1
|
Aktar MS, Madhuresh NKD, Ghiladi RA, Franzen S. The role of proton-coupled electron transfer from protein to heme in dehaloperoxidase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141053. [PMID: 39424090 DOI: 10.1016/j.bbapap.2024.141053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
At least two of the six methionine (Met) residues in dehaloperoxidase (DHP) are shown to act as electron donors in both autoreduction and protein-heme crosslinking. Autoreduction observed in the two isozymes, DHP-A and DHP-B, is explained by the high heme reduction potential and an endogenous source of electrons from methionine (Met) or cysteine (Cys). This study provides evidence of a connection to protein-heme crosslinking that occurs when DHP is activated by H2O2 in competition with substrate oxidation and autoreduction. The autoreduction yields of DHP-A and DHP-B are comparable and both are inversely proportional to DHP concentration. Both isoenzymes show an anti-cooperative effect on autoreduction kinetics associated with protein dimerization. Despite the presence of five tyrosine (Tyr) amino acids in DHP-A and four Tyr in DHP-B, the mass spectral evidence does not support a Tyr-heme or interprotein Tyr-Tyr crosslinking event as observed in some mammalian myoglobins. LC-MS and tandem MS/MS studies revealed three amino acids that were involved in the heme-protein crosslink, Cys73, Met63 and Met64. Cys73 facilitates dimer formation in DHP-A which also appears to slow the rate of autoreduction, but is not involved in covalent protein-heme crosslinking. Based on mutational studies, Met63 and 64 are involved in both covalent heme crosslinking and autoreduction. Proton-coupled electron transfer and crosslinking by Met to the heme may serve to regulate DHP function and protect it from uncontrolled oxidative damage.
Collapse
Affiliation(s)
- Mst Sharmin Aktar
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | | | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
2
|
Gibbs CA, Ghazi N, Tao J, Warren JJ. An Investigation of the Influence of Tyrosine Local Interactions on Electron Hopping in a Model Protein. Molecules 2024; 29:350. [PMID: 38257263 PMCID: PMC10818705 DOI: 10.3390/molecules29020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Multi-step electron transfer reactions are important to the function of many cellular systems. The ways in which such systems have evolved to direct electrons along specific pathways are largely understood, but less so are the ways in which the reduction-oxidation potentials of individual redox sites are controlled. We prepared a series of three new artificial variants of Pseudomonas aeruginosa azurin where a tyrosine (Tyr109) is situated between the native Cu ion and a Ru(II) photosensitizer tethered to a histidine (His107). Arginine, glutamine, or methionine were introduced as position 122, which is near to Tyr109. We investigated the rate of CuI oxidation by a flash-quench generated Ru(III) oxidant over pH values from 5 to 9. While the identity of the residue at position 122 affects some of the physical properties of Tyr109, the rates of CuI oxidation are only weakly dependent on the identity of the residue at 122. The results highlight that more work is still needed to understand how non-covalent interactions of redox active groups are affected in redox proteins.
Collapse
Affiliation(s)
| | | | | | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
3
|
Maqboul I. Profiling charge transport: A new computational approach. Int J Biol Macromol 2023; 237:124065. [PMID: 36948333 DOI: 10.1016/j.ijbiomac.2023.124065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
To maintain life, charge transfer processes must be efficient to allow electrons to migrate across distances as large as 30-50 Å within a timescale from picoseconds to milliseconds, and the free-energy cost should not exceed one electron volt. By employing local ionization and local affinity energies, we calculated the pathway for electron and electron-hole transport, respectively. The pathway is then used to calculate both the driving force and the activation energy. The electronic coupling is calculated using configuration interaction procedure. When the charge acceptor is not known, as in oxidative stress, the charge transport terminals are found using Monte-Carlo simulation. These parameters were used to calculate the rate described by Marcus theory. Our approach has been elaborately explained using the famous androstane example and then applied to two proteins: electron transport in azurin protein and hole-hopping migration route from the heme center of cytochrome c peroxidase to its surface. This model gives an effective method to calculate the charge transport pathway and the free-energy profile within 0.1 eV from the experimental measurements and electronic coupling within 3 meV.
