1
|
Xu Y, Wang P, Zhan X, Dai W, Li Q, Zou J, Luo X. Enhancing the Lewis acidity of single atom Tb via introduction of boron to achieve efficient photothermal synergistic CO 2 cycloaddition. J Colloid Interface Sci 2024; 673:134-142. [PMID: 38875784 DOI: 10.1016/j.jcis.2024.06.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Nowadays, it is becoming increasingly urgent to lower the escalating carbon dioxide (CO2) to reduce greenhouse effect. Fortunately, it is an ideal strategy by using the inexhaustible solar energy as the driving force to manipulate the cycloaddition reaction, the atomic efficiency of which is 100 %. This work represents the first attempt on utilization of rare-earth metal Tb with atomic dispersion, and the structure of Tb coordinated with 4 N-atoms and 2B-atoms was constructed on interconnected carbon hollow spheres. The introduction of electron-deficient B reduces the electron density of Tb, thereby boosting Lewis acidity and promoting the occurrence of ring-opening reaction. The mechanism exploration enunciates that TbN4B2/C is a photothermal synergistic catalyst, the combined action of photogenerated electrons and strong Lewis acidic site of Tb reduces the free energy of the rate-determining step, and then improving the yield of cyclic carbonate up to 739 mmol g-1h-1.
Collapse
Affiliation(s)
- Yong Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ping Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiaojun Zhan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Weili Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Qing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jianping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| |
Collapse
|
2
|
Liu Z, Yan Y, Li J, Zhou W, Gao H, Lu R. Rapid visual dual-mode detection of Zr(IV) based on L-histidine functionalized gold nanoparticles. ANAL SCI 2024; 40:1269-1278. [PMID: 38575844 DOI: 10.1007/s44211-024-00557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Heavy metal pollution has always been a great threat to human health and safety. Compared with other heavy metals, although zirconium ion (Zr(IV)) is equally harmful, due to the lack of research on Zr(IV) in the biological systems and environment, its detection does not seem to have received the attention it deserves. Herein, a rapid visual dual-mode detection (colorimetric and chrominance method) of Zr(IV) based on L-histidine functionalized gold nanoparticles (HIS-AuNPs) has been reported. AuNPs and HIS-AuNPs before and after adding Zr(IV) were characterized by UV-Vis, TEM, DLS, Zeta potential, EDS and FT-IR, etc. These results showed that L-histidine was successfully modified on the surface of AuNPs by forming a stable Au-N bond, and its modification had little effect on the dispersion degree of AuNPs. After the addition of Zr(IV), interaction of this metal ion with the imidazolyl group on L-histidine can obviously cause the aggregation of HIS-AuNPs within 12 min, and the dispersion state and particle size of HIS-AuNPs can be significantly changed. These two detection modes were established by means of absorbance and color change of solution, and being used in addition and recovery experiments of Zr(IV) in natural water. Under the optimal conditions, these two modes exhibited good linearity within 15-70 and 20-100 μmol L-1, and limit of detection of 2.62 and 6.25 μmol L-1. The proposed method was highly sensitive and selective, which provided a new convenient way to realize the detection of Zr(IV).
Collapse
Affiliation(s)
- Zhili Liu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Yumei Yan
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Jing Li
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Wenfeng Zhou
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Haixiang Gao
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Runhua Lu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China.
| |
Collapse
|
3
|
Gadzikwa T, Matseketsa P. The post-synthesis modification (PSM) of MOFs for catalysis. Dalton Trans 2024; 53:7659-7668. [PMID: 38652070 DOI: 10.1039/d4dt00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
While there are myriad ways to construct metal-organic framework (MOF) based catalysts, the introduction of catalytic functionality via covalent post-synthesis functionalization (PSM) offers multiple advantages: (i) a wide range of different catalyst types are generated from a handful of well-known parent MOFs, (ii) MOF catalyst properties can be systematically tuned while changing few variables, and (iii) catalytically active functional groups that would otherwise interfere with MOF assembly can be introduced facilely. This last advantage is particularly crucial for our quest to generate MOF active sites that are decorated with multiple functional groups capable of cooperative activity, analogous to enzyme active sites.
Collapse
Affiliation(s)
- Tendai Gadzikwa
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Pricilla Matseketsa
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
4
|
Yu X, Xiong C, Liang Y, Zhou X, Xue C. Construction of a highly stable natural silicate-supported molybdenum catalyst for efficient epoxidation of olefins. J Colloid Interface Sci 2024; 660:490-501. [PMID: 38246052 DOI: 10.1016/j.jcis.2024.01.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Epoxides are important bulk chemicals, playing irreplaceable role in the chemical industry, but facing serious pollution and low productivity in the production process. Therefore, the development of green and efficient epoxidation of olefins by stable catalysts with low prices is of great significance. In this study, a Mo-MATP catalyst was prepared by modifying Mo(CO)₆ on attapulgite through Si-O bonding. Mo-MATP exhibits excellent performance (99% yield of cyclooctane oxide, CYCO) and stability (80% selectivity of CYCO after 17 cycles), highly tert-butyl hydroperoxide (TBHP) utilization, and extensive substrate scalability. Furthermore, the in-situ Fourier Transform Infrared Spectroscopy (FT-IR), Electron Spin-resonance Spectroscopy (ESR) and High Resolution Mass Spectrometry (HRMS) spectra suggest that TBHP would be activated by Mo-MATP to generate peroxyl radicals, which then oxidize alkenes to their corresponding epoxides. In this study, the stable loading of Mo would largely solve the problem of Mo loss during the catalytic process, thus providing a stable and dispersed Mo active center, enabling the catalyst to possess high catalytic performance and recycling stability.
Collapse
Affiliation(s)
- Xingrui Yu
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Chao Xiong
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yichao Liang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Xiantai Zhou
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; Huizhou Research Institute of Sun Yat-sen University, Huizhou 516081, China.
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; Huizhou Research Institute of Sun Yat-sen University, Huizhou 516081, China; Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming 525000, China.
