1
|
Aptasensor-based assay for dual-readout determination of aflatoxin B1 in corn and wheat via an electrostatic force-mediated FRET strategy. Mikrochim Acta 2023; 190:80. [PMID: 36729205 DOI: 10.1007/s00604-023-05641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023]
Abstract
A rapid and sensitive aptasensor was established for the dual-readout determination of aflatoxin B1 (AFB1) utilizing an electrostatically mediated fluorescence resonance energy transfer (FRET) signal amplification strategy. In the presence of AFB1, the aptamer preferentially bound to AFB1, resulting in the aggregation of bare gold nanoparticles (AuNPs) induced by NaCl, accompanied by a change of AuNP solution from wine-red to purple. This color change was used for colorimetric channel analysis. Then, the positively charged quantum dots were introduced into reaction system and interacted with negatively charged AuNPs, which successfully converted the color signal into a more sensitive fluorescence signal through FRET. The fluorescence quenching efficiency decreased with increasing concentrations of AFB1, and the fluorescence of aptasensor gradually recovered. The variation of fluorescence intensity was employed for fluorometric channel analysis. Under the optimal conditions, the color and fluorescence signals exhibited excellent response to AFB1 concentration within the ranges 10-320 ng·mL-1 and 3-320 ng·mL-1, respectively, and the limit of detection was as low as 7.32 ng·mL-1 and 1.48 ng·mL-1, respectively. The proposed aptasensor exhibited favorable selectivity, good recovery (85.3-113.4% in spiked corn and wheat samples), stable reproducibility (RSD<13.3%), and satisfactory correlation with commercial kits (R2=0.998). The aptasensor developed integrates advantages of modification-free, dual-readout, self-calibration, easy operation, and cost-effectiveness, while providing a simple and universal strategy for rapid and sensitive detection of mycotoxins in foodstuffs.
Collapse
|
2
|
Li J, Liu B, Liu L, Zhang N, Liao Y, Zhao C, Cao M, Zhong Y, Chai D, Chen X, Zhang D, Wang H, He Y, Li Z. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121872. [PMID: 36152504 DOI: 10.1016/j.saa.2022.121872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Small molecular food contaminants, such as mycotoxins, pesticide residues and antibiotics, are highly probable to be passively introduced in food at all stages of its processing, including planting, harvest, production, transportation and storage. Owing to the high risks caused by the unknowing intake and accumulation in human, there is an urgent need to develop rapid, sensitive and efficient methods to monitor them. Fluorescence-based aptasensors provide a promising platform for this area owing to its simple operation, high sensitivity, wide application range and economical practicability. In this paper, the common sorts of small molecular contaminants in foods, namely mycotoxins, pesticides, antibiotics, etc, are briefly introduced. Then, we make a comprehensive review, from fluorescence resonance energy transfer (in turn-on, turn-off, and ratiometric mode, as well as energy upconversion) to fluorescence polarization, of the fluorescence-based aptasensors for the determination of these food contaminants reported in the last five years. The principle of signal generation, the advances of each sort of fluorescent aptasensors, as well as their applications are introduced in detail. Additionally, we also discussed the challenges and perspectives of the fluorescent aptasensors for small molecular food contaminants. This work will offer systematic overview and inspiration for amateurs, researchers and developers of fluorescence-based aptasensors for the detection of small molecules.
