1
|
Synthesis and characterization MXene-Ferrite nanocomposites and its application for dying and shielding. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Fatima S, Rizwan S. Synergetic Catalytic and Photocatalytic Performances of Tin-Doped BiFeO 3/Graphene Nanoplatelet Hybrids under Dark and Light Conditions. ACS OMEGA 2023; 8:3736-3744. [PMID: 36743001 PMCID: PMC9893474 DOI: 10.1021/acsomega.2c04971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 06/18/2023]
Abstract
Because of a rapidly growing need for water, it is essential to find new fast and reliable ways of water purification from organic pollutants. For removing organic azo dyes from water, various catalysts and photocatalysts have been designed to meet crucial water needs. In this study tin (Sn) doped bismuth ferrite (BFO) nanoparticles have been synthesized using the sol-gel technique. Further, BFSO/GNP nanohybrids were synthesized by mixing BFSO nanoparticles with graphene nanoplatelets (GNPs) via a simple and cost effective coprecipitation process. XRD and SEM showed that BFSO/GNP nanohybrids are well grown in crystal structure along with uniform and homogeneous morphology. XPS supported the elemental composition and interface bonding of both materials present inside the nanohybrids. DRS and catalytic activities showed that BFSO/GNP nanohybrids are both dark and light active species for performing dye degradation activities during water purification. The as-synthesized nanohybrids provided efficient dye removal from water even in the absence of light owing to the presence of defects and trap-state carriers (electrons) inside the graphene sheets. The optimized nanohybrid BFSO-15/GNP showed 100% dye removal in 60 min with 90% catalytic activity under dark. The recyclability test showed stable and repeatable performance of BFSO/GNP nanohybrids up to 10 cycles of catalytic activities.
Collapse
Affiliation(s)
- Sabeen Fatima
- Physics
Characterization and Simulations Lab (PCSL), Department of Physics,
School of Natural Sciences (SNS), National
University of Sciences and Technology (NUST), Islamabad, 54000, Pakistan
| | - Syed Rizwan
- Physics
Characterization and Simulations Lab (PCSL), Department of Physics,
School of Natural Sciences (SNS), National
University of Sciences and Technology (NUST), Islamabad, 54000, Pakistan
| |
Collapse
|
3
|
Ma ZP, Zhang L, Ma X, Zhang YH, Shi FN. Design of Z-scheme g-C 3N 4/BC/Bi 25FeO 40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste. CHEMOSPHERE 2022; 289:133262. [PMID: 34906528 DOI: 10.1016/j.chemosphere.2021.133262] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 05/27/2023]
Abstract
High electron transfer rates and a higher number of electron transfer active sites play important roles in inhibiting the recombination of photogenerated electron-hole pairs. In the experiments described in this article, the g-C3N4/BC/Bi25FeO40 composite material was prepared to use biochar (BC) as the conductive channel. The presence of BC significantly increases the electron transfer rate due to its excellent electrical conductivity and can provide more electron transfer active sites. At the same time, BC provides a larger surface area and has a loose porous structure, which lead to excellent adsorption performance. Based on various characterization results, it was confirmed that the Z-scheme heterojunction was successfully constructed between g-C3N4 and Bi25FeO40. The photocatalytic experiment results showed that the degradation efficiency of g-C3N4/BC/Bi25FeO40 on the tetracycline hydrochloride (TCH) could reach 92.2% within 60 min. Parameters such as circulation stability, pH value of the solution and the amount of composite materials were studied. The synthesized composite material has good reusability and high efficiency in a wide pH range of 3-11. Its excellent photocatalytic activity is attributed to the formation of an effective Z-scheme heterostructure, as well as the rapid photoelectron transfer and excellent adsorption capacity of BC. This work provides a way to design new photocatalysts using semiconductor composite materials and BC materials.