| |
Collapse
|
5
|
Jendoubi A, Arfaoui Y, Palaudoux J, Al-Mogren MM, Hochlaf M. DFT mechanistic study of the chemical fixation of CO 2 by aziridine derivatives. J Comput Chem 2024; 45:563-573. [PMID: 38031324 DOI: 10.1002/jcc.27270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Using density functional theory (DFT), we treat the reaction of coupling of CO2 with aziridine in gas phase, in the presence of water and of a green catalyst (NaBr). Computations show that, in gas phase, this ring-opening conversions to oxazolidinones initiates by coordinating a CO2 molecule to the nitrogen atom of the aziridine. Then, a nucleophilic interaction between one oxygen atom of the coordinated CO2 and the carbon atom of the aziridine occurs. For methyl substituted aziridine, two pathways are proposed leading either to 4-oxazolidinone or to 5-oxazolidinone. Besides, we show that the activation energy of this reaction reduces in aqueous solution, in the presence of a water molecule explicitly or NaBr catalyst. In addition, the corresponding reaction mechanisms and regioselectivity associated with this ring-opening conversions to oxazolidinones, in the presence of carbon dioxide are found to be influenced by solvent and catalyst. The present findings should allow better designing regioisomer oxazolidinones relevant for organic chemistry, medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Abir Jendoubi
- Laboratoire Applications, Caractérisations et Modélisation de Matériaux (LR18ES08), Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Université Gustave Eiffel, COSYS/IMSE, Champs Sur Marne, France
| | - Youssef Arfaoui
- Laboratoire Applications, Caractérisations et Modélisation de Matériaux (LR18ES08), Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | | | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, Champs Sur Marne, France
| |
Collapse
|
6
|
Bao WL, Kuai J, Gao HY, Zheng MQ, Sun ZH, He MY, Chen Q, Zhang ZH. Ionic liquid post-modified carboxylate-rich MOFs for efficient catalytic CO 2 cycloaddition under solvent-free conditions. Dalton Trans 2024; 53:6215-6223. [PMID: 38483279 DOI: 10.1039/d4dt00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The synthesis of cyclic carbonates through cycloaddition reactions between epoxides and carbon dioxide (CO2) is an important industrial process. Metal-Organic Frameworks (MOFs) have functional and ordered pore structures, making them attractive catalysts for converting gas molecules into valuable products. One approach to enhance the catalytic activity of MOFs in CO2 cycloaddition reactions is to create open metal sites within MOFs. In this study, the amino-functionalized rare earth Gd-MOF (Gd-TPTC-NH2) and its ionic liquid composite catalysts (Gd-TPTC-NH-[BMIM]Br) were synthesized using 2'-amino-[1,1':4',1''-terphenyl]-3,3'',5,5''-tetracarboxylic acid (H4TPTC-NH2) as the ligand. The catalytic performance of these two catalysts was observed in the cycloaddition reaction of CO2 and epoxides. Under the optimized reaction conditions, Gd-TPTC-NH-[BMIM]Br can effectively catalyze the cycloaddition reaction of a variety of epoxide substrates with good to excellent yields of cyclic carbonate products. Comparatively, epichlorohydrin and epibromohydrin, which possess halogen substituents, promote higher yields of cyclic carbonates due to the electron-withdrawing nature of Cl and Br substituents. Additionally, the Gd-TPTC-NH-[BMIM]Br catalyst demonstrated good recyclability and reproducibility, maintaining its catalytic activity without any changes in its structure or properties after five reuse cycles.
Collapse
Affiliation(s)
- Wen-Li Bao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Jie Kuai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Hai-Yang Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Meng-Qi Zheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Zhong-Hua Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
7
|
Kan L, Zhang L, Dong LZ, Wang XH, Li RH, Guo C, Li X, Yan Y, Li SL, Lan YQ. Bridging the Homogeneous and Heterogeneous Catalysis by Supramolecular Metal-Organic Cages with Varied Packing Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310061. [PMID: 38227292 DOI: 10.1002/adma.202310061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Indexed: 01/17/2024]
Abstract
Integrating the advantages of homogeneous and heterogeneous catalysis has proved to be an optimal strategy for developing catalytic systems with high efficiency, selectivity, and recoverability. Supramolecular metal-organic cages (MOCs), assembled by the coordination of metal ions with organic linkers into discrete molecules, have performed solvent processability due to their tunable packing modes, endowing them with the potential to act as homogeneous or heterogeneous catalysts in different solvent systems. Here, the design and synthesis of a series of stable {Cu3} cluster-based tetrahedral MOCs with varied packing structures are reported. These MOCs, as homogeneous catalysts, not only show high catalytic activity and selectivity regardless of substrate size during the CO2 cycloaddition reaction, but also can be easily recovered from the reaction media through separating products and co-catalysts by one-step work-up. This is because that these MOCs have varied solubilities in different solvents due to the tunable packing of MOCs in the solid state. Moreover, the entire catalytic reaction system is very clean, and the purity of cyclic carbonates is as high as 97% without further purification. This work provides a unique strategy for developing novel supramolecular catalysts that can be used for homogeneous catalysis and recycled in a heterogeneous manner.
Collapse
Affiliation(s)
- Liang Kan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Han Wang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Run-Han Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Yong Yan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
8
|
Chen J, Yao N, Tang Y, Xie L, Zhuo X, Jiang Z. Functional UiO-66 for highly selective adsorption of N-nitrosodipropylamine: adsorption performance and mechanisms. Dalton Trans 2024; 53:5900-5910. [PMID: 38450710 DOI: 10.1039/d3dt03058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
N-Nitrosodipropylamine (NDPA) is a class of nitrogenous disinfection by-products (N-DBPs) with high toxicity. Although NDPA present in water bodies is at relatively low concentrations, the potential risk is high due to its high toxicity and bioaccumulation. Metal-organic frameworks (MOFs), a new type of porous material with remarkable functionality, have shown great performance in a wide variety of applications in adsorption. This is the first study investigating the adsorption of MOFs on NDPA. Herein, UiO-66 with -NH2 and imidazolium functional groups were synthesized by modifying UiO-66 after amination. Adsorption kinetics and isotherm models were used to compare the adsorption properties of the two materials for low-concentration NDPA in water. The results showed that the behavior of all the adsorbents was consistent with the Langmuir model and the pseudo-second-order model and that the adsorption was homogeneous chemisorption. The structures of the nanoparticles were characterized by FTIR, zeta potential, XRD, SEM and BET measurements. Based on the characteristics, four adsorption mechanisms, namely electron conjugation, coordination reaction, anion-π interaction, and van der Waals forces, were simultaneously involved in the adsorption. The influencing factor experiment revealed that the adsorption of UiO-66-NH2 and (I-)Meim-UiO-66 involved hydrogen bonding and electrostatic interactions, respectively.
Collapse
Affiliation(s)
- Jinfeng Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| | - Ning Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| | - Yi Tang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| | - Letian Xie
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| | - Xiong Zhuo
- Fuzhou City Construction Design & Research Institute Co., Ltd., Fuzhou, Fujian 350001, China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, Fuzhou, Fujian 350118, China
| |
Collapse
|
9
|
Liu K, Du L, Wang T. Coordination Synergy between Iridium Photosensitizers and Metal Nanoclusters Leading to Enhanced CO 2 Cycloaddition under Mild Conditions. Inorg Chem 2024; 63:4614-4627. [PMID: 38422546 DOI: 10.1021/acs.inorgchem.3c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The achievement of photocatalytic CO2 and epoxide cycloaddition under mild conditions such as room temperature and atmospheric pressure is important for green chemistry, which can be achieved by developing coordination synergies between catalysts and photosensitizers. In this context, we exploit the use of coordinate bonds to connect pyridine-appended iridium photosensitizers and catalysts for CO2 cycloaddition, which is systematically demonstrated by 1H nuclear magnetic resonance titration and X-ray photoelectron spectroscopic measurements. It is shown that the hybrid Ir(Cltpy)2/Mn2Cd4 photocatalytic system with coordination synergy exhibits excellent catalytic performance (yield ≈ 98.2%), which is 3.75 times higher than that of the comparative Ir(Cltpy-Ph)2/Mn2Cd4 system without coordination synergy (yield ≈ 26.2%), under mild conditions. The coordination between the Mn2Cd4 catalyst and the Ir(Cltpy)2 photosensitizer enhances the light absorption and photoresponse properties of the Mn2Cd4 catalyst. This has been confirmed through transient photocurrent, electrochemical impedance, and electron paramagnetic tests. Consequently, the efficiency of cycloaddition was enhanced by utilizing mild conditions.
