1
|
Desai S, Carberry B, Anseth KS, Schultz KM. Cell-Material Interactions in Covalent Adaptable Thioester Hydrogels. ACS Biomater Sci Eng 2024; 10:5701-5713. [PMID: 39171932 DOI: 10.1021/acsbiomaterials.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Covalent adaptable networks (CANs) are polymeric networks with cross-links that can break and reform in response to external stimuli, including pH, shear, and temperature, making them potential materials for use as injectable cell delivery vehicles. In the native niche, cells rearrange the extracellular matrix (ECM) to undergo basic functions including migration, spreading, and proliferation. Bond rearrangement enables these hydrogels to mimic viscoelastic properties of the native ECM which promote migration and delivery from the material to the native tissue. In this work, we characterize thioester CANs to inform their design as effective cell delivery vehicles. Using bulk rheology, we characterize the rearrangement of these networks when they are subjected to strain, which mimics the strain applied by a syringe, and using multiple particle tracking microrheology (MPT) we measure cell-mediated remodeling of the pericellular region. Thioester networks are formed by photopolymerizing 8-arm poly(ethylene glycol) (PEG)-thiol and PEG-thioester norbornene. Bulk rheology measures scaffold properties during low and high strain and demonstrates that thioester scaffolds can recover rheological properties after high strain is applied. We then 3D encapsulated human mesenchymal stem cells (hMSCs) in thioester scaffolds. Using MPT, we characterize degradation in the pericellular region. Encapsulated hMSCs degrade these scaffolds within ≈4 days post-encapsulation. We hypothesize that this degradation is mainly due to cytoskeletal tension that cells apply to the matrix, causing adaptable thioester bonds to rearrange, leading to degradation. To verify this, we inhibited cytoskeletal tension using blebbistatin, a myosin-II inhibitor. Blebbistatin-treated cells can degrade these networks only by secreting enzymes including esterases. Esterases hydrolyze thioester bonds, which generate free thiols, leading to bond exchange. Around treated cells, we measure a decrease in the extent of pericellular degradation. We also compare cell area, eccentricity, and speed of untreated and treated cells. Inhibiting cytoskeletal tension results in significantly smaller cell area, more rounded cells, and lower cell speeds when compared to untreated cells. Overall, this work shows that cytoskeletal tension plays a major role in hMSC-mediated degradation of thioester networks. Cytoskeletal tension is also important for the spreading and motility of hMSCs in these networks. This work informs the design of thioester scaffolds for tissue regeneration and cell delivery.
Collapse
Affiliation(s)
- Shivani Desai
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Benjamin Carberry
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Kelly M Schultz
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Desai S, Carberry BJ, Anseth KS, Schultz KM. Characterizing rheological properties and microstructure of thioester networks during degradation. SOFT MATTER 2023; 19:7429-7442. [PMID: 37743747 PMCID: PMC10714141 DOI: 10.1039/d3sm00864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covalent adaptable networks are designed for applications including cell and drug delivery and tissue regeneration. These applications require network degradation at physiological conditions and on a physiological timescale with microstructures that can: (1) support, protect and deliver encapsulated cells or molecules and (2) provide structure to surrounding tissue. Due to this, the evolving microstructure and rheological properties during scaffold degradation must be characterized. In this work, we characterize degradation of covalent adaptable poly(ethylene glycol) (PEG)-thioester networks with different amounts of excess thiol. Networks are formed between PEG-thiol and PEG-thioester norbornene using photopolymerization. These networks are adaptable because of a thioester exchange reaction that takes place in the presence of excess thiol. We measure degradation of PEG-thioester networks with L-cysteine using multiple particle tracking microrheology (MPT). MPT measures the Brownian motion of fluorescent probe particles embedded in a material and relates this motion to rheological properties. Using time-cure superposition (TCS), we characterize the microstructure of these networks at the gel-sol phase transition by calculating the critical relaxation exponent, n, for each network with different amounts of excess thiol. Based on the measured n values, networks formed with 0% and 50% excess thiol are tightly cross-linked and elastic in nature. While networks formed with 100% excess are similar to ideal, percolated networks, which have equal viscous and elastic components. MPT measurements during degradation of these networks also measure a non-monotonic increase in probe motility. We hypothesize that this is network rearrangement near the phase transition. We then measure macroscopic material properties including the equilibrium modulus and stress relaxation. We measure a trend in bulk network properties that agrees with the values of n. Elastic modulus and stress relaxation measurements show that networks with 50% excess thiol are more elastic compared to the other two networks. As the amount of excess thiol is increased from 0% to 50%, the networks become more elastic. Further increasing excess thiol to 100% reduces the elastically effective cross-links. We hypothesize that these properties are due to network non-idealities, resulting in networks with 50% excess thiol that are more elastic. This work characterizes dynamic rheological properties during degradation, which mimics processes that could occur during implantation. This work provides information that can be used in the future design of implantable materials enabling both the rheological properties and timescale of degradation to be specified.
