1
|
Ali N, Demott CJ, Dingus OF, Grunlan MA, Dunn AC. Network interactions simultaneously enhance stiffness and lubricity of triple-network hydrogels. SOFT MATTER 2024. [PMID: 39465650 DOI: 10.1039/d4sm00969j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Synthetic hydrogels displaying cartilage-mimetic bulk and surface properties may serve as cartilage substitutes. Multi-network, electrostatic hydrogels that leverage intra- and inter-network repulsive and attractive forces represent a promising approach. Herein, triple network (TN) hydrogels were prepared to obtain a combination of desired characteristics (i.e., hydration, stiffness, shear stress, and friction properties). The TN hydrogels were comprised of a negatively charged 1st network and a neutral 2nd network possessing hydrophobic associations. Presumed to significantly influence surface properties, the 3rd network charge was systematically varied as cationic, anionic, and zwitterionic. A double-network (DN) hydrogel, comprised of the same 1st and 2nd network as for the TN hydrogels, was included as a control as well as native cartilage specimens. Micro-indentation was performed with a steel ball, yielding stiffness values as well as the contact area during sliding. The lubrication in both deionized (DI) water and fetal bovine serum (FBS) was evaluated with the micro-indenter wherein the stage reciprocated in a range of speeds. All the TN hydrogels exhibited greater Youngs modulus than the DN hydrogel control. The TN bearing a cationic 3rd network exhibited an exceptionally high Youngs modulus of ≈1.4 MPa, which was even higher than that of the cartilage samples. In both DI water and FBS, for most testing speeds, the TN hydrogels exhibited lower friction coefficient (COF) values and lower shear stresses than DN hydrogel as well as the native cartilage specimens.
Collapse
Affiliation(s)
- Nabila Ali
- Department of Mechanical Science & Engineering, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL, 61801, USA
| | - Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Olivia F Dingus
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Alison C Dunn
- Department of Mechanical Science & Engineering, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, 506 S Mathews Ave, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of Florida, 1064 Center Dr, Rm 181, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
Hasan MM, Dunn AC. Adhesion Mechanics and Detachment Dynamics of Vanishing Surface Layers on Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20406-20415. [PMID: 39303160 DOI: 10.1021/acs.langmuir.4c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Cross-linked hydrogel surfaces exhibit reduced stiffness when polymerized against polymeric hydrophobic surfaces. As such, these layers play a critical role in contact mechanics, particularly exhibiting strong relative adhesion with colloidal probes when the contact area is small. This prevents the use of continuum models of adhesive soft contact. To connect mechanisms of stretch to the force response, depth-controlled nanoindentation experiments were conducted on polyacrylamide (pAAM) hydrogel samples using colloidal probe atomic force microscopy (AFM). The pAAM sample had a high water content of >90% and was molded against polyoxymethylene (POM) to create a more dilute surface layer with thickness ∼0.5 μm. Indentations to multiple depths between 50 nm and 1.25 μm were repeated 10 times each. First, the force drops during the unloading, and separation segments of each indentation were characterized. This described the detachment progression for increasing areas of contact, revealing that the pull-off force for a single chain was in the single-pN range. Second, the stretched polymer network was modeled as an array of parallel, linear springs. Assuming a constant areal chain density of α = 100 chains/μm2, the maximum force of adhesion was plotted versus the volume of chains stretched upward, and the average chain stiffness was calculated from a linear fit to be 22.8 × 10-6 N/m. A Weibull distribution analysis of detachment events revealed a dependence of chain stiffness on maximum indentation depth (dmax), with higher stiffness at shallower depths approaching kchain ≈ 20 × 10-6 N/m. These findings on adhesion mechanics between a vanishing hydrogel surface and probe can guide the development of multifunctional hydrogels for various biomedical applications.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, Illinois 61801, United States
| | - Alison C Dunn
- Department of Mechanical and Aerospace Engineering, University of Florida, 1064 Center Dr, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Benson JM, Moore AC, Schrader J, Burris DL. Adhesion-Lubrication Paradox of Articular Cartilage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13810-13818. [PMID: 38918081 DOI: 10.1021/acs.langmuir.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The friction of solids is primarily understood through the adhesive interactions between the surfaces. As a result, slick materials tend to be nonstick (e.g., Teflon), and sticky materials tend to produce high friction (e.g., tires and tape). Paradoxically, cartilage, the slippery bearing material of human joints, is also among the stickiest of known materials. This study aims to elucidate this apparent paradox. Cartilage is a biphasic material, and the most cited explanation is that both friction and adhesion increase as load transfers from the pressurized interstitial fluid to the solid matrix over time. In other words, cartilage is slippery and sticky under different times and conditions. This study challenges this explanation, demonstrating the strong adhesion of cartilage under high and low interstitial hydration conditions. Additionally, we find that cartilage clings to itself (a porous material) and Teflon (a nonstick material), as well as other surfaces. We conclude that the unusually strong interfacial tension produced by cartilage reflects suction (like a clingfish) rather than adhesion (like a gecko). This finding is surprising given its unusually large roughness, which typically allows for easy interfacial flow and defeats suction. The results provide compelling evidence that cartilage, like a clingfish, conforms to opposing surfaces and effectively seals submerged contacts. Further, we argue that interfacial sealing is itself a critical function, enabling cartilage to retain hydration, load support, and lubrication across long periods of inactivity.