Collapse
Affiliation(s)
- Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Li Liu
- Library of Tianjin Medical University, Tianjin 300070, China
| | - Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yumeng Liao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manzhu Cao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxuan Zhong
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Chai
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Dong S, He K, Yang J, Shi Q, Guan L, Chen Z, Feng J. A simple mesoporous silica Nanoparticle-based aptamers SERS sensor for the detection of acetamiprid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121725. [PMID: 35985229 DOI: 10.1016/j.saa.2022.121725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, we developed a novel, rapid, simple, and sensitive nano sensor based on the controlled release of 4-Aminothiophenol (4-ATP) signal molecules from aptamers (Apts) modified aminated mesoporous silica nanoparticles (MSNs-NH2) for the quantitative detection of acetamiprid (ACE). Firstly, we synthesized the positively charged MSNs-NH2 by one-pot method, then loaded 4-ATP signal molecules into the pore, and finally electrostatically adsorbed the Apts onto the MSNs-NH2, which acts as a gate to control the release of signal molecules. When ACE is added to the system, ACE preferentially and specifically binds to Apts, so the gate opens and 4-ATP signal molecules are released from the pore. Meanwhile, the silver-loaded mesoporous silica nanoparticles (Ag@SiO2) were prepared by one-pot method as surface-enhanced Raman spectroscopy (SERS) substrate to amplify the signal. The intensity of 4-ATP signal molecules at 1433 cm-1 position was observed to has a linear relationship with the concentration of ACE by SERS detection. Under the optimized detection conditions, a linear correlation was observed in the range of 5-60 ng/mL (R2 = 0.99749), and the limit of detection (LOD) was 2.66 ng/mL. The method has high sensitivity, good selectivity and reproducibility, and can be used for actual sample analysis with the recovery rate of 96.24-103.6 %. This study provides a reference for the rapid and convenient detection of ACE in agricultural products.
Collapse
Affiliation(s)
- Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qiuyun Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lingjun Guan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Li P, Luo C, Chen X, Huang C. An off-on fluorescence aptasensor for trace thrombin detection based on FRET between CdS QDs and AuNPs. RSC Adv 2022; 12:35763-35769. [PMID: 36545096 PMCID: PMC9749934 DOI: 10.1039/d2ra06891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
An off-on fluorescence aptasensor was developed for trace thrombin detection based on fluorescence resonance energy transfer (FRET) between CdS QDs and gold nanoparticles (AuNPs). Using DNA pairwise hybridization of the aptamer to the complementary DNA (cDNA), the CdS QDs (energy donor) were tightly coupled to the AuNPs (energy acceptor), resulting in the occurrence of FRET and there was a dramatic fluorescence quenching of CdS QDs (turn off). When the thrombin was added to the fluorescence aptasensor, the specific binding of the aptamer to the target formed a G-quadruplex that caused the AuNPs receptor to detach and the DNA duplex to be disassembled. The process would inhibit the FRET which contribute to the recovery of fluorescence (turn on) and an "off-on" fluorescence aptasensor for thrombin detection was constructed accordingly. Under optimal conditions, the fluorescence recovery showed good linearity with the concentration of thrombin in the range of 1.35-54.0 nmol L-1, and the detection limit was 0.38 nmol L-1 (S/N = 3, n = 9). Importantly, the fluorescence aptasensor presented excellent specificity for thrombin, and was successfully applied to the quantitative determination of thrombin in real serum with satisfactory recoveries of 98.60-102.2%.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chen Luo
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University Lanxi 321100 China
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
5
|
He K, Yang J, Shi Q, Guan L, Sun L, Chen Z, Feng J, Dong S. Fluorescent aptamer-modified mesoporous silica nanoparticles for quantitative acetamiprid detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88182-88192. [PMID: 35831655 DOI: 10.1007/s11356-022-21970-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Acetamiprid (ACE) is widely used to control aphids, brown planthoppers, and other pests in agricultural production. However, ACE is difficult to degrade in the environment, resulting in excessive residue, which causes acute and chronic toxicity to human beings and non-target organisms. Therefore, the development of a rapid, convenient, and highly sensitive method to quantify ACE is essential. In this study, aminated mesoporous silica nanoparticles (MSNs-NH2) were synthesized by one-pot method, and 6-carboxyl fluorescein modified aptamers (FAM-Apt) of ACE were adsorbed on the surface of MSNs-NH2 by electrostatic interaction. Finally, a simple and sensitive fluorescence analysis method for the rapid detection of ACE was established. In the absence of ACE, the negatively charged FAM-Apt was electrostatically bound to the positively charged MSNs-NH2, followed by centrifugation to precipitate MSNs-NH2@FAM-Apt, and no fluorescent signal was detected in the supernatant. In the presence of ACE, the specific combination of FAM-Apt with ACE was greater than its electrostatic interaction with MSNs-NH2, so that FAM-Apt was separated from MSNs-NH2, and the supernatant had strong fluorescence signal after centrifugation. For ACE detection, the linear concentration range was 50-1100 ng/mL, and the detection limit (LOD) was 30.26 ng/mL. The method exhibited high sensitivity, selectivity and reproducibility, which is suitable for practical sample analysis and provides guidance for rapid detection of pesticide residues.