Collapse
Affiliation(s)
- Shivani Desai
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton St, Bethlehem, PA, 18015, USA.
| | - Benjamin J Carberry
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton St, Bethlehem, PA, 18015, USA.
| |
Collapse
|
3
|
He S, Afshang M, Caggioni M, Lindberg S, Schultz KM. Characterizing Phase Transitions of Microfibrillated Cellulose Induced by Anionic and Cationic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12346-12356. [PMID: 37616521 PMCID: PMC10483922 DOI: 10.1021/acs.langmuir.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Rheological modifiers are used to tune rheology or induce phase transitions of products. Microfibrillated cellulose (MFC), a renewable material, has the potential to be used for rheological modification. However, the lack of studies on the evolution in rheological properties and structure during its phase transitions has prevented MFC from being added to consumer, fabric, and home care products. In this work, we characterize surface-oxidized MFC (OMFC), a negatively charged colloidal rod suspension. We measure the rheological properties and structure of OMFC during sol-gel phase transitions induced by either anionic or cationic surfactant using multiple particle tracking microrheology (MPT). MPT tracks the Brownian motion of fluorescent probe particles embedded in a sample, which is related to the sample's rheological properties. Using MPT, we measure that OMFC gelation evolution is dependent on the charge of the surfactant that induces the phase transition. OMFC gelation is gradual in anionic surfactant. In cationic surfactant, gelation is rapid followed by length scale-dependent colloidal fiber rearrangement. Initial OMFC concentration is directly related to how tightly associated the network is at the phase transition, with an increase in concentration resulting in a more tightly associated network with smaller pores. Bulk rheology measures that OMFC forms a stiffer structure but yields at lower strains in cationic surfactant than in anionic surfactant. This study characterizes the role of surfactant in inducing phase transitions, which can be used as a guide for designing future products.
Collapse
Affiliation(s)
- Shiqin He
- Chemical
and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Mehrnoosh Afshang
- Chemical
and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Marco Caggioni
- Process
and Engineering Development, Procter &
Gamble Co., West Chester, Ohio 45069, United States
| | - Seth Lindberg
- Process
and Engineering Development, Procter &
Gamble Co., West Chester, Ohio 45069, United States
| | - Kelly M. Schultz
- Chemical
and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Usuelli M, Ruzzi V, Buzzaccaro S, Nyström G, Piazza R, Mezzenga R. Unraveling gelation kinetics, arrested dynamics and relaxation phenomena in filamentous colloids by photon correlation imaging. SOFT MATTER 2022; 18:5632-5644. [PMID: 35861104 DOI: 10.1039/d1sm01578h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental understanding of the gelation kinetics, stress relaxation and temporal evolution in colloidal filamentous gels is central to many aspects of soft and biological matter, yet a complete description of the inherent complex dynamics of these systems is still missing. By means of photon correlation imaging (PCI), we studied the gelation of amyloid fibril solutions, chosen as a model filamentous colloid with immediate significance to biology and nanotechnology, upon passage of ions through a semi-permeable membrane. We observed a linear-in-time evolution of the gelation front and rich rearrangement dynamics of the gels, the magnitude and the spatial propagation of which depend on how effectively electrostatic interactions are screened by different ionic strengths. Our analysis confirms the pivotal role of salt concentration in tuning the properties of amyloid gels, and suggests potential routes for explaining the physical mechanisms behind the linear advance of the salt ions.
Collapse
Affiliation(s)
- Mattia Usuelli
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Vincenzo Ruzzi
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Gustav Nyström
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- EMPA, Laboratory for Cellulose & Wood Materials, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Raffaele Mezzenga
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- ETH Zürich, Department of Materials, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
He S, Caggioni M, Lindberg S, Schultz KM. Gelation phase diagrams of colloidal rod systems measured over a large composition space. RSC Adv 2022; 12:12902-12912. [PMID: 35496333 PMCID: PMC9044831 DOI: 10.1039/d2ra00609j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Rheological modifiers tune product rheology with a small amount of material. To effectively use rheological modifiers, characterizing the rheology of the system at different compositions is crucial. Two colloidal rod system, hydrogenated castor oil and polyamide, are characterized in a formulation that includes a surfactant (linear alkylbenzene sulfonate) and a depletant (polyethylene oxide). We characterize both rod systems using multiple particle tracking microrheology (MPT) and bulk rheology and build phase diagrams over a large component composition space. In MPT, fluorescent particles are embedded in the sample and their Brownian motion is measured and related to rheological properties. From MPT, we determine that in both systems: (1) microstructure is not changed with increasing colloid concentration, (2) materials undergo a sol–gel transition as depletant concentration increases and (3) the microstructure changes but does not undergo a phase transition as surfactant concentration increases in the absence of depletant. When comparing MPT and bulk rheology