Collapse
Affiliation(s)
- Ibrahim Maqboul
- Computer Chemistry Center (CCC), Department of Chemistry and Pharmacy, Faculty of Sciences, Friedrich-Alexander-University, Erlangen, Germany; Computer Chemistry Center (CCC), Department of Chemistry and Pharmacy, Faculty of Sciences, Friedrich-Alexander-University, Nägelsbachstraße 25, 91052 Erlangen, Germany..
| |
Collapse
|
4
|
Abstract
Some oxidoreductase enzymes use redox-active tyrosine, tryptophan, cysteine, and/or glycine residues as one-electron, high-potential redox (radical) cofactors. Amino-acid radical cofactors typically perform one of four tasks-they work in concert with a metallocofactor to carry out a multielectron redox process, serve as storage sites for oxidizing equivalents, activate the substrate molecules, or move oxidizing equivalents over long distances. It is challenging to experimentally resolve the thermodynamic and kinetic redox properties of a single-amino-acid residue. The inherently reactive and highly oxidizing properties of amino-acid radicals increase the experimental barriers further still. This review describes a family of stable and well-structured model proteins that was made specifically to study tyrosine and tryptophan oxidation-reduction. The so-called α3X model protein system was combined with very-high-potential protein film voltammetry, transient absorption spectroscopy, and theoretical methods to gain a comprehensive description of the thermodynamic and kinetic properties of protein tyrosine and tryptophan radicals.
Collapse
Affiliation(s)
- Cecilia Tommos
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
5
|
Gibbs CA, Fedoretz-Maxwell BP, Warren JJ. On the roles of methionine and the importance of its microenvironments in redox metalloproteins. Dalton Trans 2022; 51:4976-4985. [PMID: 35253809 DOI: 10.1039/d1dt04387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amino acid residue methionine (Met) is commonly thought of as a ligand in redox metalloproteins, for example in cytochromes c and in blue copper proteins. However, the roles of Met can go beyond a simple ligand. The thioether functional group of Met allows it to be considered as a hydrophobic residue as well as one that is capable of weak dipolar interactions. In addition, the lone pairs on sulphur allow Met to interact with other groups, inluding the aforementioned metal ions. Because of its properties, Met can play diverse roles in metal coordination, fine tuning of redox reactions, or supporting protein structures. These roles are strongly influenced by the nature of the surrounding medium. Herein, we describe several common interactions between Met and surrounding aromatic amino acids and how they affect the physical properties of both copper and iron metalloproteins. While the importance of interactions between Met and other groups is established in biological systems, less is known about their roles in redox metalloproteins and our view is that this is an area that is ready for greater attention.
Collapse
Affiliation(s)
- Curtis A Gibbs
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | | | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
6
|
Clustering of Aromatic Amino Acid Residues around Methionine in Proteins. Biomolecules 2021; 12:biom12010006. [PMID: 35053154 PMCID: PMC8774105 DOI: 10.3390/biom12010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/31/2022] Open
Abstract
Short-range, non-covalent interactions between amino acid residues determine protein structures and contribute to protein functions in diverse ways. The interactions of the thioether of methionine with the aromatic rings of tyrosine, tryptophan, and/or phenylalanine has long been discussed and such interactions are favorable on the order of 1–3 kcal mol−1. Here, we carry out a new bioinformatics survey of known protein structures where we assay the propensity of three aromatic residues to localize around the [-CH2-S-CH3] of methionine. We term these groups “3-bridge clusters”. A dataset consisting of 33,819 proteins with less than 90% sequence identity was analyzed and such clusters were found in 4093 structures (or 12% of the non-redundant dataset). All sub-classes of enzymes were represented. A 3D coordinate analysis shows that most aromatic groups localize near the CH2 and CH3 of methionine. Quantum chemical calculations support that the 3-bridge clusters involve a network of interactions that involve the Met-S, Met-CH2, Met-CH3, and the π systems of nearby aromatic amino acid residues. Selected examples of proposed functions of 3-bridge clusters are discussed.