Collapse
Affiliation(s)
- Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiuyun Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lingjun Guan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Li Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
A luminescent probe based on terbium-based metal–organic frameworks for organophosphorus pesticides detection. Mikrochim Acta 2022; 189:438. [DOI: 10.1007/s00604-022-05508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
7
|
Xi S, Wang L, Cheng M, Hu M, Liu R, Dong Y. Developing a DNA logic gate nanosensing platform for the detection of acetamiprid. RSC Adv 2022; 12:27421-27430. [PMID: 36276016 PMCID: PMC9513691 DOI: 10.1039/d2ra04794b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
This paper reports a novel fluorescence and colorimetric dual-signal-output DNA aptamer based sensor for the detection of acetamiprid residue. Acetamiprid is a new systemic broad-spectrum insecticide with high insecticidal efficiency that is widely used worldwide, but there is a risk of adverse neurological reactions in humans and animals. The dual-mode output principle designed in this paper, consisting of a fluorescence signal and colorimetric signal, is based on the relevant reaction of the special domain of a G-quadruplex, bidding farewell to a classical single-signal output, with a target-recognition cycle used to complete signal amplification through a hybridization chain reaction. Upgraded detection sensitivity and the qualitative and semi-quantitative detection of acetamiprid are achieved based on the fluorescence signal output and visual discrimination observations during colorimetric experiments. This model was applied to the determination of acetamiprid residue in fruits and vegetables. The dual-detection platform further reduced systematic error, with a detection limit of 27.7 pM. When applied in a comparative detection study using three different pesticides, the system shows excellent discrimination specificity and it performs well in actual sample detection and has a fast response time. Designing DNA logic gates that operate in the presence of targets and molecular-switch-based detection platforms also involves the intersection of biology and computational modeling, providing new ideas for biological platforms.
Collapse
Affiliation(s)
- Sunfan Xi
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Luhui Wang
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Meng Cheng
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Mengyang Hu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Rong Liu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Yafei Dong
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
8
|
Tessaro L, Aquino A, Panzenhagen P, Joshi N, Conte-Junior CA. A systematic review of the advancement on colorimetric nanobiosensors for SARS-CoV-2 detection. J Pharm Biomed Anal 2022; 222:115087. [PMID: 36206693 PMCID: PMC9523903 DOI: 10.1016/j.jpba.2022.115087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
Abstract
The current pandemic of the acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2) killed about 6.4 million and infected more than 600 million individuals by august of 2022, and researchers worldwide are searching for fast and selective approaches for this virus detection. Colorimetric biosensors are an excellent alternative because they are sensitive, simple, fast, and low-cost for rapid detection of SARS-CoV-2 compared to standard Enzyme-linked immunosorbent assay (ELISA) and Polymerase Chain Reaction (PCR) techniques. This study systematically searched and reviewed literature data related to colorimetric biosensors in detecting SARS-CoV-2 viruses, recovered from the Scopus (n = 16), Web of Science (n = 19), PubMed (n = 19), and Science Direct (n = 17) databases totalizing n = 71 articles. Data were analyzed for the type of nanomaterial, biorecognition material at the detection limit (LOD), and devices designed for diagnostics. The most applied nanomaterial were gold nanoparticles, in their original form and hybrid in quantum dots and core-shell. In addition, we show high specificity in point-of-care (POC) diagnostic devices as a faster and cheaper alternative for clinical diagnosis. Finally, the highlights of the colorimetric biosensor developed for diagnostic devices applied in swabs, surgical masks, and lateral flow immunoassays were presented.