Collapse
Affiliation(s)
- Kelong Liu
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Longchao Du
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Tingting Wang
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-Friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| |
Collapse
|
10
|
Xu L, Wang Y, Sun Z, Chen Z, Zhao G, Kühn FE, Jia WG, Yun R, Zhong R. Recyclable N-Heterocyclic Carbene Porous Coordination Polymers with Two Distinct Metal Sites for Transformation of CO 2 to Cyclic Carbonates. Inorg Chem 2024; 63:1828-1839. [PMID: 38215220 DOI: 10.1021/acs.inorgchem.3c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Single-component catalysts with integrated multiple reactive centers could work in concert to achieve enhanced activity tailored for specific catalytic reactions, but they remain underdeveloped. Herein, we report the construction of heterogeneous bimetallic porous coordination polymers (PCPs) containing both porphyrin and N-heterocyclic carbene (NHC) metal sites via the coordinative assembly of the NHC functionalities. Three heterobimetallic PCPs (TIPP-Zn-Pd, TIPP-Cu-Pd and TIPP-Ni-Pd) have been prepared to verify this facile synthetic strategy for the first time. In order to establish a cooperative action toward the catalytic CO2 cycloaddition with epoxides, an additional tetraalkylammonium bromide functionality has also been incorporated into these polymeric structures through the N-substituent of the NHC moieties. The resulting heterogeneous bimetallic catalyst TIPP-Zn-Pd exhibits the best catalytic performance in CO2 cycloaddition with styrene oxide (SO) under solvent-free conditions at atmospheric pressure and is applicable to a wide range of epoxides. More importantly, TIPP-Zn-Pd works smoothly and is recyclable in the absence of a cocatalyst under 1.0 MPa of CO2 at 60 °C. This indicates that TIPP-Zn-Pd is quite competitive with the reported heterogeneous catalysts, which typically require a high reaction temperature above 100 °C under cocatalyst-free conditions. Thus, this work provides a new approach to design heterogeneous bimetallic PCP catalysts for high-performance CO2 fixation under mild reaction conditions.
Collapse
Affiliation(s)
- Liangsheng Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yu Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Zhenkun Sun
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Zheng Chen
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Guofeng Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Fritz E Kühn
- Catalysis Research Center and Department of Chemistry, Technische Universitat München, Lichtenbergstraβe 4, 85748 Garching bei München, Germany
| | - Wei-Guo Jia
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Ruirui Yun
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Rui Zhong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
11
|
Song JY, Chen X, Wang YM, Luo X, Zhang TE, Ning GH, Li D. Tuning the Catalytic Activity of Covalent Metal-Organic Frameworks for CO 2 Cycloaddition Reactions. Chem Asian J 2023; 18:e202300857. [PMID: 37927167 DOI: 10.1002/asia.202300857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Indexed: 11/07/2023]
Abstract
The development of efficient, recyclable and low-cost heterogeneous catalysts for conversion of carbon dioxide (CO2 ) into epoxides is highly desired, yet remain a challenge. Herein, we have prepared three two-dimensional (2D) copper(I) cyclic trinuclear units (Cu(I)-CTUs) based covalent metal-organic frameworks (CMOFs), namely JNM-13, JNM-14, and JNM-15, via a one-pot reaction by combination of coordination and dynamic covalent chemistry. Among them, JNM-15 contained the highest density of copper catalytic sites, and exhibited the highest capacity for adsorption of CO2 . More interestingly, JNM-15 delivered the highest catalytic activity for cycloaddition of CO2 to epoxides with good yields (up to 99 %), good substrate compatibility (11 examples) and reusability (four catalytic cycles) under mild condition.
Collapse
Affiliation(s)
- Jing-Yi Song
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xu Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yu-Mei Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiao Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tian-E Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
12
|
Zhao X, Qin BB, He T, Wang HP, Liu J. Stable Pyrene-Based Metal-Organic Framework for Cyclization of Propargylic Amines with CO 2 and Detection of Antibiotics in Water. Inorg Chem 2023; 62:18553-18562. [PMID: 37906732 DOI: 10.1021/acs.inorgchem.3c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A pyrene-based metal-organic framework, Cd2(PTTB)(H2O)2 (WYU-11), was synthesized from the tetracarboxylic pyrene ligand H4PTTB (H4PTTB = 1,3,6,8-tetrakis(3-carboxyphenyl)pyrene) and Cd(NO3)2·4H2O. Powder X-ray diffraction analysis discloses that the framework is stable in acid, base, and various organic solvent environments. WYU-11 shows excellent catalytic performance on the cyclization reaction of propargylic amines with CO2 into 2-oxazolidinones under mild conditions (60 °C, atmospheric CO2). 1H NMR studies unveiled that WYU-11 and 1,1,3,3-tetramethylguanidine (TMG) can synergistically activate the propargylic amine substrate and promote the reaction. Importantly, WYU-11 represents a rare example of noble metal-free heterogeneous catalyst that can catalyze the cyclization of CO2 with propargylic amines. In addition, by virtue of the excellent water stability and luminescence properties, WYU-11 shows excellent detection performance for sulfathiazole (STZ) and ornidazole (ODZ) in water. Investigation reveals that the coexistence of photoinduced electron transfer and internal filtering effect could reasonably explain the luminescence quenching of WYU-11 by the antibiotics.
Collapse
Affiliation(s)
- Xin Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| | - Bing-Bing Qin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| | - Tao He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| | - Hai-Ping Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| | - Jiewei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| |
Collapse
|
13
|
Chen Y, Chen L, Li Y, Shen K. Metal-Organic Frameworks as a New Platform to Construct Ordered Mesoporous Ce-Based Oxides for Efficient CO 2 Fixation under Ambient Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303235. [PMID: 37269208 DOI: 10.1002/smll.202303235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Metal-organic frameworks (MOFs) are proved to be good precursors to derive various nanomaterials with desirable functions, but so far the controllable synthesis of ordered mesoporous derivatives from MOFs has not been achieved. Herein, this work reports, for the first time, the construction of MOF-derived ordered mesoporous (OM) derivatives by developing a facile mesopore-inherited pyrolysis-oxidation strategy. This work demonstrates a particularly elegant example of this strategy, which involves the mesopore-inherited pyrolysis of OM-CeMOF into a OM-CeO2 @C composite, followed by the oxidation removal of its residual carbon, affording the corresponding OM-CeO2 . Furthermore, the good tunability of MOFs helps to allodially introduce zirconium into OM-CeO2 to regulate its acid-base property, thus boosting its catalytic activity for CO2 fixation. Impressively, the optimized Zr-doped OM-CeO2 can achieve above 16 times higher catalytic activity than its solid CeO2 counterpart, representing the first metal oxide-based catalyst to realize the complete cycloaddition of epichlorohydrin with CO2 under ambient temperature and pressure. This study not only develops a new MOF-based platform for enriching the family of ordered mesoporous nanomaterials, but also demonstrates an ambient catalytic system for CO2 fixation.
