to diagnose the disease since suspected individuals can be subjected to repeated and largescale blood and urine testing.
Collapse
Affiliation(s)
- Sabareeswaran Krishnan
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India
- Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Shruthi Kanthaje
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Devasya Rekha Punchappady
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - M Mujeeburahiman
- Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, Karnataka, India.
| | - Chandrahas Koumar Ratnacaram
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India.
| |
Collapse
|
7
|
Marques C, Liu L, Duncan KD, Lanekoff I. A Direct Infusion Probe for Rapid Metabolomics of Low-Volume Samples. Anal Chem 2022; 94:12875-12883. [PMID: 36070505 PMCID: PMC9494293 DOI: 10.1021/acs.analchem.2c02918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Targeted and nontargeted metabolomics has the potential to evaluate and detect global metabolite changes in biological systems. Direct infusion mass spectrometric analysis enables detection of all ionizable small molecules, thus simultaneously providing information on both metabolites and lipids in chemically complex samples. However, to unravel the heterogeneity of the metabolic status of cells in culture and tissue a low number of cells per sample should be analyzed with high sensitivity, which requires low sample volumes. Here, we present the design and characterization of the direct infusion probe, DIP. The DIP is simple to build and position directly in front of a mass spectrometer for rapid metabolomics of chemically complex biological samples using pneumatically assisted electrospray ionization at 1 μL/min flow rate. The resulting data is acquired in a square wave profile with minimal carryover between samples that enhances throughput and enables several minutes of uniform MS signal from 5 μL sample volumes. The DIP was applied to study the intracellular metabolism of insulin secreting INS-1 cells and the results show that exposure to 20 mM glucose for 15 min significantly alters the abundance of several small metabolites, amino acids, and lipids.
Collapse
Affiliation(s)
- Cátia Marques
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Liangwen Liu
- Department
of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Kyle D. Duncan
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Ingela Lanekoff
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
8
|
Kong L, Sun Y, Sun H, Zhang AH, Zhang B, Ge N, Wang XJ. Chinmedomics Strategy for Elucidating the Pharmacological Effects and Discovering Bioactive Compounds From Keluoxin Against Diabetic Retinopathy. Front Pharmacol 2022; 13:728256. [PMID: 35431942 PMCID: PMC9008273 DOI: 10.3389/fphar.2022.728256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Keluoxin (KLX) is an active agent in the treatment of diabetic retinopathy (DR). However, its mechanism, targets, and effective constituents against DR are still unclear, which seriously restricts its clinical application. Chinmedomics has the promise of explaining the pharmacological effects of herbal medicines and investigating the effective mechanisms. The research results from electroretinography and electron microscope showed that KLX could reduce retinal dysfunction and pathological changes by the DR mouse model. Based on effectiveness, we discovered 64 blood biomarkers of DR by nontargeted metabolomics analysis, 51 of which returned to average levels after KLX treatment including leukotriene D4 and A4, l-tryptophan, 6-hydroxymelatonin, l-phenylalanine, l-tyrosine, and gamma-linolenic acid (GLA). The metabolic pathways involved were phenylalanine metabolism, steroid hormone biosynthesis, sphingolipid metabolism, etc. Adenosine monophosphate-activated protein kinase (AMPK), extracellular signal-regulated protein kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase (PI3K), and protein 70 S6 kinase (p70 S6K) might be potential targets of KLX against DR. This was related to the mammalian target of rapamycin (mTOR) signaling and AMPK signaling pathways. We applied the chinmedomics strategy, integrating serum pharm-chemistry of traditional Chinese medicine (TCM) with metabolomics, to discover astragaloside IV (AS-IV), emodin, rhein, chrysophanol, and other compounds, which were the core effective constituents of KLX when against DR. Our study was the first to apply the chinmedomics strategy to discover the effective constituents of KLX in the treatment of DR, which fills the gap of unclear effective constituents of KLX. In the next step, the research of effective constituents can be used to optimize prescription preparation, improve the quality standard, and develop an innovative drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Li HY, Sun H, Zhang AH, He LW, Qiu S, Xue JR, Wu F, Wang XJ. Therapeutic Effect and Mechanism of Si-Miao-Yong-An-Tang on Thromboangiitis Obliterans Based on the Urine Metabolomics Approach. Front Pharmacol 2022; 13:827733. [PMID: 35273504 PMCID: PMC8902467 DOI: 10.3389/fphar.2022.827733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Si-Miao-Yong-An-Tang (SMYAT) is a classic prescription for the treatment of thromboangiitis obliterans (TAO). However, the effect and mechanism are still unclear. This experiment aims to evaluate the therapeutic effect and mechanism of SMYAT on sodium laurate solution induced thromboangiitis obliterans model rats using urine metabolomics. The therapeutic effect of SMYAT was evaluated by histopathology, hemorheology and other indexes. The urine metabolomic method, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used for clustering group and discriminant analysis to screen urine differential metabolic biomarkers, and explore new insight into pathophysiological mechanisms of SMYAT in the treatment of TAO. SMYAT has significant antithrombotic and anti-inflammatory effects, according to the results of urine metabolomic analysis, and regulate the metabolic profile of TAO rats, and its return profile is close to the state of control group. Through metabolomics technology, a total of 35 urine biomarkers of TAO model were characterized. Among them, SMYAT treatment can regulate 22 core biomarkers, such as normetanephrine and 4-pyridoxic acid. It is found that the therapeutic effect of SMYAT is closely related to the tyrosine metabolism, vitamin B6 metabolism and cysteine and methionine metabolism. It preliminarily explored the therapeutic mechanism of SMYAT, and provided a scientific basis for the application of SMYAT.