results different trends are measured. Using bulk rheology we observe: (1) elasticity of both systems increase as colloid concentration increases and (2) the storage modulus does not change when PEO or LAS concentration is increased. The differences measured with MPT and bulk rheology are likely due to differences in sensitivity and measurement method. This work shows the utility of using both techniques together to fully characterize rheological properties over a large composition space. These gelation phase diagrams will provide a guide to determine the composition needed for desired rheological properties and eliminate trial-and-error experiments during product formulation. Colloidal rod systems used as rheological modifiers are characterized over a large composition space with microrheology and bulk rheology. Phase diagrams are built that enable identification of compositions with desired properties eliminating trial-and-error experiments.![]()
Collapse
Affiliation(s)
- Shiqin He
- Department of Chemical and Biomolecular Engineering, Lehigh University Bethlehem PA USA +1-610-758-5057 +1-610-758-2012
| | - Marco Caggioni
- Process and Engineering Development, Procter & Gamble Co. West Chester OH USA
| | - Seth Lindberg
- Process and Engineering Development, Procter & Gamble Co. West Chester OH USA
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University Bethlehem PA USA +1-610-758-5057 +1-610-758-2012
| |
Collapse
|
6
|
Daviran M, McGlynn JA, Catalano JA, Knudsen HE, Druggan KJ, Croland KJ, Stratton A, Schultz KM. Measuring the Effects of Cytokines on the Modification of Pericellular Rheology by Human Mesenchymal Stem Cells. ACS Biomater Sci Eng 2021; 7:5762-5774. [PMID: 34752080 DOI: 10.1021/acsbiomaterials.1c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Implantable hydrogels are designed to treat wounds by providing structure and delivering additional cells to damaged tissue. These materials must consider how aspects of the native wound, including environmental chemical cues, affect and instruct delivered cells. One cell type researchers are interested in delivering are human mesenchymal stem cells (hMSCs) due to their importance in healing. Wound healing involves recruiting and coordinating a variety of cells to resolve a wound. hMSCs coordinate the cellular response and are signaled to the wound by cytokines, including transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α), present in vivo. These cytokines change hMSC secretions, regulating material remodeling. TGF-β, present from inflammation through remodeling, directs hMSCs to reorganize collagen, increasing extracellular matrix (ECM) structure. TNF-α, present primarily during inflammation, cues hMSCs to clear debris and degrade ECM. Because cytokines change how hMSCs degrade their microenvironment and are naturally present in the wound, they also affect how hMSCs migrate out of the scaffold to conduct healing. Therefore, the effects of cytokines on hMSC remodeling are important when designing materials for cell delivery. In this work, we encapsulate hMSCs in a polymer-peptide hydrogel and incubate the scaffolds in media with TGF-β or TNF-α at concentrations similar to those in wounds. Multiple particle tracking microrheology (MPT) measures hMSC-mediated scaffold degradation in response to these cytokines, which mimics aspects of the in vivo microenvironment post-implantation. MPT uses video microscopy to measure Brownian motion of particles in a material, quantifying structure and rheology. Using MPT, we measure increased hMSC-mediated remodeling when cells are exposed to TNF-α and decreased remodeling after exposure to TGF-β when compared to untreated hMSCs. This agrees with previous studies that measure: (1) TNF-α encourages matrix reorganization and (2) TGF-β signals the formation of new matrix. These results enable material design that anticipates changes in remodeling after implantation, improving control over hMSC delivery and healing.
Collapse
Affiliation(s)
- Maryam Daviran
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - John A McGlynn
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Jenna A Catalano
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Hannah E Knudsen
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Kilian J Druggan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Kiera J Croland
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Amanda Stratton
- Department of Bioengineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
7
|
Wu N, Schultz KM. Correlation of Bulk Degradation and Molecular Release from Enzymatically Degradable Polymeric Hydrogels. Biomacromolecules 2021; 22:4489-4500. [PMID: 34516089 DOI: 10.1021/acs.biomac.1c00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we establish a quantitative correlation between molecular release and material degradation. We characterize a radical-initiated photopolymerized hydrogel and base-initiated Michael addition-polymerized hydrogel, which form gels through distinct crosslinking reactions. Both scaffolds use the same degradable peptide crosslinker, which enables them to be degraded through the same enzymatic degradation reaction. A fluorescently labeled poly(ethylene glycol) molecule is chemically conjugated into the scaffold and is released during enzymatic degradation. Real-time changes in scaffold rheological properties during degradation are measured using bulk rheology. Molecular release is measured by quantifying the change in fluorescence in the incubation liquid and the hydrogel scaffold. A complicating factor, previously described in the literature, is that shear may cause increased crosslinking, resulting in an increase in the storage modulus after initiation of degradation, which changes release profiles by limiting the initial release of molecules. Therefore, we also test