Collapse
Affiliation(s)
- Zhi-Peng Ma
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Linnan Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Xue Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yu-Hang Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Fa-Nian Shi
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| |
Collapse
|
4
|
Ramazanov S, Sobola D, Orudzhev F, Knápek A, Polčák J, Potoček M, Kaspar P, Dallaev R. Surface Modification and Enhancement of Ferromagnetism in BiFeO 3 Nanofilms Deposited on HOPG. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1990. [PMID: 33050330 PMCID: PMC7600225 DOI: 10.3390/nano10101990] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
BiFeO3 (BFO) films on highly oriented pyrolytic graphite (HOPG) substrate were obtained by the atomic layer deposition (ALD) method. The oxidation of HOPG leads to the formation of bubble regions creating defective regions with active centers. Chemisorption occurs at these active sites in ALD. Additionally, carbon interacts with ozone and releases carbon oxides (CO, CO2). Further annealing during the in situ XPS process up to a temperature of 923 K showed a redox reaction and the formation of oxygen vacancies (Vo) in the BFO crystal lattice. Bubble delamination creates flakes of BiFeO3-x/rGO heterostructures. Magnetic measurements (M-H) showed ferromagnetism (FM) at room temperature Ms ~ 120 emu/cm3. The contribution to magnetization is influenced by the factor of charge redistribution on Vo causing the distortion of the lattice as well as by the superstructure formed at the boundary of two phases, which causes strong hybridization due to the superexchange interaction of the BFO film with the FM sublattice of the interface region. The development of a method for obtaining multiferroic structures with high FM values (at room temperature) is promising for magnetically controlled applications.
Collapse
Affiliation(s)
- Shikhgasan Ramazanov
- Faculty of Physics, Dagestan State University, Makhachkala, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia;
| | - Dinara Sobola
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 61600 Brno, Czech Republic; (D.S.); (R.D.)
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; (J.P.); (M.P.)
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, Makhachkala, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia;
| | - Farid Orudzhev
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, Makhachkala, St. M. Gadjieva 43-a, 367015 Makhachkala, Russia;
| | - Alexandr Knápek
- Institute of the Scientific Instruments of the Czech Academy of Sciences v.v.i., Královopolská 147, 61264 Brno, Czech Republic;
| | - Josef Polčák
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; (J.P.); (M.P.)
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno, Czech Republic
| | - Michal Potoček
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; (J.P.); (M.P.)
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno, Czech Republic
| | - Pavel Kaspar
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 61600 Brno, Czech Republic; (D.S.); (R.D.)
| | - Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 2848/8, 61600 Brno, Czech Republic; (D.S.); (R.D.)
| |
Collapse
|
5
|
Baye AF, Appiah-Ntiamoah R, Kim H. Synergism of transition metal (Co, Ni, Fe, Mn) nanoparticles and "active support" Fe 3O 4@C for catalytic reduction of 4-nitrophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135492. [PMID: 31784174 DOI: 10.1016/j.scitotenv.2019.135492] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Research reports, up to date, on supports for non-noble metal catalyst focus mainly on tuning their surface functionality and increasing surface area to maximize metal loading for high catalytic reduction of 4-nitrophenol. However, the "passive" role of these supports leads to inefficient hydride formation on the metal surface which limits catalytic activity. Herein, we present Fe3O4@porous-conductive carbon (Fe3O4@C-A) core-shell structure as an "active" support for non-noble metals (M = Co, Ni, Fe, and Mn) nanoparticles. Fe3O4@C-A was prepared by annealing Fe3O4@dense-carbon (Fe3O4@C) under N2. The resultant M-Fe3O4@C-A catalysts show high catalytic performance at very low metal loading, while non-noble metals supported on a "passive" support (Fe3O4@C) shows very low activity even at high metal loading. The significant difference in catalytic activity is ascribed to the synergistic effect amongst Fe3O4, conductive carbon and metal nanoparticles which leads to efficient hydride formation. Amongst the prepared catalysts, Ni-Fe3O4@C-A and Co-Fe3O4@C-A show the best catalytic activity, completing 4-nitrophenol reduction within 50 s and 80 s, respectively, in the presence of NaBH4. This result is comparable with previously reported noble-metal-based nanocomposites. In addition, Co-Fe3O4@C-A shows high recyclability in 5 consecutive catalytic reactions. In the broader context, our finding highlights how an "active support" together with non-noble metals can provide an efficient mechanism for hydride formation, subsequently accelerating the catalytic reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Anteneh F Baye