Collapse
|
7
|
Gray HB, Winkler JR. Functional and protective hole hopping in metalloenzymes. Chem Sci 2021; 12:13988-14003. [PMID: 34760183 PMCID: PMC8565380 DOI: 10.1039/d1sc04286f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023] Open
Abstract
Electrons can tunnel through proteins in microseconds with a modest release of free energy over distances in the 15 to 20 Å range. To span greater distances, or to move faster, multiple charge transfers (hops) are required. When one of the reactants is a strong oxidant, it is convenient to consider the movement of a positively charged "hole" in a direction opposite to that of the electron. Hole hopping along chains of tryptophan (Trp) and tyrosine (Tyr) residues is a critical function in several metalloenzymes that generate high-potential intermediates by reactions with O2 or H2O2, or by activation with visible light. Examination of the protein structural database revealed that Tyr/Trp chains are common protein structural elements, particularly among enzymes that react with O2 and H2O2. In many cases these chains may serve a protective role in metalloenzymes by deactivating high-potential reactive intermediates formed in uncoupled catalytic turnover.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| |
Collapse
|
8
|
Yin V, Konermann L. Probing the Effects of Heterogeneous Oxidative Modifications on the Stability of Cytochrome c in Solution and in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:73-83. [PMID: 32401029 DOI: 10.1021/jasms.0c00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent modifications by reactive oxygen species can modulate the function and stability of proteins. Thermal unfolding experiments in solution are a standard tool for probing oxidation-induced stability changes. Complementary to such solution investigations, the stability of electrosprayed protein ions can be assessed in the gas phase by collision-induced unfolding (CIU) and ion-mobility spectrometry. A question that remains to be explored is whether oxidation-induced stability alterations in solution are mirrored by the CIU behavior of gaseous protein ions. Here, we address this question using chloramine-T-oxidized cytochrome c (CT-cyt c) as a model system. CT-cyt c comprises various proteoforms that have undergone MetO formation (+16 Da) and Lys carbonylation (LysCH2-NH2 → LysCHO, -1 Da). We found that CT-cyt c in solution was destabilized, with a ∼5 °C reduced melting temperature compared to unmodified controls. Surprisingly, CIU experiments revealed the opposite trend, i.e., a stabilization of CT-cyt c in the gas phase. To pinpoint the source of this effect, we performed proteoform-resolved CIU on CT-cyt c fractions that had been separated by cation exchange chromatography. In this way, it was possible to identify MetO formation at residue 80 as the key modification responsible for stabilization in the gas phase. Possibly, this effect is caused by newly formed contacts of the sulfoxide with aromatic residues in the protein core. Overall, our results demonstrate that oxidative modifications can affect protein stability in solution and in the gas phase very differently.
Collapse
Affiliation(s)
- Victor Yin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Yin V, Holzscherer D, Konermann L. Delineating Heme-Mediated versus Direct Protein Oxidation in Peroxidase-Activated Cytochrome c by Top-Down Mass Spectrometry. Biochemistry 2020; 59:4108-4117. [PMID: 32991149 DOI: 10.1021/acs.biochem.0c00609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Oxidation of key residues in cytochrome c (cyt c) by chloramine T (CT) converts the protein from an electron transporter to a peroxidase. This peroxidase-activated state represents an important model system for exploring the early steps of apoptosis. CT-induced transformations include oxidation of the distal heme ligand Met80 (MetO, +16 Da) and carbonylation (LysCHO, -1 Da) in the range of Lys53/55/72/73. Remarkably, the 15 remaining Lys residues in cyt c are not susceptible to carbonylation. The cause of this unusual selectivity is unknown. Here we applied top-down mass spectrometry (MS) to examine whether CT-induced oxidation is catalyzed by heme. To this end, we compared the behavior of cyt c with (holo-cyt c) and without heme (apoSS-cyt c). CT caused MetO formation at Met80 for both holo- and apoSS-cyt c, implying that this transformation can proceed independently of heme. The aldehyde-specific label Girard's reagent T (GRT) reacted with oxidized holo-cyt c, consistent with the presence of several LysCHO. In contrast, oxidized apo-cyt c did not react with GRT, revealing that LysCHO forms only in the presence of heme. The heme dependence of LysCHO formation was further confirmed using microperoxidase-11 (MP11). CT exposure of apoSS-cyt c in the presence of MP11 caused extensive nonselective LysCHO formation. Our results imply that the selectivity of LysCHO formation at Lys53/55/72/73 in holo-cyt c is caused by the spatial proximity of these sites to the reactive (distal) heme face. Overall, this work highlights the utility of top-down MS for unravelling complex oxidative modifications.