the hypothesis that shear induces additional crosslinking in degrading hydrogel scaffolds. To determine whether shear changes rheological properties during scaffold degradation, enzymatic degradation is characterized using bulk rheology as materials undergo continuous or minimal shear. To determine the effect of shear on molecular release, shear is induced by shaking the material during incubation. Release is characterized from scaffolds that are incubated with continuous or without shaking. We determine that shear does not make a difference in scaffold degradation or release regardless of the gelation reaction. Instead, we determine that the type of hydrogel crosslinking reaction greatly affects both material degradation and molecular release. A hydrogel crosslinking by base-initiated Michael addition does undergo further crosslinking at the start of degradation. We correlate release with enzymatic degradation for both scaffolds. We determine that the material storage modulus is indirectly correlated with release during degradation. These results indicate that rheological characterization is a useful tool to characterize and predict the release of molecules from degrading hydrogels.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
8
|
He S, Pascucci DR, Caggioni M, Lindberg S, Schultz KM. Rheological properties of phase transitions in polydisperse and monodisperse colloidal rod systems. AIChE J 2021. [DOI: 10.1002/aic.17401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shiqin He
- Chemical and Biomolecular Engineering Lehigh University Bethlehem Pennsylvania USA
| | - Dominic R. Pascucci
- Chemical and Biomolecular Engineering Lehigh University Bethlehem Pennsylvania USA
| | - Marco Caggioni
- Process and Engineering Development Procter & Gamble Co West Chester Ohio USA
| | - Seth Lindberg
- Process and Engineering Development Procter & Gamble Co West Chester Ohio USA
| | - Kelly M. Schultz
- Chemical and Biomolecular Engineering Lehigh University Bethlehem Pennsylvania USA
| |
Collapse
|
9
|
Dai Y, Zhang R, Sun W, Wang T, Chen Y, Tong Z. Dynamical heterogeneity in the gelation process of a polymer solution with a lower critical solution temperature. SOFT MATTER 2021; 17:3222-3233. [PMID: 33624665 DOI: 10.1039/d0sm02159h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The gelation of a hydrophobically modified hyaluronic acid aqueous solution which shows a lower critical solution temperature of about 25 °C was investigated by multi-particle tracking microrheology. The linear viscoelasticity of the gelling system is converted from the microrheological data. The critical gelling temperature Tgel = 36.3 °C was determined from the loss tangent by the Winter-Chambon criterion. The critical exponent n = 0.62 was determined from the shift factors of the time-cure superposition. The length scales of the dynamic heterogeneity of the gelling system were analyzed using a proposed framework where single-particle and multi-particle non-Gaussian parameters were compared. The length scale of the dynamic heterogeneous regions monotonically decreases during the gelation process, consistent with the nucleation-and-growth mechanism of phase separation. Distributions of local viscosity in the gelling system were extracted from the observed distributions of particle displacement as a time-dependent fingerprint of the dynamic heterogeneity of the gelling system. The results and analyzing methods proposed in the present work can be applied to other microrheological studies.
Collapse
Affiliation(s)
- Yingkang Dai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
10
|
McGlynn JA, Druggan KJ, Croland KJ, Schultz KM. Human mesenchymal stem cell-engineered length scale dependent rheology of the pericellular region measured with bi-disperse multiple particle tracking microrheology. Acta Biomater 2021; 121:405-417. [PMID: 33278674 DOI: 10.1016/j.actbio.2020.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023]
Abstract
Biological materials have length scale dependent structure enabling complex cell-material interactions and driving cellular processes. Synthetic biomaterials are designed to mimic aspects of these biological materials for applications including enhancing cell delivery during wound healing. To mimic native microenvironments, we must understand how cells manipulate their surroundings over several length scales. Our work characterizes length scale dependent rheology in a well-established 3D cell culture platform for human mesenchymal stem cells (hMSCs). hMSCs re-engineer their microenvironment through matrix metalloproteinase (MMP) secretions and cytoskeletal tension. Remodeling occurs across length scales: MMPs degrade cross-links on nanometer scales resulting in micrometer-sized paths that hMSCs migrate through, eventually resulting in bulk scaffold degradation. We use multiple particle tracking microrheology (MPT) and bi-disperse MPT to characterize hMSC-mediated length scale dependent pericellular remodeling. MPT measures particle Brownian motion to calculate rheological properties. We use MPT to measure larger length scales with 4.5 µm particles. Bi-disperse MPT simultaneously measures two different length scales (0.5 and 2.0 µm). We measure that hMSCs preferentially remodel larger length scales measured as a higher mobility of larger particles. We inhibit cytoskeletal tension by inhibiting myosin-II and no longer measure this difference in particle mobility. This indicates that cytoskeletal tension is the source of cell-mediated length scale dependent rheological changes. Particle mobility correlates with cell speed across length scales, relating material rheology to cell behavior. These results quantify length scale dependent pericellular remodeling and provide insight into how these microenvironments can be designed into materials to direct cell behavior.