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Richard Appiah-Ntiamoah
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| | - Hern Kim
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
6
|
Iqbal MA, Tariq A, Zaheer A, Gul S, Ali SI, Iqbal MZ, Akinwande D, Rizwan S. Ti 3C 2-MXene/Bismuth Ferrite Nanohybrids for Efficient Degradation of Organic Dyes and Colorless Pollutants. ACS OMEGA 2019; 4:20530-20539. [PMID: 31858037 PMCID: PMC6906764 DOI: 10.1021/acsomega.9b02359] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/31/2019] [Indexed: 05/25/2023]
Abstract
The current environmental and potable water crisis requires technological advancement to tackle the issues caused by different organic pollutants. Herein, we report the degradation of organic pollutants such as Congo Red and acetophenone from aqueous media using visible light irradiation. To harvest the solar energy for photocatalysis, we fabricated a nanohybrid system composed of bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets, namely, the BiFeO3 (BFO)/Ti3C2 (MXene) nanohybrid, for enhanced photocatalytic activity. The hybrid BFO/MXene is fabricated using a simple and low-cost double-solvent solvothermal method. The SEM and TEM images showed that the BFO nanoparticles are attached onto the surface of 2D MXene sheets. The photocatalytic degradation achieved by the hybrid is found to be 100% in 42 min for the organic dye (Congo Red) and 100% for the colorless aqueous pollutant (acetophenone) in 150 min. The BFO/MXene hybrid system exhibited a large surface area of 147 m2 g-1 measured via the Brunauer-Emmett-Teller sorption-desorption technique, which is found to be the largest among all BFO nanoparticles and derivatives. The photoluminescence spectra indicate a low electron-hole recombination rate. Fast and efficient degradation of organic molecules is caused by two factors: larger surface area and lower electron-hole recombination rate, which makes the BFO/MXene nanohybrid a highly efficient photocatalyst and a promising candidate for many future applications.
Collapse
Affiliation(s)
- M. Abdullah Iqbal
- Physics
Characterization and Simulations Lab (PCSL), Department of Physics,
School of Natural Sciences (SNS), National
University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ayesha Tariq
- Physics
Characterization and Simulations Lab (PCSL), Department of Physics,
School of Natural Sciences (SNS), National
University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ayesha Zaheer
- Physics
Characterization and Simulations Lab (PCSL), Department of Physics,
School of Natural Sciences (SNS), National
University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Sundus Gul
- Physics
Characterization and Simulations Lab (PCSL), Department of Physics,
School of Natural Sciences (SNS), National
University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - S. Irfan Ali
- Shenzhen Key Laboratory of Advanced
Thin Films and Applications,
College of Physics and Energy and Key Laboratory of Optoelectronic Devices and
Systems of Ministry of Education and Guangdong Province, College of
Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Z. Iqbal
- Department
of Chemical and Petroleum Engineering, United
Arab Emirates University (UAEU), Al-Ain 15551, United Arab Emirates
| | - Deji Akinwande
- Microelectronics
Research Center, The University of Texas
at Austin, Austin, Texas 78758, United States
| | - Syed Rizwan
- Physics
Characterization and Simulations Lab (PCSL), Department of Physics,
School of Natural Sciences (SNS), National
University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
7
|
Enhanced photocatalytic and antibacterial activities of RGO/LiFe5O8 nanocomposites. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Iqbal MA, Ali SI, Amin F, Tariq A, Iqbal MZ, Rizwan S. La- and Mn-Codoped Bismuth Ferrite/Ti 3C 2 MXene Composites for Efficient Photocatalytic Degradation of Congo Red Dye. ACS OMEGA 2019; 4:8661-8668. [PMID: 31459955 PMCID: PMC6648404 DOI: 10.1021/acsomega.9b00493] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 05/24/2023]
Abstract
Over the years, scarcity of fresh potable water has increased the demand for clean water. Meanwhile, with the advent of nanotechnology, the use of nanomaterials for photocatalytic degradation of pollutants in wastewaters has increased. Herein, a new type of nanohybrids of La- and Mn-codoped bismuth ferrite (BFO) nanoparticles embedded into transition-metal carbide sheets (MXene-Ti3C2) were prepared by a low-cost double-solvent sol-gel method and investigated for their catalytic activity in dark and photoinduced conditions. The photoluminescence results showed that pure BFO has the highest electron hole recombination rate as compared to all the codoped BFO/Ti3C2 nanohybrids. The higher electron-hole pair generation rate of the nanohybrids provides a suitable environment for fast degradation of organic dye molecules. The band gap of the prepared nanohybrid was tuned to 1.73 eV. Moreover, the BLFO/Ti3C2 and BLFMO-5/Ti3C2 degraded 92 and 93% of the organic pollutant, respectively, from water in dark and remaining in the light spectrum. Therefore, these synthesized nanohybrids could be a promising candidate for catalytic and photocatalytic applications in future.