Collapse
Affiliation(s)
- Hui-Yu Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu-Wen He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun-Ru Xue
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Xi-Jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
10
|
Wang D, Zhao L, Hao Z, Huang Y, Liao Y, Wang L, Zhang J, Cao S, Liu L. High-Throughput and Untargeted Metabolic Profiling Revealed the Potential Effect and Mechanisms of Paeoniflorin in Young Asthmatic Rats. Front Pharmacol 2022; 13:829780. [PMID: 35211022 PMCID: PMC8861441 DOI: 10.3389/fphar.2022.829780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Paeoniflorin (PF) is a multi-target monoterpenoid glycoside and possesses broad pharmacological functions, e.g., anti-inflammation, anti-depression, antitumor, abirritation, neuroprotection, antioxidant, and enhancing cognitive and learning ability. PF has gained a large amount of attention for its effect on asthma disease as the growth rate of asthma has increased in recent years. However, its mechanism of action on asthma is still unclear. In this study, we have explored the action mechanism of PF on asthma disease. Furthermore, high-throughput untargeted metabolic profiling was performed through ultraperformance liquid chromatography/electrospray ionization quadruple time-of-flight high-definition mass spectrometry (QA) UPLC-Q/TOF-MS combined with pattern recognition approaches and pathway analysis. A total of 20 potential biomarkers were discovered by UPLC/MS and urine metabolic profiling. The key pathways including the citrate cycle (the TCA cycle), pyrimidine metabolism, pentose phosphate pathway, tyrosine metabolism, and tryptophan metabolism were affected by PF. In conclusion, we have discovered metabolite biomarkers and revealed the therapeutic mechanism of PF based on liquid chromatography coupled with mass spectrometry untargeted metabolomics. The untargeted metabolomics combined with UPLC-MS is a useful tool for exploring the therapeutic mechanism and targets of PF in the treatment of asthma. Metabolomics combined with UPLC-MS is an integrated method to explore the metabolic mechanism of PF in the treatment of asthma rats and to reveal the potential targets, providing theoretical support for the study of the treatment of PF.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pediatrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Li Zhao
- Sanya Women and Children’s Hospital Managed by Shanghai Children’s Medical Center, Sanya, China
| | - Zhiyan Hao
- Department of Pediatrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ying Huang
- Department of Pediatrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yang Liao
- Department of Pediatrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lingli Wang
- Department of Pediatrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jinfeng Zhang
- Department of Pediatrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shan Cao
- Department of Pediatrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lixiao Liu
- Department of Pediatrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
11
|
Li Y, Liu J, Zhou H, Liu J, Xue X, Wang L, Ren S. Liquid chromatography-mass spectrometry method for discovering the metabolic markers to reveal the potential therapeutic effects of naringin on osteoporosis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123170. [DOI: 10.1016/j.jchromb.2022.123170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
12
|
Yuan Y, Dong FX, Liu X, Xiao HB, Zhou ZG. Liquid Chromatograph-Mass Spectrometry-Based Non-targeted Metabolomics Discovery of Potential Endogenous Biomarkers Associated With Prostatitis Rats to Reveal the Effects of Magnoflorine. Front Pharmacol 2021; 12:741378. [PMID: 34790120 PMCID: PMC8591080 DOI: 10.3389/fphar.2021.741378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Magnoflorine (Mag) has multiple pharmacological activities for the prevention and treatment of prostatitis. However, its molecular mechanisms andpharmacological targets are not clear. In this study, the ultra-performance liquid tandem mass spectrometry-based metabolomics method was used to clarify the intervention of Mag against prostatitis and the biological mechanism. A total of 25 biomarkers associated with the prostatitis model were identified by metabolomics, and a number of metabolic pathways closely related to the model were obtained by MetPA analysis. After given Mag treatment, the results of each indicator were shown that Mag alkaloid could inhibit the development of prostatitis effectively. We found that Mag had regulative effects on potential biomarkers of prostatitis model, which can regulate them to the control group. Our results indicated that alkaloids have an effective intervention therapy for prostatitis, and five types of metabolic pathways closely related to prostatitis model were obtained, including phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, tyrosine metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism. This study has provided the basic experimental data for the development of Mag in the prevention and treatment of prostatitis.
Collapse
Affiliation(s)
- Yin Yuan
- Department of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fei-Xue Dong
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Liu
- Department of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hong-Bin Xiao
- Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhong-Guang Zhou
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Shi Z, Zou S, Shen Z, Luan F, Yan J. High-throughput metabolomics using UPLC/Q-TOF-MS coupled with multivariate data analysis reveals the effect and mechanism of syringin against ovariectomized osteoporosis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1183:122957. [PMID: 34666892 DOI: 10.1016/j.jchromb.2021.122957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/28/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
Osteoporosis is an increasing public health problem in the worldwide and has caused socioeconomic burden. Natural products as candidates have the potential to promote bone formation and suppress bone resorption for osteoporosis treatment. Previously, syringin has showed the potent anti-osteoporosis activity, however the detailed mechanism of syringin against osteoporosis is still unclear. This study aimed to reveal the pharmacological effect and mechanism of syringin through the high-throughput metabolomics. In this study, metabolomics techniques were used to explore the metabolic biomarkers and profiles provides deep insights into the pharmacological effects and mechanism of syringin against osteoporosis. The metabolite biomarkers were monitored based on the high-resolution mass spectrometry. By the integration analysis of metabolomics technology, a total of 23 metabolic biomarkers were discovered and we found the highly relevant pathway involved in glycine and serine metabolism, butyrate metabolism, methionine metabolism, catecholamine biosynthesis, tyrosine metabolism, etc. Interestingly, synthesis and degradation of ketone bodies, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, tyrosine metabolism, glycine, serine and threonine metabolism, butanoate metabolism, was related with efficacy of syringin. The present work showed that the metabolomics technology can provide novel strategies for revealing insights into the metabolic effects and action mechanism of drug.