Collapse
Affiliation(s)
- Victor Yin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Derek Holzscherer
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
10
|
Lee CWZ, Mubarak MQE, Green AP, de Visser SP. How Does Replacement of the Axial Histidine Ligand in Cytochrome c Peroxidase by N δ-Methyl Histidine Affect Its Properties and Functions? A Computational Study. Int J Mol Sci 2020; 21:ijms21197133. [PMID: 32992593 PMCID: PMC7583937 DOI: 10.3390/ijms21197133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Heme peroxidases have important functions in nature related to the detoxification of H2O2. They generally undergo a catalytic cycle where, in the first stage, the iron(III)-heme-H2O2 complex is converted into an iron(IV)-oxo-heme cation radical species called Compound I. Cytochrome c peroxidase Compound I has a unique electronic configuration among heme enzymes where a metal-based biradical is coupled to a protein radical on a nearby Trp residue. Recent work using the engineered Nδ-methyl histidine-ligated cytochrome c peroxidase highlighted changes in spectroscopic and catalytic properties upon axial ligand substitution. To understand the axial ligand effect on structure and reactivity of peroxidases and their axially Nδ-methyl histidine engineered forms, we did a computational study. We created active site cluster models of various sizes as mimics of horseradish peroxidase and cytochrome c peroxidase Compound I. Subsequently, we performed density functional theory studies on the structure and reactivity of these complexes with a model substrate (styrene). Thus, the work shows that the Nδ-methyl histidine group has little effect on the electronic configuration and structure of Compound I and little changes in bond lengths and the same orbital occupation is obtained. However, the Nδ-methyl histidine modification impacts electron transfer processes due to a change in the reduction potential and thereby influences reactivity patterns for oxygen atom transfer. As such, the substitution of the axial histidine by Nδ-methyl histidine in peroxidases slows down oxygen atom transfer to substrates and makes Compound I a weaker oxidant. These studies are in line with experimental work on Nδ-methyl histidine-ligated cytochrome c peroxidases and highlight how the hydrogen bonding network in the second coordination sphere has a major impact on the function and properties of the enzyme.
Collapse
Affiliation(s)
- Calvin W. Z. Lee
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Anthony P. Green
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +44-161-306-4882
| |
Collapse
|
11
|
Sørensen MLH, Sanders BC, Hicks LP, Rasmussen MH, Vishart AL, Kongsted J, Winkler JR, Gray HB, Hansen T. Hole Hopping through Cytochrome P450. J Phys Chem B 2020; 124:3065-3073. [PMID: 32175746 DOI: 10.1021/acs.jpcb.9b09414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High-potential iron-oxo species are intermediates in the catalytic cycles of oxygenase enzymes. They can cause heme degradation and irreversible oxidation of nearby amino acids. We have proposed that there are protective mechanisms in which hole hopping from oxidized hemes through tryptophan/tyrosine chains generates a surface-exposed amino-acid oxidant that could be rapidly disarmed by reaction with cellular reductants. In investigations of cytochrome P450BM3, we identified Trp96 as a critical residue that could play such a protective role. This Trp is cation-π paired with Arg398 in 81% of mammalian P450s. Here we report on the effect of the Trp/Arg cation-π interaction on Trp96 formal potentials as well as on electronic coupling strengths between Trp96 and the heme both for wild type cytochrome P450 and selected mutants. Mutation of Arg398 to His, which decreases the Trp96 formal potential, increases Trp-heme electronic coupling; however, surprisingly, the rate of phototriggered electron transfer from a Ru-sensitizer (through Trp96) to the P450BM3 heme was unaffected by the Arg398His mutation. We conclude that Trp96 has moved away from Arg398, suggesting that the protective mechanism for P450s with this Trp-Arg pair is conformationally gated.