Collapse
Affiliation(s)
- Yimin Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liyu Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
14
|
Liu Y, Zhou X, Zhu W, Chen C, Fan C, Ding L, Wang K. Ce/Zr-MOF with Dual Cycle Synergistic Catalysis Pathway Enabling Enhanced Peroxidase-like Performance for Wearable Hydrogel Patch Visualization Sensing Platform. Inorg Chem 2023; 62:15022-15030. [PMID: 37661907 DOI: 10.1021/acs.inorgchem.3c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Engineering the activity of enzyme-like catalysts should be a top priority to make them superior substitutes for natural enzymes. Herein, a Ce/Zr bimetal-organic framework (Ce/Zr-MOF) was designed and synthesized by a one-pot hydrothermal method, which has enhanced performance in mimicking peroxidase (POD) than its single-metal counterparts. To further comprehend the mechanism of activity enhancement, the role of the bimetallic synergistic catalysis process in H2O2 decomposition and reactive oxygen species formation was elucidated, and the possible dual cycle synergistic catalysis pathway of bimetallic catalysis is proposed for the first time. The enhanced POD-like activity mainly depends on the introduction of Ce, which improved the conductivity and electron-transfer capability of Ce/Zr-MOF and promoted the generation of •OH. Integrated with a hydrogel substrate, a wearable all-solid-state H2O2 sensor for early diagnosis of plant health was produced. The detection limit can be as low as 3.3 μM, which is lower than that of some instrument-based colorimetric methods and has great potential in the development of visualized sensing applications. The concept of dual cycle synergistic catalysis pathway we proposed not only deepens the comprehension regarding sensing and catalytic mechanisms but also provides novel perspectives into the design of enzyme-like catalysts for extensive usage.
Collapse
Affiliation(s)
- Ying Liu
- School of Chemistry and Chemical Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xilong Zhou
- School of Chemistry and Chemical Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weiran Zhu
- School of Chemistry and Chemical Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chen Chen
- School of Chemistry and Chemical Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
15
|
Zhao X, Tang Y, Wang Y, Rong X, Wu P, Li Z, Cai N, Deng X, Wang J. Zirconium metal-organic cage decorated with squaramides imparts dual activation for chemical fixation of CO 2 under mild conditions. Chem Commun (Camb) 2023; 59:10944-10947. [PMID: 37606520 DOI: 10.1039/d3cc02953k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A "two-in-one" dual activation strategy has been developed to give high-density hydrogen-bonding (HB) active units and Lewis acid (LA) active centres by immobilizing squaramides into metal-organic cages (MOCs). The obtained MOC served as an efficient catalyst for the chemical fixation of CO2 under mild conditions up to 99% yields with good recyclability, and the mechanism of high catalytic activity has been further explored.
Collapse
Affiliation(s)
- Xiaoli Zhao
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yue Tang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yuxuan Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Xinjing Rong
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Zihan Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Ning Cai
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Xinyi Deng
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
16
|
Liu H, Li QQ, Zhou L, Deng B, Pan PH, Zhao SY, Liu P, Wang YY, Li JL. Confinement of Organic Dyes in UiO-66-Type Metal-Organic Frameworks for the Enhanced Synthesis of [1,2,5]Thiadiazole[3,4- g]benzoimidazoles. J Am Chem Soc 2023; 145:17588-17596. [PMID: 37454391 DOI: 10.1021/jacs.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Organic dyes as non-noble metal photosensitizers have attracted increasing attention due to their environmental friendliness and sustainability but suffer from fast deactivation and low stability. Here, we reported a fruitful strategy by the confinement and stabilization of visible light-active signal unit organic dyes within the metal-organic frameworks (MOFs) and developed a series of heterogeneous photocatalysts dye@UiO-66s [dye = fluorescein (FL)/rhodamine B (RhB)/eosin Y (EY), UiO-66s = UiO-66, and Bim-UiO-66]. It has been demonstrated that the encapsulated dyes can effectively sensitize MOF hosts and dominate the band structures and photocatalytic activities of dye@UiO-66s regardless of the ligand functionalization of MOFs. Photocatalytic experiments showed that these dye@UiO-66s exhibit enhanced activities relative to free dyes and among them, FL@Bim-UiO-66 displays excellent efficiencies toward the green synthesis of new carbon-bridged annulations, [1,2,5]thiadiazole[3,4-g]benzoimidazoles in the yield of up to 98% at room temperature with outstanding stability and reusability. Furthermore, the intramolecular cyclization intermediate was captured and characterized by the single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Hua Liu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Quan-Quan Li
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, P. R. China
| | - Li Zhou
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Bing Deng
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Peng-Hui Pan
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Shu-Ya Zhao
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Ping Liu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Jian-Li Li
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
17
|
Castells-Gil J, Almora-Barrios N, Lerma-Berlanga B, Padial NM, Martí-Gastaldo C. Chemical complexity for targeted function in heterometallic titanium-organic frameworks. Chem Sci 2023; 14:6826-6840. [PMID: 37389254 PMCID: PMC10306077 DOI: 10.1039/d3sc01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Research on metal-organic frameworks is shifting from the principles that control the assembly, structure, and porosity of these reticular solids, already established, into more sophisticated concepts that embrace chemical complexity as a tool for encoding their function or accessing new properties by exploiting the combination of different components (organic and inorganic) into these networks. The possibility of combining multiple linkers into a given network for multivariate solids with tunable properties dictated by the nature and distribution of the organic connectors across the solid has been well demonstrated. However, the combination of different metals remains still comparatively underexplored due to the difficulties in controlling the nucleation of heterometallic metal-oxo clusters during the assembly of the framework or the post-synthetic incorporation of metals with distinct chemistry. This possibility is even more challenging for titanium-organic frameworks due to the additional difficulties intrinsic to controlling the chemistry of titanium in solution. In this perspective article we provide an overview of the synthesis and advanced characterization of mixed-metal frameworks and emphasize the particularities of those based in titanium with particular focus on the use of additional metals to modify their function by controlling their reactivity in the solid state, tailoring their electronic structure and photocatalytic activity, enabling synergistic catalysis, directing the grafting of small molecules or even unlocking the formation of mixed oxides with stoichiometries not accessible to conventional routes.
Collapse
Affiliation(s)
- Javier Castells-Gil
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Belén Lerma-Berlanga
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Natalia M Padial
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
18
|
Fierro F, Lamparelli DH, Genga A, Cucciniello R, Capacchione C. I-LDH as a heterogeneous bifunctional catalyst for the conversion of CO2 into cyclic organic carbonates. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Karami N, Zarnegaryan A. Fabrication of immobilized molybdenum complex on functionalized graphene oxide as a novel catalyst for the synthesis of benzothiazoles. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
20
|
Erzina M, Guselnikova O, Elashnikov R, Trelin A, Zabelin D, Postnikov P, Siegel J, Zabelina A, Ulbrich P, Kolska Z, Cieslar M, Svorcik V, Lyutakov O. BioMOF coupled with plasmonic CuNPs for sustainable CO2 fixation in cyclic carbonates at ambient conditions. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Bezaatpour A, Amiri M, Vocke H, Bottke P, Zastrau MF, Weers M, Wark M. Low-pressure CO2 fixation with epoxides via a new modified nano crystalline NH2-MIL-101(Cr) in Solvent-free and cocatalyst free condition. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Xu JH, Peng SF, Shi YK, Ding S, Yang GS, Yang YQ, Xu YH, Jiang CJ, Su ZM. A novel zirconium-based metal-organic framework covalently modified by methyl pyridinium bromide for mild and co-catalyst free conversion of CO 2 to cyclic carbonates. Dalton Trans 2023; 52:659-667. [PMID: 36537538 DOI: 10.1039/d2dt03507c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Building metal-organic frameworks (MOFs) covalently modified by onium halides is a promising approach to develop efficient MOF-based heterogeneous catalysts for the cycloaddition of CO2 to epoxides (CCE) into cyclic carbonates. Herein, we report a novel zirconium-based MOF covalently modified by methyl pyridinium bromide, Zr6O4(OH)4(MPTDC)2.2(N-CH3-MPTDC)3.8Br3.8 ((Br-)CH3-Pyridinium-MOF-1), where MPTDC denotes 3-methyl-4-pyridin-4-yl-thieno[2,3-b] thiophene-2,5-dicarboxylate. The structure and composition of this complex were fully characterized with PXRD, NMR, XPS, TEM and so on. CO2 adsorption experiments show that (Br-)CH3-Pyridinium-MOF-1 has a higher affinity for CO2 than its electrically neutral precursor, which should be attributed to the fact that charging frameworks containing pyridinium salt have stronger polarization to CO2. (Br-)CH3-Pyridinium-MOF-1 integrated reactive Lewis acid sites and Br- nucleophilic anions and exhibited efficient catalytic activity for CCE under ambient pressure in the absence of co-catalysts and solvents. Furthermore, (Br-)CH3-Pyridinium-MOF-1 was recycled after five successive cycles without substantial loss in catalytic activity. The corresponding reaction mechanism also was speculated.