Collapse
Affiliation(s)
- M. Abdullah Iqbal
- Physics
Characterization and Simulations Lab, Department of Physics, School
of Natural Sciences (SNS), National University
of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - S. Irfan Ali
- Shenzhen Key Laboratory of Advanced
Thin Films and Applications,
College of Physics and Energy, and Key Laboratory of Optoelectronic Devices and
Systems of Ministry of Education and Guangdong Province, College of
Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Faheem Amin
- Physics
Characterization and Simulations Lab, Department of Physics, School
of Natural Sciences (SNS), National University
of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ayesha Tariq
- Physics
Characterization and Simulations Lab, Department of Physics, School
of Natural Sciences (SNS), National University
of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Z. Iqbal
- Department
of Chemical and Petroleum Engineering, United
Arab Emirates University (UAEU), P.O.
Box 15551, Al-Ain, United Arab
Emirates
| | - Syed Rizwan
- Physics
Characterization and Simulations Lab, Department of Physics, School
of Natural Sciences (SNS), National University
of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
9
|
Synthesis of silver phosphate/sillenite bismuth ferrite/graphene oxide nanocomposite and its enhanced visible light photocatalytic mechanism. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Baye AF, Abebe MW, Appiah-Ntiamoah R, Kim H. Engineered iron-carbon-cobalt (Fe 3O 4@C-Co) core-shell composite with synergistic catalytic properties towards hydrogen generation via NaBH 4 hydrolysis. J Colloid Interface Sci 2019; 543:273-284. [PMID: 30818143 DOI: 10.1016/j.jcis.2019.02.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 11/26/2022]
Abstract
Cobalt (Co) nanoparticle supported catalysts have better dispersion and recyclability than unsupported Co. However, the surface chemistry and limited surface area (SA) of supports limit their Co loading which lowers activity. Currently, supports with high SA and functionality which allow high Co loading are been developed. However, a smarter solution would be to develop "active" supports which can boost the activity of Co, even at low loading. The value of such a support lies in the ability to use low catalyst loading without scarifying activity. Herein, we demonstrate how via a simple annealing process the chemical properties of Fe3O4 and physico-electrical properties of carbon (C) in Fe3O4@C can be effectively combined to prepare an "active" support for Co. The unique properties of the "active" Fe3O4@C triggers a synergistic catalytic reaction involving Co, Fe3O4 and C during NaBH4 hydrolysis. Consequently, the hydrogen generation rate (1746 ml g-1 min-1) and activation energy (47.3 kJ mol-1) of Fe3O4@C-Co are significantly enhanced compared to reported catalyst even though its Co loading is significantly lower. Additionally, Fe3O4@C-Co is highly recyclable which demonstrates its stability. Our study gives a new perspective on the role supports can play in catalyst design.