Collapse
Affiliation(s)
- John A McGlynn
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kilian J Druggan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kiera J Croland
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA.
| |
Collapse
|
11
|
Daviran M, Catalano J, Schultz KM. Determining How Human Mesenchymal Stem Cells Change Their Degradation Strategy in Response to Microenvironmental Stiffness. Biomacromolecules 2020; 21:3056-3068. [PMID: 32559386 PMCID: PMC7429327 DOI: 10.1021/acs.biomac.0c00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During the wound healing process, human mesenchymal stem cells (hMSCs) are recruited to the injury where they regulate inflammation and initiate healing and tissue regeneration. To aid in healing, synthetic cell-laden hydrogel scaffolds are being designed to deliver additional hMSCs to wounds to enhance or restart the healing process. These scaffolds are being designed to mimic native tissue environments, which include physical cues, such as scaffold stiffness. In this work, we focus on how the initial scaffold stiffness hMSCs are encapsulated in changes cell-mediated remodeling and degradation and motility. To do this, we encapsulate hMSCs in a well-defined synthetic hydrogel scaffold that recapitulates aspects of the native extracellular matrix (ECM). We then characterize cell-mediated degradation in the pericellular region as a function of initial microenvironmental stiffness. Our hydrogel consists of a 4-arm poly(ethylene glycol) (PEG) end-functionalized with norbornene which is chemically cross-linked with a matrix metalloproteinase (MMP) degradable peptide sequence. This peptide sequence is cleaved by hMSC-secreted MMPs. The hydrogel elastic modulus is varied from 80 to 2400 Pa by changing the concentration of the peptide cross-linker. We use multiple particle tracking microrheology (MPT) to characterize the spatiotemporal cell-mediated degradation in the pericellular region. In MPT, fluorescently labeled particles are embedded in the material, and their Brownian motion is measured. We measure an increase in cell-mediated degradation and remodeling as the post-encapsulation time increases. MPT also measures changes in the degradation profile in the pericellular region as hydrogel stiffness is increased. We hypothesize that the change in the degradation profile is due to a change in the amount and type of molecules secreted by hMSCs. We also measure a significant decrease in cell speed as hydrogel stiffness increases due to the increased physical barrier that needs to be degraded to enable motility. These measurements increase our understanding of the rheological changes in the pericellular region in different physical microenvironments which could lead to better design of implantable biomaterials for cell delivery to wounded areas.
Collapse
Affiliation(s)
- Maryam Daviran
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jenna Catalano
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
12
|
Park J, Bailey EJ, Composto RJ, Winey KI. Single-Particle Tracking of Nonsticky and Sticky Nanoparticles in Polymer Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric J. Bailey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Daviran M, Schultz KM. Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds. RHEOLOGICA ACTA 2019; 58:421-437. [PMID: 32773889 PMCID: PMC7413226 DOI: 10.1007/s00397-019-01142-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/21/2019] [Accepted: 03/07/2019] [Indexed: 05/12/2023]
Abstract
During wound healing, human mesenchymal stem cells (hMSCs) migrate to injuries to regulate inflammation and coordinate tissue regeneration. To enable migration, hMSCs re-engineer the extracellular matrix rheology. Our work determines the correlation between cell engineered rheology and motility. We encapsulate hMSCs in a cell-degradable peptide-polymeric hydrogel and characterize the change in rheological properties in the pericellular region using multiple particle tracking microrheology. Previous studies determined that pericellular rheology is correlated with motility. Additionally, hMSCs re-engineer their microenvironment by regulating cell-secreted enzyme, matrix metallopro-teinases (MMPs), activity by also secreting their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). We independently inhibit TIMPs and measure two different degradation profiles, reaction-diffusion and reverse reaction-diffusion. These profiles are correlated with cell spreading, speed and motility type. We model scaffold degradation using Michaelis-Menten kinetics, finding a decrease in kinetics between joint and independent TIMP inhibition. hMSCs ability to regulate microenvironmental remodeling and motility could be exploited in design of new materials that deliver hMSCs to wounds to enhance healing.