Collapse
Affiliation(s)
- Jia-Hui Xu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Shuai-Feng Peng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yu-Kun Shi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Shan Ding
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Guang-Sheng Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yu-Qi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yan-Hong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Chun-Jie Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
23
|
Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Aluminosilicate-Supported Catalysts for the Synthesis of Cyclic Carbonates by Reaction of CO 2 with the Corresponding Epoxides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248883. [PMID: 36558016 PMCID: PMC9782148 DOI: 10.3390/molecules27248883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Functionalized aluminosilicate materials were studied as catalysts for the conversion of different cyclic carbonates to the corresponding epoxides by the addition of CO2. Aluminum was incorporated in the mesostructured SBA-15 silica network. Thereafter, functionalization with imidazolium chloride or magnesium oxide was performed on the Al_SBA-15 supports. The isomorphic substitution of Si with Al and the resulting acidity of the supports were investigated via 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and NH3 adsorption microcalorimetry. The Al content and the amount of MgO were quantified via inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. The anchoring of the imidazolium salt was assessed by 29Si and 13C MAS NMR spectroscopy and quantified by combustion chemical analysis. Textural and structural properties of supports and catalysts were studied by N2 physisorption and X-ray diffraction (XRD). The functionalized systems were then tested as catalysts for the conversion of CO2 and epoxides to cyclic carbonates in a batch reactor at 100 or 125 °C, with an initial CO2 pressure (at room temperature) of 25 bar. Whereas the activity of the MgO/xAl_SBA-15 systems was moderate for the conversion of glycidol to the corresponding cyclic carbonate, the Al_SBA-15-supported imidazolium chloride catalysts gave excellent results over different epoxides (conversion of glycidol, epichlorohydrin, and styrene oxide up to 89%, 78%, and 18%, respectively). Reusability tests were also performed. Even when some deactivation from one run to the other was observed, a comparison with the literature showed the Al-containing imidazolium systems to be promising catalysts. The fully heterogeneous nature of the present catalysts, where the inorganic support on which the imidazolium species are immobilized also contains the Lewis acid sites, gives them a further advantage with respect to most of the catalytic systems reported in the literature so far.
Collapse
|
25
|
Triazole Appended Metal–Organic Framework for CO2 Fixation as Cyclic Carbonates Under Solvent-Free Ambient Conditions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Xu H, Zhang LX, Xing Y, Yin YY, Tang B, Bie LJ. Self-assembled mononuclear complexes: open metal sites and inverse dimension-dependent catalytic activity for the Knoevenagel condensation and CO 2 cycloaddition. NANOSCALE 2022; 14:15897-15907. [PMID: 36268659 DOI: 10.1039/d2nr04103k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To lessen the greenhouse effect, measures such as improving the recovery of crude oil and converting carbon dioxide (CO2) into valuable chemicals are necessary to create a sustainable low-carbon future. To this end, the development of efficient new oil-displacing agents and CO2 conversion has aroused great interest in both academia and industry. The Knoevenagel condensation and CO2 cycloaddition are the key reactions to solve the above problems. Four Cu- or Zn-based molecular complexes built from different ligands possessing hydrophilic-hydrophobic layers and different dimensionalities were chosen as solid catalysts for this study. Structural analysis revealed the presence of hydrophilic-hydrophobic layers and open metal sites in the low-dimensional complexes. To obtain deep insight into the reaction mechanism, first-principles density functional theory (DFT) calculations were carried out. These calculations confirmed that in the Knoevenagel condensation reaction, the final formation of benzylidenemalononitrile is the rate-determining step (an energy barrier (ΔE) value of 73.2 kJ mol-1). The zero-dimensional (0D) Cu molecular complex with unsaturated metal centers, hydrophilic and hydrophobic layers, exhibited higher catalytic activity (yield: 100%, temperature: room temperature, and time: 2 h) compared with one- and two-dimensional Cu complexes. In the presence of a 0D Zn complex co-catalyzed with Br- in the CO2 cycloaddition reaction, the ΔE value reduces to 35.5 kJ mol-1 for the ring opening of styrene oxide (SO), which is significantly lower than Br- catalyzed (80.9 kJ mol-1) reactions. The roles of unsaturated metal centers, hydrophilic-hydrophobic layers and dimensionality in the Knoevenagel condensation and CO2 cycloaddition were explained in the results of structure-activity relationships.
Collapse
Affiliation(s)
- Heng Xu
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Le-Xi Zhang
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Yue Xing
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Yan-Yan Yin
- Department of Environmental Science and Engineering, Nankai University Binhai College, Tianjin 300270, China.
| | - Bo Tang
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Li-Jian Bie
- School of Materials Science and Engineering, Tianjin Key Lab for Photoelectric Materials and Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
27
|
Construction of a dual-cage-based MOF with uncoordinated nitrogen sites for CO2 adsorption and fixation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Wu QJ, Liang J, Huang YB, Cao R. Thermo-, Electro-, and Photocatalytic CO 2 Conversion to Value-Added Products over Porous Metal/Covalent Organic Frameworks. Acc Chem Res 2022; 55:2978-2997. [PMID: 36153952 DOI: 10.1021/acs.accounts.2c00326] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ConspectusThe continuing increase of the concentration of atmospheric CO2 has caused many environmental issues including climate change. Catalytic conversion of CO2 using thermochemical, electrochemical, and photochemical methods is a potential technique to decrease the CO2 concentration and simultaneously obtain value-added chemicals. Due to the high energy barrier of CO2 however, this method is still far from large-scale applications which requires high activity, selectivity, and stability. Therefore, development of efficient catalysts to convert CO2 to different products is urgent. With their well-engineered pores and chemical compositions, high surface area, elevated CO2 adsorption capability, and adjustable active sites, porous crystalline frameworks including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are potential materials for catalytic CO2 conversion. Here, we summarize our recent work on MOFs and COFs for thermocatalytic, electrocatalytic, and photocatalytic CO2 conversion and describe the structure-activity relationships that could guide the design of effective catalysts.The first section of this paper describes imidazolium-functionalized porous MOFs, including porous liquid and cationic MOFs with nucleophilic halogen ions, which can promote thermocatalytically CO2 cycloaddition reaction with epoxides toward cyclic carbonates at one bar pressure. A porous liquid MOF takes on the role of a CO2 reservoir to tackle the low local CO2 concentrations in gas-liquid-solid heterogeneous reactions. Imidazolium-functionalized MOFs with halogen ions for CO2 cycloaddition could avoid the use of cocatalysts, and this leads to milder and more facile experimental conditions and separation processes.In a section dealing with the electrocatalytic CO2 reduction reaction (CO2RR), we developed a series of conductive porous framework materials with fast electron transmission capabilities, which afford high current densities and outperform the traditional MOF and COF catalysts that have been reported. The intrinsically conductive two-dimensional 2D MOFs and COFs nanosheets based on the fully π-conjugated phthalocyanine motif with excellent electron transport capability were prepared, and strong electron transporters were also integrated into metalloporphyrin-based COFs for CO2RR. Cu2O quantum dots and Cu nanoparticles (NPs) can be uniformly dispersed on porous conductive MOFs/COFs to afford synergistic and/or tandem electrocatalysts, which can achieve highly selective production of CH4 or C2H4 in CO2RR.A third section describes our efforts to facilitate electron-hole separation in CO2 photocatalysis. Our focus is on regulation of coordination spheres in MOFs, fabrication of the architecture of MOF heterojunctions, and engineering MOF films to facilitate photocatalytic CO2 reduction.Finally, we discuss several problems associated with the studies of MOFs and COFs for CO2 conversion and consider some prospects of the fabrication of effective porous frameworks for CO2 adsorption and conversion.