Collapse
Affiliation(s)
- Zhenxing Shi
- Orthopedics and Oncology Department, Second Affiliated Hospital of Medical University of Heilongjiang Province, Harbin 150086, China
| | - Shifeng Zou
- Intensive Care Unit Department, First Affiliated Hospital of Medical University of Heilongjiang Province, Harbin, China
| | - Zilong Shen
- Intensive Care Unit Department, First Affiliated Hospital of Medical University of Heilongjiang Province, Harbin, China
| | - Feiyu Luan
- Orthopedics and Oncology Department, Second Affiliated Hospital of Medical University of Heilongjiang Province, Harbin 150086, China
| | - Jianglong Yan
- Orthopedics and Oncology Department, Second Affiliated Hospital of Medical University of Heilongjiang Province, Harbin 150086, China.
| |
Collapse
|
14
|
Liu Y, De Vijlder T, Bittremieux W, Laukens K, Heyndrickx W. Current and future deep learning algorithms for tandem mass spectrometry (MS/MS)-based small molecule structure elucidation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021:e9120. [PMID: 33955607 DOI: 10.1002/rcm.9120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation. ARCHITECTURES Recent early-stage DL frameworks mostly follow a "two-step approach" that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor-specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher-order information from spectra and structure data. For instance, encoding spectra with subtrees and pre-calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search. CONCLUSIONS In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks.
Collapse
Affiliation(s)
| | | | - Wout Bittremieux
- University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Network Antwerpen (biomina), University of Antwerp, Antwerp, Belgium
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Kris Laukens
- University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Network Antwerpen (biomina), University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
15
|
Luo W, Jia L, Zhang JW, Wang DJ, Ren Q, Zhang W. Andrographolide Against Lung Cancer-New Pharmacological Insights Based on High-Throughput Metabolomics Analysis Combined with Network Pharmacology. Front Pharmacol 2021; 12:596652. [PMID: 33967748 PMCID: PMC8097142 DOI: 10.3389/fphar.2021.596652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Andrographolide (Andro) has known to treat various illnesses such as colds, diarrhea, fever and infectious diseases. However, the effect mechanism of Andro is still unclear. Therefore, we used high-throughput metabolomics analysis to discover biomarkers, metabolic profiles and pathways to reveal the pharmacological action and effective mechanism of Andro against lung cancer. The metabolic effects of Andro on lung cancer animal was explored by ultra-performance liquid chromatography-triple-time of flight/mass spectrometry (UPLC-TOF/MS) analysis. Our results showed that Andro exhibited significant protective effects against lung cancer. Compared with control group, a total of 25 metabolites biomarkers was identified in urine of model animals, which 18 of them were regulated toward the normal direction after Andro treatment, and network pharmacology analysis showed that they were related with 570 proteins. Biological pathways analysis showed that the 11 metabolism pathways were regulated by Andro treatment in lung cancer mouse, and amino acid metabolism and arachidonic acid metabolism have great potential as target pathways for Andro against lung cancer. It revealed that high-throughput metabolomics combined with network pharmacology analysis provides deeply insight into the therapeutic mechanisms of natural product for promoting medicine development and disease treatment.
Collapse
Affiliation(s)
- Wen Luo
- Respiratory Department, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Jia
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jia-Wen Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dong-Jie Wang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiu Ren
- Department of Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, China
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Yang B, Zhang C, Cheng S, Li G, Griebel J, Neuhaus J. Novel Metabolic Signatures of Prostate Cancer Revealed by 1H-NMR Metabolomics of Urine. Diagnostics (Basel) 2021; 11:149. [PMID: 33498542 PMCID: PMC7909529 DOI: 10.3390/diagnostics11020149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PC) is one of the most common male cancers worldwide. Until now, there is no consensus about using urinary metabolomic profiling as novel biomarkers to identify PC. In this study, urine samples from 50 PC patients and 50 non-cancerous individuals (control group) were collected. Based on 1H nuclear magnetic resonance (1H-NMR) analysis, 20 metabolites were identified. Subsequently, principal component analysis (PCA), partial least squares-differential analysis (PLS-DA) and ortho-PLS-DA (OPLS-DA) were applied to find metabolites to distinguish PC from the control group. Furthermore, Wilcoxon test was used to find significant differences between the two groups in metabolite urine levels. Guanidinoacetate, phenylacetylglycine, and glycine were significantly increased in PC, while L-lactate and L-alanine were significantly decreased. The receiver operating characteristics (ROC) analysis revealed that the combination of guanidinoacetate, phenylacetylglycine, and glycine was able to accurately differentiate 77% of the PC patients with sensitivity = 80% and a specificity = 64%. In addition, those three metabolites showed significant differences in patients stratified for Gleason score 6 and Gleason score ≥7, indicating potential use to detect significant prostate cancer. Pathway enrichment analysis using the KEGG (Kyoto Encyclopedia of Genes and Genomes) and the SMPDB (The Small Molecule Pathway Database) revealed potential involvement of KEGG "Glycine, Serine, and Threonine metabolism" in PC. The present study highlights that guanidinoacetate, phenylacetylglycine, and glycine are potential candidate biomarkers of PC. To the best knowledge of the authors, this is the first study identifying guanidinoacetate, and phenylacetylglycine as potential novel biomarkers in PC.
Collapse
Affiliation(s)
- Bo Yang
- Department of Urology, University of Leipzig, 04103 Leipzig, Germany; (B.Y.); (C.Z.)
- Department of Urology, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chuan Zhang
- Department of Urology, University of Leipzig, 04103 Leipzig, Germany; (B.Y.); (C.Z.)
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Jan Griebel
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany;
| | - Jochen Neuhaus
- Department of Urology, University of Leipzig, 04103 Leipzig, Germany; (B.Y.); (C.Z.)