Collapse
Affiliation(s)
- Maryam Daviran
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA
| |
Collapse
|
14
|
Wu N, Schultz KM. Microrheological characterization of covalent adaptable hydrogels for applications in oral delivery. SOFT MATTER 2019; 15:5921-5932. [PMID: 31282533 PMCID: PMC6677256 DOI: 10.1039/c9sm00714h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The feasibility of a covalent adaptable hydrogel (CAH) as an oral delivery platform is explored using μ2rheology, microrheology in a microfluidic device. CAH degradation is initiated by physiologically relevant pHs, including incubation at a single pH and consecutively at different pHs. At a single pH, we determine CAH degradation can be tuned by changing the pH, which can be exploited for controlled release. We calculate the critical relaxation exponent, which defines the gel-sol transition and is independent of the degradation pH. We mimic the changing pH environment through part of the gastrointestinal tract (pH 4.3 to 7.4 or pH 7.4 to 4.3) in our microfluidic device. We determine that dynamic material property evolution is consistent with degradation at a single pH. However, the time scale of degradation is reduced by the history of degradation. These investigations inform the design of this material as a new vehicle for targeted delivery.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr, Iacocca Hall, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
15
|
Zhang H, Wehrman MD, Schultz KM. Structural Changes in Polymeric Gel Scaffolds Around the Overlap Concentration. Front Chem 2019; 7:317. [PMID: 31134188 PMCID: PMC6517517 DOI: 10.3389/fchem.2019.00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Cross-linked polymeric gels are an important class of materials with applications that broadly range from synthetic wound healing scaffolds to materials used in enhanced oil recovery. To effectively design these materials for each unique applications a deeper understanding of the structure and rheological properties as a function of polymeric interactions is required. Increasing the concentration of polymer in each scaffold increases physical interactions between the molecules that can be reflected in the material structure. To characterize the structure and material properties, we use multiple particle tracking microrheology (MPT) to measure scaffolds during gelation. In MPT, fluorescently labeled probe particles are embedded in the material and the Brownian motion of these particles is captured using video microscopy. Particle motion is related to rheological properties using the Generalized Stokes-Einstein Relation. In this work, we characterize gelation of a photopolymerized scaffold composed of a poly(ethylene glycol) (PEG)-acrylate backbone and a PEG-dithiol cross-linker. Scaffolds with backbone concentrations below and above the overlap concentration, concentration where polymer pervaded volume begins to overlap, are characterized. Using time-cure superposition (TCS) we determine the critical relaxation exponent, n, of each scaffold. The critical relaxation exponent is a quantitative measure of the scaffold structure and is similar to a complex modulus, G*, which is a measure of energy storage and dissipation. Our results show that below the overlap concentration the scaffold is a tightly cross-linked network, navg = 0.40 ± 0.03, which stores energy but can also dissipate energy. As polymeric interactions increase, we measure a step change in the critical relaxation exponent above the overlap concentration to navg = 0.20 ± 0.03. After the overlap concentration the scaffold has transitioned to a more tightly cross-linked network that primarily stores energy. Additionally, continuing to increase concentration results in no change in the scaffold structure. Therefore, we determined that the properties of this scaffold can be tuned above and below the overlap concentration by changing the polymer concentration but the structure will remain the same in each concentration regime. This is advantageous for a wide range of applications that require scaffolds with varying stiffness and the same scaffold architecture.
Collapse
Affiliation(s)
- Han Zhang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, United States
| | - Matthew D Wehrman
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
16
|
Gurmessa BJ, Bitten N, Nguyen DT, Saleh OA, Ross JL, Das M, Robertson-Anderson RM. Triggered disassembly and reassembly of actin networks induces rigidity phase transitions. SOFT MATTER 2019; 15:1335-1344. [PMID: 30543255 PMCID: PMC6486790 DOI: 10.1039/c8sm01912f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Non-equilibrium soft materials, such as networks of actin proteins, have been intensely investigated over the past decade due to their promise for designing smart materials and understanding cell mechanics. However, current methods are unable to measure the time-dependent mechanics of such systems or map mechanics to the corresponding dynamic macromolecular properties. Here, we present an experimental approach that combines time-resolved optical tweezers microrheology with diffusion-controlled microfluidics to measure the time-evolution of microscale mechanical properties of dynamic systems during triggered activity. We use these methods to measure the viscoelastic moduli of entangled and crosslinked actin networks during chemically-triggered depolymerization and repolymerization of actin filaments. During disassembly, we find that the moduli exhibit two distinct exponential decays, with experimental time constants of ∼169 min and ∼47 min. Conversely, during reassembly, measured moduli initially exhibit power-law increase with time, after which steady-state values are achieved. We develop toy mathematical models that couple the time-evolution of filament lengths with rigidity percolation theory to shed light onto the molecular mechanisms underlying the observed mechanical transitions. The models suggest that these two distinct behaviors both arise from phase transitions between a rigidly percolated network and a non-rigid regime. Our approach and collective results can inform the general principles underlying the mechanics of a large class of dynamic, non-equilibrium systems and materials of current interest.
Collapse
Affiliation(s)
- Bekele J Gurmessa
- Department of Physics and Biophysics, University of San Diego, San Diego, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wehrman MD, Lindberg S, Schultz KM. Multiple particle tracking microrheology measured using bi-disperse probe diameters. SOFT MATTER 2018; 14:5811-5820. [PMID: 29974108 DOI: 10.1039/c8sm01098f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multiple particle tracking microrheology (MPT) is a powerful tool for quantitatively characterizing rheological properties of soft matter. Traditionally, MPT uses a single particle size to characterize rheological properties. But in complex systems, MPT measurements with a single size particle can characterize distinct properties that are linked to the materials' length scale dependent structure. By varying the size of probes, MPT can measure the properties associated with different length scales within a material. We develop a technique to simultaneously track a bi-disperse population of probe particles. 0.5 and 2 μm particles are embedded in the same sample and these particle populations are tracked separately using a brightness-based squared radius of gyration, Rg2. Bi-disperse MPT is validated by measuring the viscosity of glycerol samples at varying concentrations. Bi-disperse MPT measurements agree well with literature values. This technique then characterizes a homogeneous poly(ethylene glycol)-acrylate:poly(ethylene glycol)-dithiol gelation. The critical relaxation exponent and critical gelation time are consistent and agree with previous measurements using a single particle. Finally, degradation of a heterogeneous hydrogenated castor oil colloidal gel is characterized. The two particle sizes measure a different value of the critical relaxation exponent, indicating that they are probing different structures. Analysis of material heterogeneity shows measured heterogeneity is dependent on probe size indicating that each particle is measuring rheological evolution of a length scale dependent structure. Overall, bi-disperse MPT increases the amount of information gained in a single measurement, enabling more complete characterization of complex systems that range from consumer care products to biological materials.