Collapse
Affiliation(s)
- Leticia Tessaro
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil; Post-Graduation Program of Chemistry (PGQu), Institute of chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil.
| | - Adriano Aquino
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil; Post-Graduation Program of Chemistry (PGQu), Institute of chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil
| | - Pedro Panzenhagen
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Nirav Joshi
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil; Post-Graduation Program of Chemistry (PGQu), Institute of chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Mao M, Xie Z, Ma P, Peng C, Wang Z, Wei X, Liu G. Design and optimizing gold nanoparticle-cDNA nanoprobes for aptamer-based lateral flow assay: Application to rapid detection of acetamiprid. Biosens Bioelectron 2022; 207:114114. [DOI: 10.1016/j.bios.2022.114114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 11/02/2022]
|
10
|
Hong CA, Park JC, Na H, Jeon H, Nam YS. Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay. Biosens Bioelectron 2021; 182:113110. [PMID: 33812283 DOI: 10.1016/j.bios.2021.113110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Fast, sensitive, specific, and user-friendly DNA assay is a key technique for the next generation point-of-care molecular diagnosis. However, high-cost, time-consuming, and complicated enzyme-based DNA amplification step is essential to achieve high sensitivity. Herein, a short target DNA-catalyzed formation of quantum dot (QD)-DNA hydrogel is proposed as a new DNA assay platform satisfying the above requirements. A single-stranded target DNA catalyzes the opening cycle of DNA hairpin loops, which are quickly self-assembled with DNA-functionalized QDs to generate QD-DNA hydrogel. The three-dimensional hydrogel network allows efficient resonance energy transfer, dramatically lowering the limit of detection down to ~6 fM without enzymatic DNA amplification. The QD-DNA hydrogel also enables a rapid detection (1 h) with high specificity even for a single-base mismatch. The clinical applicability of the QD-DNA hydrogel is demonstrated for the Klebsiella pneumoniae carbapenemase gene, one of the key targets of drug-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Cheol Am Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Chul Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyebin Na
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Huiju Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Preparation and comparison of molecularly imprinted polymer fluorimetric nanoprobe based on polymer dots and carbon quantum dots for determination of acetamiprid using response surface method. Mikrochim Acta 2020; 187:294. [DOI: 10.1007/s00604-020-04283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/13/2020] [Indexed: 01/14/2023]
|
12
|
Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014-2019). Mikrochim Acta 2019; 186:563. [PMID: 31338623 DOI: 10.1007/s00604-019-3659-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Fluorescence resonance energy transfer, one of the most powerful phenomena for elucidating molecular interactions, has been extensively utilized as a biosensing tool to provide accurate information at the nanoscale. Numerous aptamer- and nanomaterial-based FRET bioassays has been developed for detection of a large variety of molecules. Affinity probes are widely used in biosensors, in which aptamers have emerged as advantageous biorecognition elements, due to their chemical and structural stability. Similarly, optically active nanomaterials offer significant advantages over conventional organic dyes, such as superior photophysical properties, large surface-to-volume ratios, photostability, and longer shelf life. In this report (with 175 references), the use of aptamer-modified nanomaterials as FRET couples is reviewed: quantum dots, upconverting nanoparticles, graphene, reduced graphene oxide, gold nanoparticles, molybdenum disulfide, graphene quantum dots, carbon dots, and metal-organic frameworks. Tabulated summaries provide the reader with useful information on the current state of research in the field. Graphical abstract Schematic representation of a fluorescence resonance energy transfer-based aptamer nanoprobe in the absence and presence of a given target molecule (analyte). Structures are not drawn to their original scales.