- Department of Urology, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
17
|
Zhao LK, Zhao YB, Zhang PX. High-throughput metabolomics discovers metabolite biomarkers and insights the protective mechanism of schisandrin B on myocardial injury rats. J Sep Sci 2020; 44:717-725. [PMID: 33247873 DOI: 10.1002/jssc.202000875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Schisandrin B has been proved to possess anti-inflammatory and anti-endoplasmic effects, could improve cardiac function, inhibit apoptosis, and reduce inflammation after ischemic injury. However, the detailed metabolic mechanism and potential pathways of Schisandrin B effects on myocardial injury are unclear. Metabolomics could yield in-depth mechanistic insights and explore the potential therapeutic effect of natural products. In this study, the preparation of doxorubicin-induced myocardial injury rat model for evaluation of Schisandrin B on viral myocarditis sequelae related pathological changes and its mechanism. The metabolite profiling of myocardial injury rats was performed through ultra-high performance liquid chromatography combined with mass spectrometry combined with pattern recognition approaches and pathway analysis. A total of 15 metabolites (nine in positive ion mode and six in negative ion mode) were considered as potential biomarkers of myocardial injury, and these metabolites may correlate with the regulation of Schisandrin B treatment. A total of six metabolic pathways are closely related to Schisandrin B treatment, including glycerophospholipid metabolism, sphingolipid metabolism, purine metabolism, etc. This study revealed the potential biomarkers and metabolic network pathways of myocardial injury, and illuminated the protective mechanism of Schisandrin B on myocardial injury.
Collapse
Affiliation(s)
- Ling-Kun Zhao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, P. R. China
| | - Yun-Bo Zhao
- First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, P. R. China
| | - Peng-Xia Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, P. R. China
| |
Collapse
|
18
|
Du HW, Cong W, Wang B, Zhao XL, Meng XC. High-throughput metabolomic method based on liquid chromatography: high resolution mass spectrometry with chemometrics for metabolic biomarkers and pathway analysis to reveal the protective effects of baicalin on thyroid cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4139-4149. [PMID: 32776035 DOI: 10.1039/d0ay00977f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell metabonomics focuses on discovering metabolic biomarkers and pathway changes in cells from biological systems to obtain the cell properties and functional information under different conditions. Baicalin possesses various pharmacological activities, and plays a vital role in the oncology research field. However, the detailed mechanism of its action is still unclear. In this work, we employed ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) based non-targeted metabolomics method associated with chemometrics analysis to explore metabolic pathways and biomarkers for investigating the efficacy and pharmacological targets of baicalin against thyroid cancer cells. In addition, morphological observation, parameter calculation of cell proliferation and apoptosis were carried out, which assisted in elucidation of pharmacological activity of baicalin on the human thyroid cancer cells. The results showed that baicalin possesses an intense stimulative apoptosis and inhibits proliferation activity on SW579 human thyroid cancer cells, and partially reversed the cell metabolite abnormalities. A total of nineteen differentiated metabolites in SW579 cells were identified and deemed as potential biomarkers after the baicalin treatment, involving nine metabolic pathways, such as taurine and hypotaurine metabolism, pyrimidine metabolism, fructose and mannose metabolism, steroid hormone biosynthesis and sphingolipid metabolism. High-throughput non-targeted metabolomics provide an insight into specialized mechanism of baicalin against thyroid cancer and contributes to novel drug discovery and thyroid cancer management in clinical practice.
Collapse
Affiliation(s)
- Hong-Wei Du
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, Heilongjiang Province, People's Republic of China.
| | | | | | | | | |
Collapse
|
19
|
Zhao JF, Xu JY, Xu YE, Chen SL, Guo YX, Gao QY, Sun GC. High-Throughput Metabolomics Method for Discovering Metabolic Biomarkers and Pathways to Reveal Effects and Molecular Mechanism of Ethanol Extract From Epimedium Against Osteoporosis. Front Pharmacol 2020; 11:1318. [PMID: 32973531 PMCID: PMC7481463 DOI: 10.3389/fphar.2020.01318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/07/2020] [Indexed: 11/24/2022] Open
Abstract
Metabolomics is an effective strategy to explore the molecular mechanism of herbal medicine. Epimedium, a traditional Chinese herb from the Epimedium brevicornu Maxim., has a therapeutic effect on osteoporosis (OP), however the molecular mechanism of the anti-OP effect is uncle\ar. Therefore, we investigated the pharmacological effect and action mechanism of ethanol extract of epimedium (Ext-epi) onOP rat model. The serum of OP rats was analyzed utilized UPLC-Q-TOF/MS metabolomics, and the potential biomarkers were screened and identified using multivariate data analysis systems and network databases. To further appraise the influence of Ext-epi on biological markers and metabolic pathways, and reveal the potential mechanism of Ext-epi on OP treatment. The results showed that 46 potential biomarkers were screened out and after intervention with Ext-epi extracts solution, 16 potential biomarkers were significantly recalled. Further pathway experiments showed that key pathway analysis include sarachidonic acid metabolism, glycerolphospholipid metabolism as potential targets which is related with the efficacy of Ext-epi protect against OP. These results explain the correlation between metabolites and molecular mechanisms, which is of great significance for understanding the intervention of Ext-epi on OP. In short, based on UPLC-Q-TOF/MS metabolomics may provide effective strategies for understanding the pathogenesis of diseases and evaluating the intervention effect of natural products.