Collapse
Affiliation(s)
- Qiu-Jin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.,School of Chemical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, P. R. China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 8 GaoXin Avenue, GaoXin District, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
29
|
Ivko SA, Bailey T, Brammer L, Haynes A. Ionic encapsulation of a methanol carbonylation catalyst in a microporous metal-organic framework. Chem Commun (Camb) 2022; 58:11252-11255. [PMID: 36111597 DOI: 10.1039/d2cc03087j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anionic rhodium complex cis-[Rh(CO)2I2]-, active in the Monsanto process for acetic acid production, has been heterogenised via Coulombic interactions in the pores of a UiO-66-type metal-organic framework (MOF). The MOF-supported catalyst is active for the carbonylation of methanol and is recyclable, retaining its framework crystallinity following catalysis. Intermediates in the catalytic cycle observed by IR spectroscopy confirm the same mechanism as the established homogeneous process.
Collapse
Affiliation(s)
- Samuel A Ivko
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK.,Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
| | - Tom Bailey
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK.,Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
| | - Lee Brammer
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
| | - Anthony Haynes
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
| |
Collapse
|
30
|
Nayak P, Murali AC, Pal PK, Priyakumar UD, Chandrasekhar V, Venkatasubbaiah K. Tetra-Coordinated Boron-Functionalized Phenanthroimidazole-Based Zinc Salen as a Photocatalyst for the Cycloaddition of CO 2 and Epoxides. Inorg Chem 2022; 61:14511-14516. [PMID: 36074754 DOI: 10.1021/acs.inorgchem.2c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique B-N coordinated phenanthroimidazole-based zinc salen was synthesized. The zinc salen thus synthesized acts as a photocatalyst for the cycloaddition of carbon dioxide with terminal epoxides under ambient conditions. DFT study of the cycloaddition of carbon dioxide with terminal epoxide indicates the preference of the reaction pathway when photocatalyzed by zinc salen. We anticipate that this strategy will help to design new photocatalysts for CO2 fixation.
Collapse
Affiliation(s)
- Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhaba National Institute, Bhubaneswar 752050, Odisha, India
| | - Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhaba National Institute, Bhubaneswar 752050, Odisha, India
| | - Pradeep Kumar Pal
- International Institute of Information Technology, Hyderabad 500 032, India
| | - U Deva Priyakumar
- International Institute of Information Technology, Hyderabad 500 032, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500 046, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhaba National Institute, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
31
|
Designing polyoxometalate-based metal-organic framework for oxidation of styrene and cycloaddition of CO2 with epoxides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Wang S, Bai P, Cichocka MO, Cho J, Willhammar T, Wang Y, Yan W, Zou X, Yu J. Two-Dimensional Cationic Aluminoborate as a New Paradigm for Highly Selective and Efficient Cr(VI) Capture from Aqueous Solution. JACS AU 2022; 2:1669-1678. [PMID: 35911457 PMCID: PMC9326818 DOI: 10.1021/jacsau.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water pollutants existing in their oxyanion forms have high solubility and environmental mobility. To capture these anionic pollutants, cost-effective inorganic materials with cationic frameworks and outstanding removal performance are ideal adsorbents. Herein, we report that two-dimensional (2D) cationic aluminoborate BAC(10) sets a new paradigm for highly selective and efficient capture of Cr(VI) and other oxyanions from aqueous solution. The structure of Cr(VI)-exchanged BAC(10) sample (Cr(VI)@BAC(10), H0.22·Al2BO4.3·(HCrO4)0.22·2.64H2O) has been successfully solved by continuous rotation electron diffraction. The crystallographic data show that the 2D cationic layer of BAC(10) is built by AlO6 octahedra, BO4 tetrahedra, and BO3 triangles. Partial chromate ions exchanged with Cl- ions are located within the interlayer region, which are chemically bonded to the aluminoborate layer. BAC(10) shows faster adsorption kinetics compared to the commercial anion exchange resin (AER) and layered double hydroxides (LDHs), a higher maximum adsorption capacity of 139.1 mg/g than that of AER (62.77 mg/g), LDHs (81.43 mg/g), and a vast majority of cationic MOFs, and a much broader working pH range (2-10.5) than LDHs. Moreover, BAC(10) also shows excellent Cr(VI) oxyanion removal performance for a solution with a low concentration (1-10 mg/L), and the residual concentration can be reduced to below 0.05 mg/L of the WHO drinking water criterion. These superior properties indicate that BAC(10) is a promising material for remediation of Cr(VI) and other harmful oxyanions from wastewater.
