1
|
Kawabata R, Li K, Araki T, Akiyama M, Sugimachi K, Matsuoka N, Takahashi N, Sakai D, Matsuzaki Y, Koshimizu R, Yamamoto M, Takai L, Odawara R, Abe T, Izumi S, Kurihira N, Uemura T, Kawano Y, Sekitani T. Ultraflexible Wireless Imager Integrated with Organic Circuits for Broadband Infrared Thermal Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309864. [PMID: 38213132 DOI: 10.1002/adma.202309864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Flexible imagers are currently under intensive development as versatile optical sensor arrays, designed to capture images of surfaces and internals, irrespective of their shape. A significant challenge in developing flexible imagers is extending their detection capabilities to encompass a broad spectrum of infrared light, particularly terahertz (THz) light at room temperature. This advancement is crucial for thermal and biochemical applications. In this study, a flexible infrared imager is designed using uncooled carbon nanotube (CNT) sensors and organic circuits. The CNT sensors, fabricated on ultrathin 2.4 µm substrates, demonstrate enhanced sensitivity across a wide infrared range, spanning from near-infrared to THz wavelengths. Moreover, they retain their characteristics under bending and crumpling. The design incorporates light-shielded organic transistors and circuits, functioning reliably under light irradiation, and amplifies THz detection signals by a factor of 10. The integration of both CNT sensors and shielded organic transistors into an 8 × 8 active-sensor matrix within the imager enables sequential infrared imaging and nondestructive assessment for heat sources and in-liquid chemicals through wireless communication systems. The proposed imager, offering unique functionality, shows promise for applications in biochemical analysis and soft robotics.
Collapse
Affiliation(s)
- Rei Kawabata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kou Li
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Teppei Araki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Mihoko Akiyama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaho Sugimachi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Division of Applied Science, School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nozomi Matsuoka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Division of Applied Science, School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norika Takahashi
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Daiki Sakai
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yuto Matsuzaki
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryo Koshimizu
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Minami Yamamoto
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Leo Takai
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryoga Odawara
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Takaaki Abe
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Shintaro Izumi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoko Kurihira
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Takafumi Uemura
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yukio Kawano
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
| | - Tsuyoshi Sekitani
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Division of Applied Science, School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Campajola M, Di Meo P, Di Capua F, Branchini P, Aloisio A. Dynamic Photoresponse of a DNTT Organic Phototransistor. SENSORS (BASEL, SWITZERLAND) 2023; 23:2386. [PMID: 36904591 PMCID: PMC10007176 DOI: 10.3390/s23052386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The photosensitivity, responsivity, and signal-to-noise ratio of organic phototransistors depend on the timing characteristics of light pulses. However, in the literature, such figures of merit (FoM) are typically extracted in stationary conditions, very often from IV curves taken under constant light exposure. In this work, we studied the most relevant FoM of a DNTT-based organic phototransistor as a function of the timing parameters of light pulses, to assess the device suitability for real-time applications. The dynamic response to light pulse bursts at ~470 nm (close to the DNTT absorption peak) was characterized at different irradiances under various working conditions, such as pulse width and duty cycle. Several bias voltages were explored to allow for a trade-off to be made between operating points. Amplitude distortion in response to light pulse bursts was also addressed.