Collapse
Affiliation(s)
- Anteneh F Baye
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Medhen W Abebe
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Richard Appiah-Ntiamoah
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| | - Hern Kim
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
11
|
Tariq A, Ali SI, Akinwande D, Rizwan S. Efficient Visible-Light Photocatalysis of 2D-MXene Nanohybrids with Gd 3+- and Sn 4+-Codoped Bismuth Ferrite. ACS OMEGA 2018; 3:13828-13836. [PMID: 31458081 PMCID: PMC6645294 DOI: 10.1021/acsomega.8b01951] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/10/2018] [Indexed: 05/20/2023]
Abstract
Nowadays, photocatalysis has gained tremendous interest owing to the fact that it can overcome water crisis as well as the environmental issues by utilizing a major source of solar energy. The nanohybrid structures of Gd3+- and Sn4+-doped bismuth ferrite (Bi1-x Gd x Fe1-y Sn y ; BGFSO) with two-dimensional (2D) MXene sheets are synthesized by the coprecipitation method. The 2D sheets have a large surface area, incorporation of which into Bi1-x Gd x Fe1-y Sn y (BGFSO) nanoparticles provides a path for electrons to flow, which results in large recombination time and thus enhances dye degradation. The Bi0.90Gd0.10Fe0.80Sn0.20O3/MXene (BGFO-20Sn/MXene) nanohybrid shows 100% degradation of Congo dye from the catalytic solution in 120 min, which is highly efficient for industrial application.
Collapse
Affiliation(s)
- Ayesha Tariq
- Department
of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - S. Irfan Ali
- Shenzhen Key Laboratory of Advanced
Thin Films and Applications,
College of Physics and Energy and Key Laboratory of Optoelectronic Devices and
Systems of Ministry of Education and Guangdong Province, College of
Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Deji Akinwande
- Microelectronics
Research Center, The University of Texas
at Austin, Austin, Texas 78758, United States
| | - Syed Rizwan
- Department
of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
12
|
He R, Xu D, Cheng B, Yu J, Ho W. Review on nanoscale Bi-based photocatalysts. NANOSCALE HORIZONS 2018; 3:464-504. [PMID: 32254135 DOI: 10.1039/c8nh00062j] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoscale Bi-based photocatalysts are promising candidates for visible-light-driven photocatalytic environmental remediation and energy conversion. However, the performance of bulk bismuthal semiconductors is unsatisfactory. Increasing efforts have been focused on enhancing the performance of this photocatalyst family. Many studies have reported on component adjustment, morphology control, heterojunction construction, and surface modification. Herein, recent topics in these fields, including doping, changing stoichiometry, solid solutions, ultrathin nanosheets, hierarchical and hollow architectures, conventional heterojunctions, direct Z-scheme junctions, and surface modification of conductive materials and semiconductors, are reviewed. The progress in the enhancement mechanism involving light absorption, band structure tailoring, and separation and utilization of excited carriers, is also introduced. The challenges and tendencies in the studies of nanoscale Bi-based photocatalysts are discussed and summarized.
Collapse
Affiliation(s)
- Rongan He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | |
Collapse
|
13
|
Kalikeri S, Shetty Kodialbail V. Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO 3/Bi 25FeO 40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13881-13893. [PMID: 29512012 DOI: 10.1007/s11356-018-1291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/15/2018] [Indexed: 05/27/2023]
Abstract
Mixed-phase bismuth ferrite (BFO) nanoparticles were prepared by co-precipitation method using potassium hydroxide as the precipitant. X-ray diffractogram (XRD) of the particles showed the formation of mixed-phase BFO nanoparticles containing BiFeO3/Bi25FeO40 phases with the crystallite size of 70 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the formation of quasi-spherical particles. The BFO nanoparticles were uniform sized with narrow size range and with the average hydrodynamic diameter of 76 nm. The band gap energy of 2.2 eV showed its ability to absorb light even in the visible range. Water contaminated with Acid Yellow (AY-17) and Reactive Blue (RB-19) dye was treated by photocatalysis under UV, visible, and solar light irradiation using the BFO nanoparticles. The BFO nanoparticles showed maximum photocatalytical activity under solar light as compared to UV and visible irradiations, and photocatalysis was favored under acidic pH. Complete degradation of AY-17 dyes and around 95% degradation of RB-19 could be achieved under solar light at pH 5. The kinetics of degradation followed the Langmuir-Hinshelhood kinetic model showing that the heterogeneous photocatalysis is adsorption controlled. The findings of this work prove the synthesized BFO nanoparticles as promising photocatalysts for the treatment of dye-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Shankramma Kalikeri
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar Post, Mangalore, Karnataka, 575025, India
| | - Vidya Shetty Kodialbail
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar Post, Mangalore, Karnataka, 575025, India.
| |
Collapse
|