Collapse
Affiliation(s)
- Jun-feng Zhao
- The Manual Orthopaedics, Henan Province Luoyang Orthopedic Thraumatological Hospital (Henan Provincal Orthopedic Hospital), Luoyang, China
| | - Jian-yu Xu
- The Tumor Hospital of Harbin Medical University, The Department of Radiation Oncology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China
| | - Yi-er Xu
- The Research & Development Center of Harbin Pharmaceutical Group, The Laboratory of Pharmacology Quality Inspection & Pilotscale Experiment Workshop, Harbin, China
| | - Shui-lin Chen
- The Department of Orthopaedics, The Fourth Hospital Attached to Nanchang University, Nanchang, China
| | - Yan-xing Guo
- The Manual Orthopaedics, Henan Province Luoyang Orthopedic Thraumatological Hospital (Henan Provincal Orthopedic Hospital), Luoyang, China
| | - Quan-yang Gao
- The Manual Orthopaedics, Henan Province Luoyang Orthopedic Thraumatological Hospital (Henan Provincal Orthopedic Hospital), Luoyang, China
| | - Gui-cai Sun
- The First Affiliated Hospital of Nanchang University, Orthopaedics, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Enhanced single-cell metabolomics by capillary electrophoresis electrospray ionization-mass spectrometry with field amplified sample injection. Anal Chim Acta 2020; 1118:36-43. [PMID: 32418602 DOI: 10.1016/j.aca.2020.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
Single-cell metabolomics provides information on the biochemical state of an individual cell and its relationship with the surrounding environment. Characterization of metabolic cellular heterogeneity is challenging, in part due to the small amounts of analytes and their wide dynamic concentration ranges within individual cells. CE-ESI-MS is well suited to single-cell assays because of its low sample-volume requirements and low detection limits. While the volume of a cell is in the picoliter range, after isolation, the typical volume of the lysed cell sample is on the order of a microliter; however, only nanoliters are injected into the CE system, with the volume mismatch limiting analytical performance. Here we developed an approach for the detection of intracellular metabolites from a single neuron using field amplified sample injection (FASI) CE-ESI-MS. Through the application of FASI, we achieved 100- to 300-fold detection limit enhancement compared to hydrodynamic injections. We further enhanced the analyte identification and quantification accuracy via introduction of two internal standards. As a result, the relative standard deviations of migration times were reduced to <5%, aiding identification. Finally, we successfully applied FASI CE-ESI-MS to the untargeted profiling of metabolites of Aplysia californica pleural sensory neurons with <50 μm diameter cell somata. As a result, twenty one neurotransmitters and metabolites have been quantified in these neurons.
Collapse
|
21
|
Sun YC, Han SC, Yao MZ, Liu HB, Wang YM. Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS. RSC Adv 2020; 10:1552-1571. [PMID: 35494719 PMCID: PMC9047290 DOI: 10.1039/c9ra08090b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
The aims of this study is to explore the metabolomic biomarker and pathway changes in crucian under carbonate alkalinity exposures using high-throughput metabolomics analysis based on ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS) for carrying out adaptive evolution of fish in environmental exposures and understanding molecular physiological mechanisms of saline–alkali tolerance in fishes. Under 60 day exposure management, the UPLC-ESI-QTOF-MS technology, coupled with a pattern recognition approach and metabolic pathway analysis, was utilized to give insight into the metabolic biomarker and pathway changes. In addition, biochemical parameters in response to carbonate alkalinity in fish were detected for chronic impairment evaluation. A total of twenty-seven endogenous metabolites were identified to distinguish the biochemical changes in fish in clean water under exposure to different concentrations of carbonate alkalinity (CA); these mainly involved amino acid synthesis and metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism and the citrate cycle (TCA cycle). Compared with the control group, CA exposure increased the level of blood ammonia; TP; ALB; Gln in the liver and gills; GS; urea in blood, the liver and gills; CREA; CPS; Glu and LDH; and decreased the level of weight gain rate, oxygen consumption, discharge rate of ammonia, SOD, CAT, ALT, AST and Na+/K+-ATPase. At low concentrations, CA can change the normal metabolism of fish in terms of changing the osmotic pressure regulation capacity, antioxidant capacity, ammonia metabolism and liver and kidney function to adapt to the CA exposure environment. As the concentration of CA increases, various metabolic processes in crucian are inhibited, causing chronic damage to the body. The results show that the metabolomic strategy is a potentially powerful tool for identifying the mechanisms in response to different environmental exposomes and offers precious information about the chronic response of fish to CA. We explore the metabolic biomarker and pathway changes accompanying the adaptive evolution of crucian subjected to carbonate alkalinity exposure, using UPLC-ESI-QTOF-MS, in order to understand the molecular physiological mechanisms of saline–alkali tolerance.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Shi-cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Ming-zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Hong-bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Yu-mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| |
Collapse
|
22
|
Liang Q, Liu H, Li XL, Yang Y, Hairong P. Rapid lipidomics analysis for sepsis-induced liver injury in rats and insights into lipid metabolic pathways using ultra-performance liquid chromatography/mass spectrometry. RSC Adv 2019; 9:35364-35371. [PMID: 35528052 PMCID: PMC9074727 DOI: 10.1039/c9ra05836b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/19/2019] [Indexed: 11/30/2022] Open
Abstract
Lipidomics has been applied in the identification and quantification of molecular lipids within an organism, and to provide insights into mechanisms in clinical medicine. Sepsis is a major systemic inflammatory syndrome and the liver here is a potential target organ for dysfunctional response. However, the study of alterations in global lipid profiles associated with sepsis-induced liver injury is still limited. In this work, we set out to determine alterations of lipidomics profiles in a rat model of sepsis-induced liver injury using an untargeted lipidomics strategy. Liquid chromatography coupled with mass spectrometry in conjunction with multivariate data analysis and pathway analysis were used to acquire a global lipid metabolite profile. Meanwhile, biochemistry index and histopathological examinations of the liver were performed to obtain auxiliary measurements for determining the pathological changes associated with sepsis-induced liver injury. Eleven lipid metabolites and two metabolic pathways were discovered and associated with sepsis-induced liver injury. The results indicated that various biomarkers and pathways may provide evidence for and insight into lipid profile alterations associated with sepsis-induced liver injury, and hence pointed to potential strategic targets for clinical diagnosis and therapy in the future. Lipidomics has been applied in the identification and quantification of molecular lipids within an organism, and to provide insights into mechanisms in clinical medicine.![]()
Collapse
Affiliation(s)
- Qun Liang
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| | - Han Liu