Collapse
Affiliation(s)
- Shuang Wang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- College
of Chemistry and Chemical Engineering, Henan Province Function-Oriented
Porous Materials Key Laboratory, Luoyang
Normal University, 6
Jiqing Road, Luoyang 471934, P.R. China
| | - Pu Bai
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Magdalena Ola Cichocka
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jung Cho
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Tom Willhammar
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Yunzheng Wang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Wenfu Yan
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaodong Zou
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jihong Yu
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International
Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
| |
Collapse
|
34
|
Zhou L, Liu H, Pan PH, Deng B, Zhao SY, Liu P, Wang YY, Li JL. Development of Cationic Benzimidazole-Containing UiO-66 through Step-by-Step Linker Modification to Enhance the Initial Sorption Rate and Sorption Capacities for Heavy Metal Oxo-Anions. Inorg Chem 2022; 61:11992-12002. [PMID: 35866632 DOI: 10.1021/acs.inorgchem.2c01816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effective and rapid capture of heavy metal oxo-anions from wastewater is a fascinating research topic, but it remains a great challenge. Herein, benzimidazole and -CH3 groups were integrated into UiO-66 in succession via a step-by-step linker modification strategy that was performed by presynthesis modification (to give Bim-UiO-66) and subsequently by postsynthetic ionization (to give Bim-UiO-66-Me). The UiO-66s (UiO-66, Bim-UiO-66, and Bim-UiO-66-Me) were applied in the removal of heavy metal oxo-anions from water. The two benzimidazole derivatives (Bim-UiO-66 and Bim-UiO-66-Me) showed much better performance than UiO-66, as both the initial sorption rate and sorption capacities decreased in the order Bim-UiO-66-Me > Bim-UiO-66 > UiO-66. The maximum performances of Bim-UiO-66 are 5.1 and 1.7 times those of UiO-66. Remarkably, Bim-UiO-66-Me shows 7.5 and 3.0 times better performance than UiO-66. The higher absorptivity of cationic Bim-UiO-66-Me compared with UiO-66 can be attributed to a strong Coulombic interaction as well as an anion-π interaction and hydrogen bonding between the benzimidazolium functional group and heavy metal oxo-anions. The as-synthesized Bim-UiO-66-Me not only provides a promising candidate for application in removal of heavy metal oxo-anions in wastewater treatment but also opens up a new strategy for the design of high-performance adsorbents.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Hua Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Peng-Hui Pan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Bing Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Shu-Ya Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Jian-Li Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
35
|
Zhou X, Li Y, Li X, Du S, Yang Y, Xiong K, Xie Y, Shi X, Gai Y. A Multifunctional Coordination Polymer Constructed by Viologen Derivatives: Photochromism, Chemochromism, and MnO 4– Sensing. Inorg Chem 2022; 61:11687-11694. [DOI: 10.1021/acs.inorgchem.2c01273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xin Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yanger Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xin Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Shengliang Du
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yan Yang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Kecai Xiong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yan Xie
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xinyu Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yanli Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
36
|
Gao W, Wang C, Chen L, Zhu C, Li P, Li J, Liu J, Zhang X. Bifunctional metal‐organic frameworks afforded by postsynthetic modification for efficient cycloaddition of CO
2
and epoxides. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Cui‐Li Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Le Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Cai‐Yong Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Peng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Ji‐Yang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun P.R. China
| | - Jie‐Ping Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Xiu‐Mei Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| |
Collapse
|
37
|
Nguyen QT, Do XH, Cho KY, Lee YR, Baek KY. Amine-functionalized bimetallic Co/Zn-zeolitic imidazolate frameworks as an efficient catalyst for the CO2 cycloaddition to epoxides under mild conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Jiang Y, Li D, Zhao Y, Sun J. Hydrogen bond donor functionalized poly(ionic liquids)@MIL-101 for the CO2 capture and improving the catalytic CO2 conversion with epoxide. J Colloid Interface Sci 2022; 618:22-33. [DOI: 10.1016/j.jcis.2022.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
|
39
|
Zheng H, Fan Y, Song Y, Chen JS, You E, Labalme S, Lin W. Site Isolation in Metal-Organic Layers Enhances Photoredox Gold Catalysis. J Am Chem Soc 2022; 144:10694-10699. [PMID: 35687864 DOI: 10.1021/jacs.2c03062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we report the synthesis of a metal-organic layer, Hf-Ru-Au, containing Ru(bipyridine)32+-type photosensitizers and (phosphine)-AuCl catalysts for photoredox Au-catalyzed cross-coupling of allenoates, alkenes, or alkynes with aryldiazonium salts to afford furanone, tetrahydrofuran, or aryl alkyne derivatives, respectively. Site isolation of (phosphine)-AuCl complexes in Hf-Ru-Au prevents Au catalyst deactivation via ligand redistribution, Au(I) disproportionation, and aryl-phosphine reductive elimination, while the proximity between the Ru photosensitizers and Au catalysts enhances catalytic efficiency, with 14-200 times higher activity over those of the homogeneous controls in the cross-coupling reactions.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yang Song
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Justin S Chen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Eric You
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
40
|
Ma R, Qiao C, Xia L, Xia Z, Yang Q, Xu Y, Xie G, Chen S, Gao S. Dynamic Metal-Iodide Bonds in a Tetracoordinated Cadmium-Based Metal-Organic Framework Boosting Efficient CO 2 Cycloaddition under Solvent- and Cocatalyst-Free Conditions. Inorg Chem 2022; 61:7484-7496. [PMID: 35511935 DOI: 10.1021/acs.inorgchem.2c00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the inherent thermodynamic stability and kinetic inertness of CO2, heterogeneous catalytic conversion of CO2 to cyclic carbonates often requires harsh operating conditions, high temperature and high pressure, and the addition of cocatalysts. Therefore, the development of efficient heterogeneous catalysts under cocatalyst-free and mild conditions for CO2 conversion has always been a challenge. Herein, an infrequent tetracoordinated Cd-MOF was synthesized and used to catalyze CO2 cycloaddition reactions efficiently without the addition of any cocatalyst, and its catalytic mechanism was systematically investigated through a series of experiments, including fluorescence analysis, X-ray photoelectron spectroscopy, microcalorimetry, and density functional theory (DFT) calculation. Cd-MOF features a 3D supermolecule structure with 1D 11.6 × 7.7 Å2 channels, and the abundant Lewis acid/base and I- sites located in the confined channel boost efficient CO2 conversion with a maximum yield of 98.2% and a turnover number value of 1080.11 at 60 °C and 0.5 MPa, far surpassing most pristine MOF-based catalytic systems. A combined experimental and DFT calculation demonstrates that the exposed Cd(II) Lewis acid sites rapidly participate in coordination to activate the epoxides, and the resulting large steric hindrance facilitates leaving of the coordinated iodide ions in a reversibly dynamic fashion convenient for the rate-determining step ring-opening as a strong nucleophile. Such a pristine MOF catalyst with self-independent catalytic ring-opening overcomes the complicated operation limitation of the traditional cocatalyst-free MOF systems based on encapsulating/postmodifying cocatalysts, providing a whole new strategy for the development of simple, green, and efficient heterogeneous catalysts for CO2 cycloaddition.
Collapse
Affiliation(s)
- Ren Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Li Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yifan Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Shengli Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
41
|
Kuruppathparambil RR, Robert TM, Pillai RS, Pillai SKB, Kalamblayil Shankaranarayanan SK, Kim D, Mathew D. Nitrogen-rich dual linker MOF catalyst for room temperature fixation of CO2 via cyclic carbonate synthesis: DFT assisted mechanistic study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Photo-induced Photo-thermal Synergy Effect Leading to Efficient CO2 Cycloaddition with Epoxide over a Fe-Based Metal Organic Framework. J Colloid Interface Sci 2022; 625:33-40. [DOI: 10.1016/j.jcis.2022.05.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
43
|
Guo ZH, Zhang YD, Wang QQ, Wang Y, Zhang PF, Zhang WY, Yang GP, Wang YY. Highly Efficient I 2 Sorption, CO 2 Capture, and Catalytic Conversion by Introducing Nitrogen Donor Sites in a Microporous Co(II)-Based Metal-Organic Framework. Inorg Chem 2022; 61:7005-7016. [PMID: 35477263 DOI: 10.1021/acs.inorgchem.2c00383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, the development of porous absorbents for efficient CO2 and I2 capture has attracted considerable attention because of severe global climate change and environmental issues with the nuclear energy. Hence, a unique porous metal-organic framework (MOF), {[Co(L)]·DMF·2H2O}n (1, DMF = N,N-dimethylformamide) with uncoordinated N atoms was rationally constructed via using a heterofunctional 4,6-bis(4'-carboxyphenyl)pyrimidine (H2L) linker. Interestingly, 1 exhibits exceptional properties for I2 sorption, CO2 capture, and catalytic conversion. Particularly, I2 can be efficiently removed in both vapor and solution forms, and the adsorption amount can reach 676.25 and 345.28 mg g-1, respectively. Furthermore, complex 1 displays high adsorption capacity for CO2 (53.78 cm3 g-1, 273 K). Consequently, 1 is expected to be a promising and practical material for environmental purification due to its excellent adsorption properties.