Collapse
Affiliation(s)
- Mette L H Sørensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| | - Brian C Sanders
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - L Perry Hicks
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Maria H Rasmussen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| | - Andreas L Vishart
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Jay R Winkler
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Harry B Gray
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Thorsten Hansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark
| |
Collapse
|
12
|
Dastpeyman S, Godin R, Cosa G, English AM. Quantifying Heme-Protein Maturation from Ratiometric Fluorescence Lifetime Measurements on the Single Fluorophore in Its GFP Fusion. J Phys Chem A 2020; 124:746-754. [PMID: 31894984 DOI: 10.1021/acs.jpca.9b11901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein maturation by heme insertion is a common post-translation modification of key biological importance. Nonetheless, where and when this maturation occurs in eukaryotic cells remain unknown for most heme proteins. Here, we demonstrate for the first time that the maturation of a chromosomally expressed, endogenous heme protein fused to a green fluorescent protein (GFP) can be tracked in live cells. Selecting yeast cytochrome c peroxidase (Ccp1) as our model heme-binding protein, we first characterized the emission in vitro of recombinant Ccp1-GFP with GFP fused C-terminally to Ccp1 by the linker GRRIPGLIN. Time-correlated single-photon counting reveals a single fluorescence lifetime for heme-free apoCcp1-GFP, τ0 = 2.84 ± 0.01 ns. Heme bound to Ccp1 only partially quenches GFP fluorescence since holoCcp1-GFP exhibits two lifetimes, τ1 = 0.95 ± 0.02 and τ2 = 2.46 ± 0.03 ns with fractional amplitudes a1 = 38 ± 1.5% and a2 = 62 ± 1.5%. Also, τ and a are independent of Ccp1-GFP concentration and solution pH between 5.5 and 8.0, and a standard plot of a1 vs % holoCcp1-GFP in mixtures with apoCcp1-GFP is linear, establishing that the fraction of Ccp1-GFP with heme bound can be determined from a1. Fluorescence lifetime imaging microscopy (FLIM) of live yeast cells chromosomally expressing the same Ccp1-GFP fusion revealed 30% holoCcp1-GFP (i.e., mature Ccp1) and 70% apoCcp1-GFP in agreement with biochemical measurements on cell lysates. Thus, ratiometric fluorescence lifetime measurements offer promise for probing heme-protein maturation in live cells, and we can dispense with the reference fluorophore required for ratiometric intensity-based measurements.
Collapse
Affiliation(s)
- Samaneh Dastpeyman
- PROTEO and Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St West , Montreal , Canada H4B 1R6
| | - Robert Godin
- Department of Chemistry , McGill University , 801 Sherbrooke St West , Montreal , Canada H3A 0B8
| | - Gonzalo Cosa
- Department of Chemistry , McGill University , 801 Sherbrooke St West , Montreal , Canada H3A 0B8
| | - Ann M English
- PROTEO and Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St West , Montreal , Canada H4B 1R6
| |
Collapse
|
13
|
Paradisi A, Johnston EM, Tovborg M, Nicoll CR, Ciano L, Dowle A, McMaster J, Hancock Y, Davies GJ, Walton PH. Formation of a Copper(II)-Tyrosyl Complex at the Active Site of Lytic Polysaccharide Monooxygenases Following Oxidation by H 2O 2. J Am Chem Soc 2019; 141:18585-18599. [PMID: 31675221 PMCID: PMC7007232 DOI: 10.1021/jacs.9b09833] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 01/14/2023]
Abstract
Hydrogen peroxide is a cosubstrate for the oxidative cleavage of saccharidic substrates by copper-containing lytic polysaccharide monooxygenases (LPMOs). The rate of reaction of LPMOs with hydrogen peroxide is high, but it is accompanied by rapid inactivation of the enzymes, presumably through protein oxidation. Herein, we use UV-vis, CD, XAS, EPR, VT/VH-MCD, and resonance Raman spectroscopies, augmented with mass spectrometry and DFT calculations, to show that the product of reaction of an AA9 LPMO with H2O2 at higher pHs is a singlet Cu(II)-tyrosyl radical species, which is inactive for the oxidation of saccharidic substrates. The Cu(II)-tyrosyl radical center entails the formation of significant Cu(II)-(●OTyr) overlap, which in turn requires that the plane of the d(x2-y2) SOMO of the Cu(II) is orientated toward the tyrosyl radical. We propose from the Marcus cross-relation that the active site tyrosine is part of a "hole-hopping" charge-transfer mechanism formed of a pathway of conserved tyrosine and tryptophan residues, which can protect the protein active site from inactivation during uncoupled turnover.