Collapse
|
13
|
Saberi Z, Rezaei B, Ensafi AA. Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide. Mikrochim Acta 2019; 186:273. [PMID: 30963279 DOI: 10.1007/s00604-019-3378-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
A fluorometric aptamer-based method is described for sensitive detection of the pesticide acetamiprid. Cationic carbon dots (cCDs) with blue fluorescence were synthesized from cetrimonium bromide (CTAB) by a hydrothermal method. In the presence of the acetamiprid aptamers with a negative charge, the aptamers bind to the surface of the cCDs due to electrostatic attraction. As a result, the fluorescence of the cCDs is quenched partially (the best measurement was done at excitation/emission wavelengths of 360/445 nm). If acetamiprid is added to the above system, the aptamer binds to acetamiprid as a target with strong and specific affinity. Therefore, fluorescence increases proportionally to the acetamiprid concentrations. The aptasensor has a detection limit of 0.3 nM with a dynamic range from 1.6 to 120 nM which reveals that the method is sensitive in comparison to the other techniques. The selectivity of the method towards various pesticides was also studied and found to be adequate. The sensor was applied for the determination of acetamiprid in (spiked) wastewater, tap water, and tomatoes to underpin its practicability. Graphical abstract Cationic CDs (cCDs) were synthesized from cetrimonium bromide by a hydrothermal method. The addition of the negatively charged acetamiprid aptamer to a solution containing cCDs, the cCDs will be coated by the aptamer. This causes the blue fluorescence of the cCDs partially is quenched. If acetamiprid (ACP) is then added, the aptamer will bind to acetamiprid with strong and specific affinity. Hence, fluorescence will be gradually restored.
Collapse
Affiliation(s)
- Zeinab Saberi
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R., 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R., 84156-83111, Iran.
| | - Ali Ashghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R., 84156-83111, Iran
| |
Collapse
|
14
|
Xiang L, Wu H, Cui Z, Tang J. Indirect Competitive Aptamer-Based Enzyme-Linked Immunosorbent Assay (apt-ELISA) for the Specific and Sensitive Detection of Isocarbophos Residues. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1587446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Li Xiang
- Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Huanle Wu
- Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Zhaoxing Cui
- Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Jianshe Tang
- Department of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, People's Republic of China
- Key Laboratory of Water Pollution Control and Waste Water Resources in Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
15
|
Islam S, Shukla S, Bajpai VK, Han YK, Huh YS, Ghosh A, Gandhi S. Microfluidic-based graphene field effect transistor for femtomolar detection of chlorpyrifos. Sci Rep 2019; 9:276. [PMID: 30670750 PMCID: PMC6343030 DOI: 10.1038/s41598-018-36746-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023] Open
Abstract
Chlorpyrifos is one of the most widely used pesticides that acts on the nervous system by inhibiting acetylcholinesterase. Prolonged use of chlorpyrifos causes severe neurological, autoimmune, and persistent developmental disorders in humans. Therefore, in this study, a highly sensitive and robust biosensor platform was devised by fabricating graphene field effect transistors (graFET) on Si/SiO2 substrate for the detection of chlorpyrifos in real samples. Anti-chlorpyrifos antibodies were immobilized successfully on the graphene surface. Under optimal conditions, graFET sensor showed an excellent response for chlorpyrifos detection in the linear range of 1 fM to 1 µM with a limit of detection up to 1.8 fM in spiked samples. The developed graFET biosensor is highly stable, sensitive, and specific for chlorpyrifos as confirmed by its significant ability to detect changes in electrostatic potential. These findings signify useful efficacy of immunobiosensors for the detection of chlorpyrifos and other organophosphates in fruits and vegetables.
Collapse
Affiliation(s)
- Saurav Islam
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India.
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
- Center for Nanoscience and Engineering, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, 500032, Telangana, India.