- Simon Fraser University (SFU) Burnaby British Columbia Canada
| | - Xiu-Li Li
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| | - Yang Yang
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| | - Panguo Hairong
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| |
Collapse
|
23
|
Gao X, Hu X, Zhang Q, Wang X, Wen X, Wang Y, Zhang Y, Sun W. Characterization of chemical constituents and absorbed components, screening the active components of gelanxinning capsule and an evaluation of therapeutic effects by ultra‐high performance liquid chromatography with quadrupole time of flight mass spectrometry. J Sep Sci 2019; 42:3439-3450. [DOI: 10.1002/jssc.201900942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Gao
- Department of Pharmacognosy, School of PharmacyXi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xiaohu Hu
- Xi'an Chiho Pharmaceutical Co., Ltd Xi'an Shaanxi P. R. China
| | - Qiong Zhang
- Xi'an Chiho Pharmaceutical Co., Ltd Xi'an Shaanxi P. R. China
| | - Xijing Wang
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Xiuhong Wen
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Yuan Wang
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Yanxia Zhang
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Wenjun Sun
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| |
Collapse
|
24
|
Manzi M, Riquelme G, Zabalegui N, Monge ME. Improving diagnosis of genitourinary cancers: Biomarker discovery strategies through mass spectrometry-based metabolomics. J Pharm Biomed Anal 2019; 178:112905. [PMID: 31707200 DOI: 10.1016/j.jpba.2019.112905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
The genitourinary oncology field needs integration of results from basic science, epidemiological studies, clinical and translational research to improve the current methods for diagnosis. MS-based metabolomics can be transformative for disease diagnosis and contribute to global health parity. Metabolite panels are promising to translate metabolomic findings into the clinics, changing the current diagnosis paradigm based on single biomarker analysis. This review article describes capabilities of the MS-based oncometabolomics field for improving kidney, prostate, and bladder cancer detection, early diagnosis, risk stratification, and outcome. Published works are critically discussed based on the study design; type and number of samples analyzed; data quality assessment through quality assurance and quality control practices; data analysis workflows; confidence levels reported for identified metabolites; validation attempts; the overlap of discriminant metabolites for the different genitourinary cancers; and the translation capability of findings into clinical settings. Ongoing challenges are discussed, and future directions are delineated.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Ciudad de Buenos Aires, Argentina
| | - Gabriel Riquelme
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
25
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
26
|
Gómez-Cebrián N, Rojas-Benedicto A, Albors-Vaquer A, López-Guerrero JA, Pineda-Lucena A, Puchades-Carrasco L. Metabolomics Contributions to the Discovery of Prostate Cancer Biomarkers. Metabolites 2019; 9:metabo9030048. [PMID: 30857149 PMCID: PMC6468766 DOI: 10.3390/metabo9030048] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers and a leading cause of death among men worldwide. Despite extensive efforts in biomarker discovery during the last years, currently used clinical biomarkers are still lacking enough specificity and sensitivity for PCa early detection, patient prognosis, and monitoring. Therefore, more precise biomarkers are required to improve the clinical management of PCa patients. In this context, metabolomics has shown to be a promising and powerful tool to identify novel PCa biomarkers in biofluids. Thus, changes in polyamines, tricarboxylic acid (TCA) cycle, amino acids, and fatty acids metabolism have been reported in different studies analyzing PCa patients' biofluids. The review provides an up-to-date summary of the main metabolic alterations that have been described in biofluid-based studies of PCa patients, as well as a discussion regarding their potential to improve clinical PCa diagnosis and prognosis. Furthermore, a summary of the most significant findings reported in these studies and the connections and interactions between the different metabolic changes described has also been included, aiming to better describe the specific metabolic signature associated to PCa.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, Valencia 46009, Spain.
| | - Ayelén Rojas-Benedicto
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
| | - Arturo Albors-Vaquer
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
| | | | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
| | - Leonor Puchades-Carrasco
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
| |
Collapse
|
27
|
Liang Q, Liu H, Li X, Hairong P, Sun P, Yang Y, Du C. High-throughput metabolic profiling, combined with chemometrics and bioinformatic analysis reveals functional alterations in myocardial dysfunction. RSC Adv 2019; 9:3351-3358. [PMID: 35548688 PMCID: PMC9087870 DOI: 10.1039/c8ra07572g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
High-throughput metabolic profiling technology has been used for biomarker discovery and to reveal underlying metabolic mechanisms.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Xiuli Li
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Panguo Hairong
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Peiyang Sun
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yang Yang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Chunpeng Du
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
28
|
Identification of volatile metabolites in human saliva from patients with oral squamous cell carcinoma via zeolite-based thin-film microextraction coupled with GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:49-58. [PMID: 30445287 DOI: 10.1016/j.jchromb.2018.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/04/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
In recent years, volatile organic compounds (VOCs) discharged from the human body, of which some compounds exhibit strong correlations with pathological conditions, have attracted attention as a new means of disease diagnosis technology. The aim of this study was to establish the salivary metabolomic profiles of oral squamous cell carcinoma (OSCC) patients and healthy volunteers (control group) and to investigate VOCs as potential biomarkers in the diagnosis of oral cancer. We have demonstrated a method combining thin-film microextraction based on a ZSM-5/polydimethylsiloxane hybrid film coupled with gas chromatography-mass spectrometry and carried out a comparative analysis of salivary VOC profiles between OSCC patients and healthy controls. The results depicted that 42 and 73 VOCs were detected and identified in samples from the healthy control group (n = 50) and oral cancer group (n = 24), respectively. Among them, twenty-seven VOCs (ten were decreased, seven disappeared, and ten were newly produced in the oral cancer group) depict significant differences between both the sample groups, and they have relevance as candidate biomarkers for OSCC. Twelve salivary VOCs that were characteristic of oral cancer patients were finally extracted and used for pattern recognition analyses for oral cancer diagnosis. The proposed TFME approach for analyzing human saliva on the basis of a ZSM-5-loaded PDMS hybrid thin film has been performed for the very first time in the field of dentistry.