Collapse
Affiliation(s)
- Matthew D Wehrman
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA.
| | | | | |
Collapse
|
18
|
Microrheology, advances in methods and insights. Adv Colloid Interface Sci 2018; 257:71-85. [PMID: 29859615 DOI: 10.1016/j.cis.2018.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/23/2018] [Accepted: 04/14/2018] [Indexed: 01/19/2023]
Abstract
Microrheology is an emerging technique that probes mechanical response of soft material at micro-scale. Generally, microrheology technique can be divided into active and passive versions. During last two decades, extensive efforts have been paid to improve both the experiment techniques and data analysis methods, especially about how to link consequential particle positions into trajectories. We review the recent advances in microrheology, including improvements in labeling, imaging, data acquiring, data processing and data interpretation. Some of the recent insights in soft matter and living systems gained by using this technique are given. Before these, we also give a very brief description of the basic principles of both active and passive microrheology techniques, and some details about optical particle tracking and DWS.
Collapse
|
19
|
Daviran M, Longwill SM, Casella JF, Schultz KM. Rheological characterization of dynamic remodeling of the pericellular region by human mesenchymal stem cell-secreted enzymes in well-defined synthetic hydrogel scaffolds. SOFT MATTER 2018; 14:3078-3089. [PMID: 29667686 PMCID: PMC5928794 DOI: 10.1039/c8sm00408k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human mesenchymal stem cells (hMSCs) dynamically remodel their microenvironment during basic processes, such as migration and differentiation. Migration requires extracellular matrix invasion, necessitating dynamic cell-material interactions. Understanding these interactions is critical to advancing materials designs that harness and manipulate these processes for applications including wound healing and tissue regeneration. In this work, we encapsulate hMSCs in a cell-degradable poly(ethylene glycol)-peptide hydrogel to determine how cell-secreted enzymes, specifically matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), create unique pericellular microenvironments. Using multiple particle tracking microrheology (MPT), we characterize spatio-temporal rheological properties in the pericellular region during cell-mediated remodeling. In MPT, the thermal motion of probes embedded in the network is measured. A newly designed sample chamber that limits probe drift during degradation and minimizes high value antibody volumes required for cell treatments enables MPT characterization. Previous MPT measurements around hMSCs show that directly around the cell the scaffold remains intact with the cross-link density decreasing as distance from the cell increases. This degradation profile suggests that hMSCs are simultaneously secreting TIMPs, which are inactivating MMPs through MMP-TIMP complexes. By neutralizing TIMPs using antibodies, we characterize the changes in matrix degradation. TIMP inhibited hMSCs create a reaction-diffusion type degradation profile where MMPs are actively degrading the matrix immediately after secretion. In this profile, the cross-link density increases with increasing distance from the cell. This change in material properties also increases the speed of migration. This simple treatment could increase delivery of hMSCs to injuries to aid wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Maryam Daviran
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA.
| | | | | | | |
Collapse
|
20
|
Wehrman MD, Milstrey MJ, Lindberg S, Schultz KM. Combining Microfluidics and Microrheology to Determine Rheological Properties of Soft Matter during Repeated Phase Transitions. J Vis Exp 2018. [PMID: 29733318 DOI: 10.3791/57429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The microstructure of soft matter directly impacts macroscopic rheological properties and can be changed by factors including colloidal rearrangement during previous phase changes and applied shear. To determine the extent of these changes, we have developed a microfluidic device that enables repeated phase transitions induced by exchange of the surrounding fluid and microrheological characterization while limiting shear on the sample. This technique is µ2rheology, the combination of microfluidics and microrheology. The microfluidic device is a two-layer design with symmetric inlet streams entering a sample chamber that traps the gel sample in place during fluid exchange. Suction can be applied far away from the sample chamber to pull fluids into the sample chamber. Material rheological properties are characterized using multiple particle tracking microrheology (MPT). In MPT, fluorescent probe particles are embedded into the material and the Brownian motion of the probes is recorded using video microscopy. The movement of the particles is tracked and the mean-squared displacement (MSD) is calculated. The MSD is related to macroscopic rheological properties, using the Generalized Stokes-Einstein Relation. The phase of the material is identified by comparison to the critical relaxation exponent, determined using time-cure superposition. Measurements of a fibrous colloidal gel illustrate the utility of the technique. This gel has a delicate structure that can be irreversibly changed when shear is applied. µ2rheology data shows that the material repeatedly equilibrates to the same rheological properties after each phase transition, indicating that phase transitions do not play a role in microstructural changes. To determine the role of shear, samples can be sheared prior to injection into our microfluidic device. µ2rheology is a widely applicable technique for the characterization of soft matter enabling the determination of rheological properties of delicate microstructures in a single sample during phase transitions in response to repeated changes in the surrounding environmental conditions.