Collapse
Affiliation(s)
- Alessandro Paradisi
- Department
of Chemistry, Centre of Excellence of Mass Spectrometry, Technology
Facility, and Department of Physics, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Esther M. Johnston
- Department
of Chemistry, Centre of Excellence of Mass Spectrometry, Technology
Facility, and Department of Physics, University of York, Heslington, York YO10
5DD, United Kingdom
| | | | - Callum R. Nicoll
- Department
of Chemistry, Centre of Excellence of Mass Spectrometry, Technology
Facility, and Department of Physics, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Luisa Ciano
- Department
of Chemistry, Centre of Excellence of Mass Spectrometry, Technology
Facility, and Department of Physics, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Adam Dowle
- Department
of Chemistry, Centre of Excellence of Mass Spectrometry, Technology
Facility, and Department of Physics, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Jonathan McMaster
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Y. Hancock
- Department
of Chemistry, Centre of Excellence of Mass Spectrometry, Technology
Facility, and Department of Physics, University of York, Heslington, York YO10
5DD, United Kingdom
- York
Cross-Disciplinary Centre for Systems Analysis, University of York, Heslington,
York YO10 5GE, United Kingdom
| | - Gideon J. Davies
- Department
of Chemistry, Centre of Excellence of Mass Spectrometry, Technology
Facility, and Department of Physics, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Paul H. Walton
- Department
of Chemistry, Centre of Excellence of Mass Spectrometry, Technology
Facility, and Department of Physics, University of York, Heslington, York YO10
5DD, United Kingdom
| |
Collapse
|
14
|
Abstract
A recently proposed oxidative damage protection mechanism in proteins relies on hole hopping escape routes formed by redox-active amino acids. We present a computational tool to identify the dominant charge hopping pathways through these residues based on the mean residence times of the transferring charge along these hopping pathways. The residence times are estimated by combining a kinetic model with well-known rate expressions for the charge-transfer steps in the pathways. We identify the most rapid hole hopping escape routes in cytochrome P450 monooxygenase, cytochrome c peroxidase, and benzylsuccinate synthase (BSS). This theoretical analysis supports the existence of hole hopping chains as a mechanism capable of providing hole escape from protein catalytic sites on biologically relevant timescales. Furthermore, we find that pathways involving the [4Fe4S] cluster as the terminal hole acceptor in BSS are accessible on the millisecond timescale, suggesting a potential protective role of redox-active cofactors for preventing protein oxidative damage.
Collapse
|
15
|
Orabi EA, English AM. Expanding the range of binding energies and oxidizability of biologically relevant S-aromatic interactions: imidazolium and phenolate binding to sulfoxide and sulfone. Phys Chem Chem Phys 2019; 21:14620-14628. [PMID: 31214677 DOI: 10.1039/c9cp02332a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidation and protonation/deprotonation strongly impact intermolecular noncovalent interactions. For example, S-aromatic interactions are stabilized up to three-fold in the gas phase on oxidation of the sulfur ligand or protonation/deprotonation of the aromatic. To probe if such stabilizing effects are additive and to model interactions of oxidized methionine (MetOn) with protonated histidine and deprotonated tyrosine residues in proteins, we examined Me2SOn (n = 1, 2) binding to imidazolium, phenolate and their 4-methylated forms. Ab initio MP2(full)/6-311++G(d,p) gas-phase calculations reveal that the Me2SOn-imidazolium complexes adopt edge-on geometry with σ-type (N/C-HarO) H-bonding and interaction energies of -17.2 to -31.1 kcal mol-1. The less stable (-13.8 to -21.0 kcal mol-1) Me2SOn-phenolates possess en-face geometry stabilized by π-type (C-Hπar) H-bonding. Comparing these energies with those reported for the Me2S-neutral aromatics affirms the additive effects of ligand protonation/deprotonation and oxidation on gas-phase stability. However, this is not the case in water although the aqueous complexes retain their preferred gas-phase σ- and π-type H-bonded structures. Binding free energies (kcal mol-1) calculated from molecular dynamics simulations in bulk water (preceded by CHARMM36 force field calibration where necessary) reveal that Me2SO-imidazolium (-4.4) is more stable than Me2SO-phenolate (-2.4) but Me2SO2-imidazolium (-0.6) is less stable than Me2SO2-phenolate (-3.8). Vertical ionization potentials (IPV) calculated for the gas-phase complexes indicate that the Me2SOn-phenolates, but not the Me2SOn-imidazoles, are oxidizable under biological conditions. Charge transfer from the phenolate increases its IPV by ∼20%, decreasing its susceptibility to oxidation. Overall, this work provides fundamental data to predict the behaviour of protein-based MetOn-aromatic-ion interactions.