Collapse
Affiliation(s)
- Zhen-Hua Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yin-Di Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Qian-Qian Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yao Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Peng-Feng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
44
|
Gharib M, Esrafili L, Morsali A, Vande Velde CML, Guo Z, Junk PC. Effective Dual-Functional Metal-Organic Framework (DF-MOF) as a Catalyst for the Solvent-Free Cycloaddition Reaction. Inorg Chem 2022; 61:6725-6732. [PMID: 35477280 DOI: 10.1021/acs.inorgchem.1c03122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new porous metal-organic framework, [Co (oba) (bpdh)]·(DMF) (TMU-63), containing accessible nitrogen-rich diazahexadiene groups was successfully prepared with the solvothermal assembly of 5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (4-bpdh), 4,4'-oxybis(benzoic) acid (oba), and Co(II) ions. The combination of Lewis basic functional groups and porosity leads to high performance in CO2 adsorption and conversion in the cycloaddition reaction of epoxides under solvent-free conditions. To further enhance the catalytic efficiency of TMU-63, we introduced a highly acidic malonamide ligand into the structure via solvent-assisted ligand exchange (SALE) as a postsynthesis method. Incorporating different percentages of N1,N3-di(pyridine-4-yl) malonamide linker (4-dpm) into TMU-63 created a new porous structure. Powder X-ray diffraction (PXRD) and NMR spectroscopy confirmed that 4-bpdh was successfully replaced with 4-dpm in the daughter MOF, TMU-63S. The catalytic activity of both MOFs was confirmed by significant amounts of CO2 cycloaddition of epoxides under solvent-free conditions. The catalytic cycloaddition activities were found to be well-correlated with the Lewis base/Brønsted acid distributions of the materials examined in the TMU-63S series, showing that the concurrent presence of both acid and base sites was desirable for high catalytic activity. Furthermore, the heterogeneous catalysts could easily be separated out from the reaction mixtures and reused four times without loss of catalytic activity and with no structural deterioration.
Collapse
Affiliation(s)
- Maniya Gharib
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14155-4838 Tehran, Iran
| | - Leili Esrafili
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14155-4838 Tehran, Iran.,iPRACS, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14155-4838 Tehran, Iran
| | - Christophe M L Vande Velde
- iPRACS, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Zhifang Guo
- College of Science & Engineering, James Cook University, Townsville, Qld 4811, Australia
| | - Peter C Junk
- College of Science & Engineering, James Cook University, Townsville, Qld 4811, Australia
| |
Collapse
|
45
|
Guo ZH, Zhang PF, Ma LL, Deng YX, Yang GP, Wang YY. Lanthanide-Organic Frameworks with Uncoordinated Lewis Base Sites: Tunable Luminescence, Antibiotic Detection, and Anticounterfeiting. Inorg Chem 2022; 61:6101-6109. [PMID: 35420789 DOI: 10.1021/acs.inorgchem.2c00224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several new isostructural lanthanide metal-organic frameworks (Ln-MOFs), {[Ln2(L)3DMA4]·2DMA}n (1-Ln, where Ln = Eu, Tb, or EuxTb1-x), were first constructed via the solvothermal reactions of 4,6-di(4-carboxyphenyl)pyrimidine and Ln3+ ions. 1-Ln exhibits a 4-connected two-dimensional framework endowed with uncoordinated Lewis base sites. An exploration of luminescence sensing demonstrated 1-Eu can be used for the selectivity detection of dimetridazole and metronidazole antibiotics in other antibiotics, blood plasma, and urine, acting as an exceptional recyclable luminescent probe. More importantly, the luminescent inks of 1-Ln are invisible, color adjustable, and stabilized, which may greatly improve their anticounterfeiting applications.
Collapse
Affiliation(s)
- Zhen-Hua Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Peng-Feng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lu-Lu Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yu-Xin Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
46
|
12-Tungstophosphoric acid-encapsulated metal-organic framework UiO-66: A promising catalyst for the esterification of acetic acid with n-butanol. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Li G, Liu WS, Yang SL, Zhang L, Bu R, Gao EQ. Anion-Afforded Functions of Ionic Metal-Organic Frameworks: Ionochromism, Anion Conduction, and Catalysis. Inorg Chem 2022; 61:902-910. [PMID: 34978189 DOI: 10.1021/acs.inorgchem.1c02741] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exchangeable counterions in ionic metal-organic frameworks (IMOFs) provide facile and versatile handles to manipulate functions associated with the ionic guests themselves and host-guest interactions. However, anion-exchangeable stable IMOFs combining multiple anion-related functions are still undeveloped. In this work, a novel porous IMOF featuring unique self-penetration was constructed from an electron-deficient tris(pyridinium)-tricarboxylate zwitterionic ligand. The water-stable IMOF undergoes reversible and single-crystal-to-single-crystal anion exchange and shows selective and discriminative ionochromic behaviors toward electron-rich anions owing to donor-acceptor interactions. The IMOFs with different anions are good ionic conductors with low activation energy, the highest conductivity being observed with chloride. Furthermore, integrating Lewis acidic sites and nucleophilic guest anions in solid state, the IMOFs act as heterogeneous and recyclable catalysts to efficiently catalyze the cycloaddition of CO2 to epoxides without needing the use of halide cocatalysts. The catalytic activity is strongly dependent upon the guest anions, and the iodide shows the highest activity. The results demonstrate the great potential of developing IMOFs with various functions related to the guest ions included in the porous matrices.
Collapse
Affiliation(s)
- Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wan-Shan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
48
|
Jiang Y, Zhao Y, Liang L, Zhang X, Sun J. Imidazolium-based poly(ionic liquid)s@MIL-101 for CO 2 adsorption and subsequent catalytic cycloaddition without additional cocatalyst and solvent. NEW J CHEM 2022. [DOI: 10.1039/d1nj05358b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ionic liquid)@MIL-101 incorporates an ionic liquid in a MOF and can be used in CO2 capture and conversion.
Collapse
Affiliation(s)
- Yichen Jiang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Yifei Zhao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
49
|
Ye Y, Ge B, Meng X, Liu Y, Wang S, Song X, Liang Z. An yttrium-organic framework based on a hexagonal prism second building unit for luminescent sensing of antibiotics and highly effective CO2 fixation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01352a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An yttrium-organic framework based on a hexagonal prism second building unit was constructed from nonanuclear yttrium(iii) and 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine for the luminescent sensing of antibiotics and highly effective CO2 fixation.
Collapse
Affiliation(s)
- Yu Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bangdi Ge
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xianyu Meng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuchuan Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaowei Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiqiang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
50
|
Liu X, Ding M, Ma P, Yao J. Optimizing the mobility of active species in ionic liquid/MIL-101 composites for boosting carbon dioxide conversion. NEW J CHEM 2022. [DOI: 10.1039/d1nj04914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mobility of active species has been optimized based on ionic liquid/metal–organic framework (MOF) composites for efficient CO2 chemical fixation.
Collapse
Affiliation(s)
- Xi Liu
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Meili Ding
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Pan Ma
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianfeng Yao
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|