| |
Collapse
|
16
|
Jiao Z, Zhang H, Jiao S, Guo Z, Zhu D, Zhao X. A Turn-on Biosensor-Based Aptamer-Mediated Carbon Quantum Dots Nanoaggregate for Acetamiprid Detection in Complex Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1393-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Lu X, Wang C, Qian J, Ren C, An K, Wang K. Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots. Anal Chim Acta 2018; 1047:163-171. [PMID: 30567646 DOI: 10.1016/j.aca.2018.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
Abstract
Development of sensitive methods for trace aflatoxin B1 (AFB1) determination is of great significance due to its high toxicity and carcinogenicity. Herein, 3-mercaptopropionic acid (MPA)-capped ternary CdZnTe quantum dots (QDs) have been prepared via a simple hydrothermal route. We found that they exhibited enhanced intensity when benchmarked against their binary counterpart CdTe QDs. On this basis, a target-driven switch-on fluorescence aptasensor for trace AFB1 determination has been developed by employing the fluorescence resonance energy transfer (FRET) between the CdZnTe QDs and Au nanoparticles (AuNPs) pair. In the detection diagram, amino group-functionalized aptamers against AFB1 were firstly labelled with the CdZnTe QDs donors coated on silica nanospheres while the AuNPs acceptors were bioconjugated with the thiol group-modified complementary DNA (cDNA) of aptamer. By taking advantage of the DNA hybridization of aptamer and cDNA, the CdZnTe QDs (energy donor) and AuNPs (energy acceptor) were brought into close proximity, thereby leading to the occurrence of FRET during the aptasensor fabrication. When the aptasensor was incubated with AFB1, the specific binding between aptamer and target resulted in the detachment of AuNPs acceptors. This behavior would disturb the FRET process and led to the subsequent fluorescence recovery of CdZnTe QDs. Such designed aptasensor showed an increased fluorescence recovery upon the increasing concentration of AFB1 over a broad range of 50 pg mL-1 - 100 ng mL-1 and succeeded in spiked peanut samples. The proposed aptasensor is separation-free and easy-to-use, which might open up new possibilities in aptasensor fabrication by employing the novel CdZnTe QDs-AuNPs pair.
Collapse
Affiliation(s)
- Xiaoting Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chengquan Wang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Chanchan Ren
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Keqi An
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
18
|
Sun N, Ding Y, Tao Z, You H, Hua X, Wang M. Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation. Food Chem 2018; 257:289-294. [PMID: 29622212 DOI: 10.1016/j.foodchem.2018.02.148] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/21/2023]
Abstract
An upconversion fluorescence DNA probe which consists of aptamer-conjugated magnet nanoparticles (apt-MNPs) and complementary DNA-conjugated upconversion nanoparticles (cDNA-UCNPs) was developed to detect acetamiprid. Acetamiprid can specifically conjugate with the apt-MNPs to dissociate the cDNA-UCNPs from the apt-MNPs and resulted in reduced fluorescence intensity through an external magnet. The change of fluorescence intensity (△I) is positively related to the concentration of acetamiprid, which can be applied for the quantification of acetamiprid. Under optimal conditions, a linear detection range and detection limit are 0.89-114.18 μg/L and 0.65 μg/L, respectively. The probe was successfully used to detect acetamiprid in spiked paddy water, soil, pear, apple, wheat and cucumber. Average recoveries are 78.2%-103.5% with intra-day relative standard deviations (RSDs) of 2.6%-10.9% and inter-day RSDs of 4.3%-10.2%. The amounts of acetamiprid in the authentic paddy water and pear samples detected by the DNA probe are significantly correlated with that detected by high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Nana Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhexuan Tao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Hongjie You
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
19
|
Talan A, Mishra A, Eremin SA, Narang J, Kumar A, Gandhi S. Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosens Bioelectron 2018; 105:14-21. [PMID: 29346076 DOI: 10.1016/j.bios.2018.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
Chlorpyrifos (chl) is an organophosphate pesticide extensively used in agriculture and highly toxic for human health. Fluorine doped tin-oxide (FTO) based electrochemical nanosensor was developed for chlorpyrifos detection with gold nanoparticles (AuNPs) and anti-chlorpyrifos antibodies (chl-Ab). AuNPs provides high electrical conductivity and specific resistivity, thus increases the sensitivity of immunoassay. High electrical conductivity of AuNPs reveals that it promotes the redox reaction for better cyclic voltammetry. Based on the intrinsic conductive properties of FTO-AuNPs complex, chl-Ab was immobilized onto AuNPs surface. Under optimized conditions, the proposed FTO based nanosensor exhibited high sensitivity and stable response for the detection of chlorpyrifos, ranging from 1fM to 1µM with limit of detection (LOD) up to 10fM. The FTO-AuNPs sensor was successfully employed for the detection of chlorpyrifos in standard as well in real samples up to 10nM for apple and cabbage, 50nM for pomegranate. The proposed FTO-AuNPs nanosensor can be used as a quantitative tool for rapid, on-site detection of chlorpyrifos traces in real samples when miniaturized due to its excellent stability, sensitivity, and simplicity.