Collapse
Affiliation(s)
- Esam A Orabi
- Center for Research in Molecular Modeling (CERMM), Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), and Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Ann M English
- Center for Research in Molecular Modeling (CERMM), Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), and Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
16
|
Zanetti-Polzi L, Daidone I, Corni S. Evidence of a Thermodynamic Ramp for Hole Hopping to Protect a Redox Enzyme from Oxidative Damage. J Phys Chem Lett 2019; 10:1450-1456. [PMID: 30855973 DOI: 10.1021/acs.jpclett.9b00403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Redox proteins and enzymes are at risk of irreversible oxidative damage from highly oxidizing intermediates generated in the active site in the case of unsuccessful functional reaction. Chains of tyrosine and/or tryptophan residues have been recently proposed to provide protection to the active site and the whole protein by delivering oxidizing equivalents (holes) out of the protein via a multistep hopping mechanism. In the present work we use a hybrid quantum/classical theoretical-computational methodology based on the perturbed matrix method and on molecular dynamics simulations to calculate the oxidation potential difference along a chain of tyrosine and tryptophan residues in a human redox enzyme of major importance, a superoxide dismutase, which acts as antioxidant defense. We show that the hole hopping is thermodynamically favored along such a chain and that the hopping propensity is strongly affected by the protein environment and in particular by the active site and its second coordination sphere.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| | - Stefano Corni
- Department of Chemical Sciences , University of Padova , I-35131 Padova , Italy
- Center S3 , CNR-Institute of Nanoscience , Via Campi 213/A , 41125 Modena , Italy
| |
Collapse
|
17
|
Yin V, Mian SH, Konermann L. Lysine carbonylation is a previously unrecognized contributor to peroxidase activation of cytochrome c by chloramine-T. Chem Sci 2019; 10:2349-2359. [PMID: 30881663 PMCID: PMC6385661 DOI: 10.1039/c8sc03624a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
The peroxidase activity of cytochrome c (cyt c) plays a key role during apoptosis. Peroxidase catalysis requires a vacant Fe coordination site, i.e., cyt c must undergo an activation process involving structural changes that rupture the native Met80-Fe contact. A common strategy for dissociating this bond is the conversion of Met80 to sulfoxide (MetO). It is widely believed that this MetO formation in itself is sufficient for cyt c activation. This notion originates from studies on chloramine-T-treated cyt c (CT-cyt c) which represents a standard model for the peroxidase activated state. CT-cyt c is considered to be a "clean" species that has undergone selective MetO formation, without any other modifications. Using optical, chromatographic, and mass spectrometry techniques, the current work demonstrates that CT-induced activation of cyt c is more complicated than previously thought. MetO formation alone results in only marginal peroxidase activity, because dissociation of the Met80-Fe bond triggers alternative ligation scenarios where Lys residues interfere with access to the heme. We found that CT causes not only MetO formation, but also carbonylation of several Lys residues. Carbonylation is associated with -1 Da mass shifts that have gone undetected in the CT-cyt c literature. Proteoforms possessing both MetO and Lys carbonylation exhibit almost fourfold higher peroxidase activity than those with MetO alone. Carbonylation abrogates the capability of Lys to coordinate the heme, thereby freeing up the distal site as required for an active peroxidase. Previous studies on CT-cyt c may have inadvertently examined carbonylated proteoforms, potentially misattributing effects of carbonylation to solely MetO formation.
Collapse
Affiliation(s)
- Victor Yin
- Department of Chemistry and Department of Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada .
| | - Safee H Mian
- Department of Chemistry and Department of Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada .
| | - Lars Konermann
- Department of Chemistry and Department of Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada .
| |
Collapse
|
18
|
Kathiresan M, English AM. LC-MS/MS Proteoform Profiling Exposes Cytochrome c Peroxidase Self-Oxidation in Mitochondria and Functionally Important Hole Hopping from Its Heme. J Am Chem Soc 2018; 140:12033-12039. [PMID: 30145880 DOI: 10.1021/jacs.8b05966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LC-MS/MS profiling reveals that the proteoforms of cytochrome c peroxidase (Ccp1) isolated from respiring yeast mitochondria are oxidized at numerous Met, Trp, and Tyr residues. In vitro oxidation of recombinant Ccp1 by H2O2 in the absence of its reducing substrate, ferrocytochrome c, gives rise to similar proteoforms, indicating uncoupling of Ccp1 oxidation and reduction in mitochondria. The oxidative modifications found in the Ccp1 proteoforms are consistent with radical transfer (hole hopping) from the heme along several chains of redox-active residues (Trp, Met, Tyr). These modifications delineate likely hole-hopping pathways to novel substrate-binding sites. Moreover, a decrease in recombinant Ccp1 oxidation by H2O2 in vitro in the presence of glutathione supports a protective role for hole hopping to this antioxidant. Isolation and characterization of extramitochondrial Ccp1 proteoforms reveals that hole hopping from the heme in these proteoforms results in selective oxidation of the proximal heme ligand (H175) and heme labilization. Previously, we demonstrated that this labilized heme is recruited for catalase maturation (Kathiresan, M.; Martins, D.; English, A. M. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 17468-17473; DOI: 10.1073/pnas.1409692111 ). Following heme release, apoCcp1 exits mitochondria, yielding the extramitochondrial proteoforms that we characterize here. The targeting of Ccp1 for selective H175 oxidation may be linked to the phosphorylation status of Y153 close to the heme since pY153 is abundant in certain proteoforms. In sum, when insufficient electrons from ferrocytochrome c are available to Ccp1 in mitochondria, hole hopping from its heme expands its physiological functions. Specifically, we observe an unprecedented hole-hopping sequence for heme labilization and identify hole-hopping pathways from the heme to novel substrates and to glutathione at Ccp1's surface. Furthermore, our results underscore the power of proteoform profiling by LC-MS/MS in exploring the cellular roles of oxidoreductases.