Collapse
Affiliation(s)
- Marcello Campajola
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cintia, 80126 Napoli, Italy
| | - Paolo Di Meo
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cintia, 80126 Napoli, Italy
| | - Francesco Di Capua
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cintia, 80126 Napoli, Italy
- Department of Physics “E. Pancini”, University of Naples “Federico II”, Via Cintia, 80126 Napoli, Italy
| | - Paolo Branchini
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di RomaTre, Via della Vasca Navale 84, 00146 Roma, Italy
| | - Alberto Aloisio
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cintia, 80126 Napoli, Italy
- Department of Physics “E. Pancini”, University of Naples “Federico II”, Via Cintia, 80126 Napoli, Italy
- CNR-SPIN, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Task Force di Bioelettronica, University of Naples “Federico II”, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
3
|
Sun J, Jiang J, Deng Y, Wang Y, Li L, Lou Z, Hou Y, Teng F, Hu Y. Ionic Liquid-Gated Near-Infrared Polymer Phototransistors and Their Persistent Photoconductivity Application in Optical Memory. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57082-57091. [PMID: 36523155 DOI: 10.1021/acsami.2c17737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic phototransistors (OPTs) based on polymers have attracted substantial attention due to their excellent signal amplification, significant noise reduction, and solution process. Recently, the near-infrared (NIR) detection becomes urgent for OPTs with the increased demand for biomedicine, medical diagnostics, and health monitoring. To achieve this goal, a low working voltage of the OPTs is highly desirable. Therefore, the traditional dielectric gate can be replaced by an electrolyte gate to form electrolyte-gated organic phototransistors (EGOPTs), which are not only able to work at voltages below 1.0 V but also are biocompatible. PCDTPT, one of the most popular narrow band gap donor-acceptor copolymer, has been rarely studied in EGOPTs. In this work, an organic NIR-sensitive EGOPT based on PCDTPT is demonstrated with the detectivity of 7.08 × 1011 Jones and the photoresponsivity of 3.56 A/W at a low operating voltage. In addition, an existing persistent photoconductivity (PPC) phenomenon was also observed when the device was exposed to air. The PPC characteristic of the EGOPT in air has been used to achieve a phototransistor memory, and the gate bias can directly eliminate the PPC as an erasing operation. This work reveals the underlying mechanism of the electrolyte-gated organic phototransistor memories and broadens the application of the EGOPTs.
Collapse
Affiliation(s)
- Jun Sun
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, P.R. China
| | - Jingzan Jiang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, P.R. China
| | - Yadan Deng
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, P.R. China
| | - Yunuan Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, P.R. China
| | - Ling Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, P.R. China
| | - Zhidong Lou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, P.R. China
| | - Yanbing Hou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, P.R. China
| | - Feng Teng
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, P.R. China
| | - Yufeng Hu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, P.R. China
| |
Collapse
|
4
|
Dai DSHS, Peng B, Chen M, He Z, Leung TKW, Chik GKK, Fan S, Lu Y, Chan PKL. Organic Field-Effect Transistor Fabricated on Internal Shrinking Substrate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106066. [PMID: 34881811 DOI: 10.1002/smll.202106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Indexed: 06/13/2023]
Abstract
In the development of flexible organic field-effect transistors (OFET), downsizing and reduction of the operating voltage are essential for achieving a high current density with a low operating power. Although the bias voltage of the OFETs can be reduced by a high-k dielectric, achieving a threshold voltage close to zero remains a challenge. Moreover, the scaling down of OFETs demands the use of photolithography, and may lead to compatibility issues in organic semiconductors. Herein, a new strategy based on the ductile properties of organic semiconductors is developed to control the threshold voltage at close to zero while concurrently downsizing the OFETs. The OFETs are fabricated on prestressed polystyrene shrink film substrates at room temperature, then thermal energy (160 °C) is used to release the strain. The OFETs conformally attached to the wrinkled structure are shown to locally amplify the electric field. After shrinking, the horizontal device area is reduced by 75%, and the threshold voltage is decreased from -1.44 to -0.18 V, with a subthreshold swing of 74 mV dec-1 and intrinsic gain of 4.151 × 104 . These results reveal that the shrink film can be generally used as a substrate for downsizing OFETs and improving their performance.
Collapse
Affiliation(s)
- Derek Shui Hong Siddhartha Dai
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong, China
| | - Boyu Peng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ming Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhenfei He
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Timothy Ka Wai Leung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gary Kwok Ki Chik
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong, China
| | - Sufeng Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Paddy K L Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong, China
| |
Collapse
|