Collapse
Affiliation(s)
- Anita Talan
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, 201313, India
| | - Annu Mishra
- Amity Institute of Nanotechnology, Amity University, Sector-125, Noida, 201313, India
| | - Sergei A Eremin
- M.V. Lomonosov Moscow State University, Faculty of Chemistry, Department of Chemical Enzymology, Leninsky Gory 1, 119991 Moscow, Russia; A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia
| | - Jagriti Narang
- Amity Institute of Nanotechnology, Amity University, Sector-125, Noida, 201313, India
| | - Ashok Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Sonu Gandhi
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, 201313, India.
| |
Collapse
|
20
|
Wang J, Wu Y, Zhou P, Yang W, Tao H, Qiu S, Feng C. A novel fluorescent aptasensor for ultrasensitive and selective detection of acetamiprid pesticide based on the inner filter effect between gold nanoparticles and carbon dots. Analyst 2018; 143:5151-5160. [DOI: 10.1039/c8an01166d] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent aptasensor based on the inner filter effect of carbon dots has been proposed for the ultrasensitive and selective detection of acetamiprid pesticide in vegetable samples.
Collapse
Affiliation(s)
- Jinlong Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Pei Zhou
- Key Laboratory of Urban Agriculture (South)
- Ministry of Agriculture
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Wenping Yang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Han Tao
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Shuyi Qiu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy
- School of Liquor and Food Engineering
- Guizhou University
- Huaxi District
- China
| | - Caiwei Feng
- Engineering Research Center of Nation Combined with Local on Biological Detection Technologies for Food Safety
- Guizhou Kwinbon Food Safety Science and Technology Co
- Ltd
- Guiyang 550025
- China
| |
Collapse
|
21
|
Yao J, Li L, Li P, Yang M. Quantum dots: from fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. NANOSCALE 2017; 9:13364-13383. [PMID: 28880034 DOI: 10.1039/c7nr05233b] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the past decade, nanotechnology has become one of the major forces driving basic and applied research. As a novel class of inorganic fluorochromes, research into quantum dots (QDs) has become one of the fastest growing fields of nanotechnology today. QDs are made of a semiconductor material with tunable physical dimensions as well as unique optoelectronic properties, and have attracted multidisciplinary research efforts to further their potential bioanalytical applications. Recently, numerous optical properties of QDs, such as narrow emission band peaks, broad absorption spectra, intense signals, and remarkable resistance to photobleaching, have made them biocompatible and sensitive for biological assays. In this review, we give an overview of these exciting materials and describe their potential, especially in biomolecules analysis, including fluorescence detection, chemiluminescence detection, bioluminescence detection, electrochemiluminescence detection, and electrochemical detection. Finally, conclusions are made, including highlighting some critical challenges remaining and a perspective of how this field can be expected to develop in the future.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, People's Republic of China.
| | | | | | | |
Collapse
|
22
|
Verdian A. Apta-nanosensors for detection and quantitative determination of acetamiprid - A pesticide residue in food and environment. Talanta 2017; 176:456-464. [PMID: 28917776 DOI: 10.1016/j.talanta.2017.08.070] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
In an effort to achieve high sensitive and selective detection of pesticide residues, numerous nanomaterial-based aptasensors are currently being developed for acetamiprid analysis. Recently, aptamers as a potent alternative of antibodies are used in biosensing platforms. There is tremendous interest in utilizing of nanomaterial as basic building blocks and signaling elements in aptasensors. The nanomaterials have the unique optical and electrical properties. The combination of nanomaterial and aptamer technology has opened a new window in pesticide residues monitoring. In this review, recent advances and applications of optical and electrochemical nanomaterial-based aptasensors for the detection and quantitative determination of acetamiprid in details have been discussed.
Collapse
Affiliation(s)
- Asma Verdian
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|