Collapse
Affiliation(s)
- Meena Kathiresan
- Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO), and Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada
| | - Ann M English
- Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO), and Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada
| |
Collapse
|
19
|
Orabi EA, English AM. Predicting structural and energetic changes in Met–aromatic motifs on methionine oxidation to the sulfoxide and sulfone. Phys Chem Chem Phys 2018; 20:23132-23141. [DOI: 10.1039/c8cp03277g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Methionine oxidation increases its affinity for aromatics in the gas phase but lowers it for most complexes in water.
Collapse
Affiliation(s)
- Esam A. Orabi
- Center for Research in Molecular Modeling (CERMM)
- Quebec Network for Research on Protein Function
- Engineering, and Applications (PROTEO), and Department of Chemistry and Biochemistry
- Concordia University
- Montréal
| | - Ann M. English
- Center for Research in Molecular Modeling (CERMM)
- Quebec Network for Research on Protein Function
- Engineering, and Applications (PROTEO), and Department of Chemistry and Biochemistry
- Concordia University
- Montréal
| |
Collapse
|
20
|
Yin V, Shaw GS, Konermann L. Cytochrome c as a Peroxidase: Activation of the Precatalytic Native State by H2O2-Induced Covalent Modifications. J Am Chem Soc 2017; 139:15701-15709. [DOI: 10.1021/jacs.7b07106] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Victor Yin
- Department of Chemistry and Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Gary S. Shaw
- Department of Chemistry and Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry and Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
21
|
Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, Goodwin DC. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme. J Biol Chem 2017; 292:18408-18421. [PMID: 28972181 DOI: 10.1074/jbc.m117.791202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H2O2-induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H2O2 to O2 and H2O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H2O2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting (i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H2O2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates.
Collapse
Affiliation(s)
- Olive J Njuma
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Ian Davis
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and.,the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Elizabeth N Ndontsa
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Jessica R Krewall
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Aimin Liu
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and
| | - Douglas C Goodwin
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312,
| |
Collapse
|
22
|
Abstract
![]()
Electron-transfer kinetics have been
measured in four conjugates
of cytochrome P450 with surface-bound Ru-photosensitizers. The conjugates
are constructed with enzymes from Bacillus megaterium (CYP102A1) and Sulfolobus acidocaldarius (CYP119).
A W96 residue lies in the path between Ru and the heme in CYP102A1,
whereas H76 is present at the analogous location in CYP119. Two additional
conjugates have been prepared with (CYP102A1)W96H and (CYP119)H76W
mutant enzymes. Heme oxidation by photochemically generated Ru3+ leads to P450 compound II formation when a tryptophan residue
is in the path between Ru and the heme; no heme oxidation is observed
when histidine occupies this position. The data indicate that heme
oxidation proceeds via two-step tunneling through a tryptophan radical
intermediate. In contrast, heme reduction by photochemically generated
Ru+ proceeds in a single electron tunneling step with closely
similar rate constants for all four conjugates.
Collapse
Affiliation(s)
- Maraia E Ener
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
23
|
Field MJ, Bains RK, Warren JJ. Using an artificial tryptophan “wire” in cytochrome c peroxidase for oxidation of organic substrates. Dalton Trans 2017; 46:11078-11083. [DOI: 10.1039/c7dt02330h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of tryptophan residues between heme and the protein surface in cytochrome c peroxidase gives rise to new redox reactivity, in analogy to lignolytic peroxidases.
Collapse
|