Collapse
|
29
|
Blank M, Thompson A, Hausner E, Rouse R. Biomarkers of drug-induced acute kidney injury: a regulatory perspective. Expert Opin Drug Metab Toxicol 2018; 14:929-936. [DOI: 10.1080/17425255.2018.1511701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Melanie Blank
- Center for Drug Evaluation and Research, Office of New Drugs, Division of Cardiovascular and Renal Products, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Aliza Thompson
- Center for Drug Evaluation and Research, Office of New Drugs, Division of Cardiovascular and Renal Products, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Elizabeth Hausner
- Center for Drug Evaluation and Research, Office of New Drugs, Division of Cardiovascular and Renal Products, U. S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rodney Rouse
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, U. S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
30
|
Abstract
Urine is a biological matrix that contains hundreds of metabolic end products which constitute the urinary metabolome. The development and advances on LC-MS/MS have revolutionized the analytical study of biomolecules by enabling their accurate identification and quantification in an unprecedented manner. Nowadays, LC-MS/MS is helping to unveil the complexity of urine metabolome, and the results obtained have multiple biomedical applications. This review focuses on the targeted LC-MS/MS analysis of the urine metabolome. In the first part, we describe general considerations (from sample collection to quantitation) required for a proper targeted metabolic analysis. In the second part, we address the urinary analysis and recent applications of four relevant families: amino acids, catecholamines, lipids and steroids.
Collapse
|
31
|
Liang Q, Liu H, Li X, Zhang Y. Retracted Article: High performance liquid chromatography coupled with high resolution mass spectrometry-based characterization of lipidomic responses from rats with kidney injuries. RSC Adv 2018; 8:20250-20258. [PMID: 35541673 PMCID: PMC9080792 DOI: 10.1039/c8ra02805b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022] Open
Abstract
Metabolism of lipids is essential for the regulation of a variety of key cellular functions. Recent advances in high performance liquid chromatography coupled with high resolution mass spectrometry have expanded our knowledge of lipid metabolism in diseases. Currently, sepsis is one of the most important public health problems all over the world, which is a serious systemic inflammatory syndrome leading to infection by various agents or trauma and subsequently to a multiple organ dysfunction response. However, little is known about the lipids affected by sepsis and their roles in kidney injuries. In this study, we present targeted and non-targeted lipidomics strategies to discover the lipid metabolism variation in serum in rats with sepsis-induced kidney injuries. Liquid chromatography (LC) coupled with mass spectrometry (MS) and multivariate data analysis were used to obtain the global lipid metabolic profiles. In addition, biochemical parameters and histopathological examination results for the kidney were analyzed to support the pathological changes during sepsis-induced kidney injury. The identification of ten proposed lipids and five relevant pathways will promote a better understanding of lipid profile alterations in kidney injury. The results suggested that lipid metabolism in sepsis-induced kidney injury had changed significantly and contribute by offering potential targets for clinical diagnosis and therapy in the future, which would be worth further studies to broaden the applications of high performance liquid chromatography coupled with high resolution mass spectrometry in the study of lipid metabolism. In this study, we present targeted and non-targeted lipidomics strategies to discover the lipid metabolism variation in serum in rats with sepsis-induced kidney injuries.![]()
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Han Liu
- Simon Fraser University
- Burnaby
- Canada
| | - Xiuli Li
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Yang Zhang
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|
32
|
Ren JL, Zhang AH, Kong L, Wang XJ. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 2018; 8:22335-22350. [PMID: 35539746 PMCID: PMC9081429 DOI: 10.1039/c8ra01574k] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolomics is the systematic study of all the metabolites present within a biological system, which consists of a mass of molecules, having a variety of physical and chemical properties and existing over an extensive dynamic range in biological samples. Diverse analytical techniques are needed to achieve higher coverage of metabolites. The application of mass spectrometry (MS) in metabolomics has increased exponentially since the discovery and development of electrospray ionization and matrix-assisted laser desorption ionization techniques. Significant advances have also occurred in separation-based MS techniques (gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and ion mobility-mass spectrometry), as well as separation-free MS techniques (direct infusion-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, mass spectrometry imaging, and direct analysis in real time mass spectrometry) in the past decades. This review presents a brief overview of the recent advanced MS techniques and their latest applications in metabolomics. The software/websites for MS result analyses are also reviewed. Metabolomics is the systematic study of all the metabolites present within a biological system, supply functional information and has received extensive attention in the field of life sciences.![]()
Collapse
Affiliation(s)
- Jun-Ling Ren
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ling Kong
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
33
|
Sun YC, Wu S, Du NN, Song Y, Xu W. High-throughput metabolomics enables metabolite biomarkers and metabolic mechanism discovery of fish in response to alkalinity stress. RSC Adv 2018; 8:14983-14990. [PMID: 35541358 PMCID: PMC9079986 DOI: 10.1039/c8ra01317a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/04/2018] [Indexed: 11/21/2022] Open
Abstract