Collapse
Affiliation(s)
- Matthew D Wehrman
- Department of Chemical and Biomolecular Engineering, Lehigh University
| | | | - Seth Lindberg
- Process and Engineering Development, Procter & Gamble Co
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University;
| |
Collapse
|
21
|
Wehrman MD, Leduc A, Callahan HE, Mazzeo MS, Schumm M, Schultz KM. Rheological properties and structure of step- and chain-growth gels concentrated above the overlap concentration. AIChE J 2018. [DOI: 10.1002/aic.16062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Matthew D. Wehrman
- Dept. of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem PA 18015
| | - Andrew Leduc
- Dept. of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem PA 18015
| | - Holly E. Callahan
- Dept. of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem PA 18015
| | - Michelle S. Mazzeo
- Dept. of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem PA 18015
| | - Mark Schumm
- Dept. of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem PA 18015
| | - Kelly M. Schultz
- Dept. of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem PA 18015
| |
Collapse
|
22
|
Escobar F, Anseth KS, Schultz KM. Dynamic Changes in Material Properties and Degradation of Poly(ethylene glycol)–Hydrazone Gels as a Function of pH. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Francisco Escobar
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kristi S. Anseth
- Department
of Chemical and Biological Engineering, the Biofrontiers Institute
and Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, United States
| | - Kelly M. Schultz
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
23
|
Wehrman MD, Milstrey MJ, Lindberg S, Schultz KM. Using μ 2rheology to quantify rheological properties during repeated reversible phase transitions of soft matter. LAB ON A CHIP 2017; 17:2085-2094. [PMID: 28548150 DOI: 10.1039/c7lc00222j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A microfluidic device is designed to measure repeated phase transitions, gelation and degradation, on a single sample by exchanging the surrounding fluid while minimizing shear stress. This device enables quantitative microrheological characterization of material properties over multiple phase transitions, determining whether the material returns to the same equilibrium state. Fluid exchange is accomplished by using a two layer design, the sample is trapped in the first layer and the second layer is a well for the exchanging fluid. Fluid enters the sample chamber symmetrically creating equal pressure around the sample, trapping it in place. Multiple particle tracking (MPT) microrheology, a passive microrheological technique, measures the dynamic rheological properties during each phase transition. Combining rheological characterization and sample manipulation using microfluidics is termed μ2rheology. The utility of this technique is demonstrated by characterizing several phase transitions of a fibrous colloidal gel, hydrogenated castor oil. Gelation and degradation is induced by an osmotic pressure gradient created by contact with a glycerine based gelling agent and water, respectively. Several transitions are measured using a single sample. Nine transitions, five gel-sol and four sol-gel, are the maximum number of transitions characterized in a single sample. This microfluidic device and measurement technique is widely applicable and can be easily adapted to any system where solvent exchange is used to induce a change in material properties.
Collapse
Affiliation(s)
- Matthew D Wehrman
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA.
| | | | | | | |
Collapse
|
24
|
“Living” dynamics of filamentous bacteria on an adherent surface under hydrodynamic exposure. Biointerphases 2017; 12:02C410. [DOI: 10.1116/1.4983150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Simon AJ, Walls-Smith LT, Freddi MJ, Fong FY, Gubala V, Plaxco KW. Simultaneous Measurement of the Dissolution Kinetics of Responsive DNA Hydrogels at Multiple Length Scales. ACS NANO 2017; 11:461-468. [PMID: 28006092 DOI: 10.1021/acsnano.6b06414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent years have seen increasing study of stimulus-responsive hydrogels constructed from aptamer-connected DNA building blocks. Presumably due to a lack of simple, quantitative tools with which to measure gel responsiveness, however, the literature describing these materials is largely qualitative. In response, we demonstrate here simple, time-resolved, multiscale methods for measuring the response kinetics of these materials. Specifically, by employing trace amounts of fluorophore-quencher labeled cross-linkers and the rheology of entrapped fluorescent particles, we simultaneously measure dissolution at molecular, hundred-nanometer, and hundred-micron length-scales. For our test-bed system, an adenine-responsive hydrogel, we find biphasic response kinetics dependent on both effector concentration and depth within the gel and a dissolution pattern uniform at scales longer than a few times the monomer-monomer distance. Likewise, we find that, in agreement with theoretical predictions, dissolution kinetics over the hundred nanometer length scale exhibit a power-law-like dependence on the fraction of disrupted cross-links before a distinct crossover from solid-like to liquid-like behavior.
Collapse
Affiliation(s)
| | | | - Matthew J Freddi
- Medway School of Pharmacy, University of Kent , Central Avenue, Chatham Maritime, Chatham, ME4 4TB Kent, U.K
| | | | - Vladimir Gubala
- Medway School of Pharmacy, University of Kent , Central Avenue, Chatham Maritime, Chatham, ME4 4TB Kent, U.K
| | | |
Collapse
|