High throughput mass spectrometry (MS)-based metabolomics is a popular platform for small molecule metabolites analyses that are widely used for detecting biomarkers in the research field of environmental assessment. Crucian carp (Carassius carassius, CC) is an economically and ecologically important fish in Asia. It can adapt to extremely high alkalinity, providing us with valuable material to understand the adaptation mechanism for extreme environmental stress. However, the information on the metabolite biomarkers and metabolic mechanisms of CC exposed to alkaline stress is not entirely clear. We applied high-throughput UPLC-Q-TOF/MS combined with chemometrics to identify changes in the metabolome of CC exposed to different concentrations of alkalinity for long term effects. Metabolic differences among alkalinity-treated groups were identified by multivariate statistical analysis. Further, 7 differential metabolites were found after exposure to alkaline conditions. In total, 23 metabolic pathways of these differential metabolites were significantly affected. Alkalinity exposure resulted in widespread change in metabolic profiles in the plasma with disruptions in the phenylalanine metabolism, glycine, serine and threonine metabolism, pyruvate metabolism, tyrosine metabolism, etc. The integrated pathway analysis of the associated metabolites showed that tRNA charging, l-cysteine degradation II, superpathway of methionine degradation, l-serine degradation, tyrosine biosynthesis IV, etc. appear to be the most significantly represented functional categories. Overall, this study demonstrated that metabolic changes in CC played a role in adaptation to the highly alkaline environmental stress. High throughput mass spectrometry (MS)-based metabolomics is a popular platform for small molecule metabolites analyses that are widely used for detecting biomarkers in the research field of environmental assessment.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin)
- Ministry of Agriculture
- Harbin 150070
- China
| | - Song Wu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin)
- Ministry of Agriculture
- Harbin 150070
- China
| | - Ning-ning Du
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin)
- Ministry of Agriculture
- Harbin 150070
- China
| | - Yi Song
- Chinese Academy of Fishery Sciences
- Beijing 100141
- P. R. China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin)
- Ministry of Agriculture
- Harbin 150070
- China
| |
Collapse
|
34
|
Hu Y, Zhang X, Shan Y. LC-MS-based plasma metabolomics reveals metabolic variations in ovariectomy-induced osteoporosis in female Wistar rats. RSC Adv 2018; 8:24932-24941. [PMID: 35542168 PMCID: PMC9082330 DOI: 10.1039/c8ra03629b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis with a reduction in bone mineral density has become one of the most common metabolic bone diseases.
Collapse
Affiliation(s)
- Yan Hu
- Clinical Laboratory
- The First People's Hospital of Wujiang
- Wujiang Hospital Affiliated to Nantong University
- Soochow
- China
| | - Xiaojian Zhang
- Department of Orthopedics
- The First People's Hospital of Wujiang
- Wujiang Hospital Affiliated to Nantong University
- Soochow
- China
| | - Yu Shan
- Department of Orthopedics
- The First People's Hospital of Wujiang
- Wujiang Hospital Affiliated to Nantong University
- Soochow
- China
| |
Collapse
|
35
|
Li YF, Qiu S, Gao LJ, Zhang AH. Metabolomic estimation of the diagnosis of hepatocellular carcinoma based on ultrahigh performance liquid chromatography coupled with time-of-flight mass spectrometry. RSC Adv 2018; 8:9375-9382. [PMID: 35541871 PMCID: PMC9078651 DOI: 10.1039/c7ra13616a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/23/2018] [Indexed: 01/01/2023] Open
Abstract
Metabolomics has been shown to be an effective tool for biomarker screening and pathway characterization and disease diagnosis. Metabolic characteristics of hepatocellular carcinoma (HCC) may enable the discovery of novel biomarkers for its diagnosis. In this work, metabolomics was used to investigate metabolic alterations of HCC patients. Plasma samples from HCC patients and age-matched healthy controls were investigated using high resolution ultrahigh performance liquid chromatography-mass spectrometry and metabolic differences were analyzed using pattern recognition methods. 23 distinguishable metabolites were identified. The altered metabolic pathways were associated with arginine and proline metabolism, glycine, serine and threonine metabolism, steroid hormone biosynthesis, starch and sucrose metabolism, etc. To demonstrate the utility of plasma biomarkers for the diagnosis of HCC, five metabolites comprising deoxycholic acid 3-glucuronide, 6-hydroxymelatonin glucuronide, 4-methoxycinnamic acid, 11b-hydroxyprogesterone and 4-hydroxyretinoic acid were selected as candidate biomarkers. These metabolites that contributed to the combined model could significantly increase the diagnostic performance of HCC. It has proved to be a powerful tool in the discovery of new biomarkers for disease detection and suggest that panels of metabolites may be valuable to translate our findings to clinically useful diagnostic tests. Metabolomics has been shown to be an effective tool for biomarker screening and pathway characterization and disease diagnosis.![]()
Collapse
Affiliation(s)
- Yuan-Feng Li
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Shi Qiu
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Li-Juan Gao
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Ai-Hua Zhang
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|
36
|
Zhao Y, Lv H, Qiu S, Gao L, Ai H. Plasma metabolic profiling and novel metabolite biomarkers for diagnosing prostate cancer. RSC Adv 2017. [DOI: 10.1039/c7ra04337f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death among men and associated with profound metabolic changes.
Collapse
Affiliation(s)
- Yunbo Zhao
- Department of General Surgery
- The First Affiliated Hospital of Jiamusi University
- Jiamusi 154003
- China
| | - Hongmei Lv
- Jiamusi College
- Heilongjiang University of Chinese Medicine
- Jiamusi 154007
- China
| | - Shi Qiu
- College of Pharmacy
- Department of Rheumatology
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Lijuan Gao
- College of Pharmacy
- Department of Rheumatology
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Huazhang Ai
- College of Pharmacy
- Department of Rheumatology
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
37
|
Liu XG, Lu X, Wang JX, Wu B, Lin L, Wang HY, Guo RZ, Li P, Yang H. Combining paired analytical metabolomics and common garden trial to study the metabolism and gene variation of Ginkgo biloba L. cultivated varieties. RSC Adv 2017. [DOI: 10.1039/c7ra06229j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Paired analytical targeted metabolomics and common garden trial were combined to uncover the gene basis for plant secondary metabolite synthesis.
Collapse
Affiliation(s)
- Xin-Guang Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xu Lu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ji-Xin Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Bin Wu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Lin Lin
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Hui-Ying Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ru-Zhou Guo
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ping Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Hua Yang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|