Collapse
Affiliation(s)
- J M Benson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - A C Moore
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - J Schrader
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - D L Burris
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Lee W, Eriten M. Poroviscoelastic relaxations and rate-dependent adhesion in gelatin. SOFT MATTER 2024; 20:4583-4590. [PMID: 38742525 DOI: 10.1039/d4sm00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydrogels, polymeric networks swollen with water, exhibit time/rate-dependent adhesion due to their poroviscoleastic constitution. In this study, we conducted probe-tack experiments on gelatin and investigated the influence of dwelling times and unloading rates on pull-off forces and work of adhesion. We utilized in situ contact imaging to monitor separation kinematics and interfacial crack velocities. We found that the crack velocities scaled nonlinearly with the unloading rate, in a power law with an exponent of 0.8 and were independent of dwelling time. At maximum unloading rates corresponding to subsonic interfacial crack speeds, we observed an order of magnitude enhancement in the apparent work of adhesion. The enhancement of adhesion and the crack velocities were related by a power law with an exponent of 0.39. The maximum vertical extension during unloading, a measure of crack opening, exhibited linear correlation with the enhancement of adhesion. Both correlations were in line with the rate-dependent work of fracture modeled for viscoelastic solids (e.g., Persson and Brener model). We explored the links between dwelling times corresponding to varying degrees of poroelastic diffusion and the adhesion. We found 40% additional enhancement in adhesion at the highest unloading rate. This enhancement is due to the unbalanced osmotic pressure, also known as the suction effect. The influence of dwelling times on adhesion was negligible for the interfacial cracks propagating slower than the diffusive time scales. These results identify viscoelastic relaxations as the dominant mechanism governing the rate-dependent enhancement of adhesion, and hence pave the way for tuning rate-dependent adhesion in soft multiphasic materials.
Collapse
Affiliation(s)
- Wonhyeok Lee
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Jha A, Gryska S, Barrios C, Frechette J. Adhesion and Contact Aging of Acrylic Pressure-Sensitive Adhesives to Swollen Elastomers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4267-4276. [PMID: 38359377 PMCID: PMC10906000 DOI: 10.1021/acs.langmuir.3c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Fluid-infused (or swollen) elastomers are known for their antiadhesive properties. The presence of excess fluid at their surface is the main contributor to limiting contact formation and minimizing adhesion. Despite their potential, the mechanisms for adhesion and contact aging to fluid-infused elastomers are poorly understood beyond contact with a few materials (ice, biofilms, glass). This study reports on adhesion to a model fluid-infused elastomer, poly(dimethylsiloxane) (PDMS), swollen with silicone oil. The effects of oil saturation, contact time, and the opposing surface are investigated. Specifically, adhesion to two different adherents with comparable surface energies but drastically different mechanical properties is investigated: a glass surface and a soft viscoelastic acrylic pressure-sensitive adhesive film (PSA, modulus ∼25 kPa). Adhesion between the PSA and swollen PDMS [with 23% (w/w) silicone oil] retains up to 60% of its value compared to contact with unswollen (dry) PDMS. In contrast, adhesion to glass nearly vanishes in contact with the same swollen elastomer. Adhesion to the PSA also displays stronger contact aging than adhesion to glass. Contact aging with the PSA is comparable for dry and unsaturated PDMS. Moreover, load relaxation when the PSA is in contact with the PDMS does not correlate with contact aging for contact with the dry or unsaturated elastomer, suggesting that contact aging is likely caused by chain interpenetration and polymer reorganization within the contact region. Closer to full saturation of the PDMS with oil, adhesion to the PSA decreases significantly and shows a delay in the onset of contact aging that is weakly correlated to the poroelastic relaxation of the elastomer. Additional confocal imaging suggests that the presence of a layer of fluid trapped at the interface between the two solids could explain the delayed (and limited) contact aging to the oil-saturated PDMS.
Collapse
Affiliation(s)
- Anushka Jha
- Chemical
and Biomolecular Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Stefan Gryska
- 3M
Center, 3M Company, Building 201-4N-01, St. Paul, Minnesota 55144-1000, United States
| | - Carlos Barrios
- Carlos
Barrios Consulting LLC, Frisco, Texas 75034, United States
| | - Joelle Frechette
- Chemical
and Biomolecular Engineering, University
of California, Berkeley, California 94720, United States
- Energy
Technology Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Wang H, Wang Q, Su Y, Wang J, Zhang X, Liu Y, Zhang J. Thermosensitive Triblock Copolymer for Slow-Release Lubricants under Ocular Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1675-1687. [PMID: 38127457 DOI: 10.1021/acsami.3c12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The ocular environment is crucial for a biological lubrication system. An unstable condition of tear film may cause a series of ocular diseases due to serious friction, such as dry eye syndrome, which has drawn extensive attention nowadays. In this study, an in vitro biocompatible superlubricity system, containing thermogelling copolymers (PCGA-PEG-PCGA) and slow-release lubricant (PEG 300/Tween 80), was constructed. First, the sol-gel transition temperature and gel strength of PCGA-PEG-PCGA were adjusted based on the ocular environment by regulating the length of PCGA blocks. Furthermore, the copolymer hydrogel exhibited a reliable slow-release property within 10 days and showed low cytotoxicity. Then, the superlubricity (coefficient of friction of approximately 0.005) was achieved with its released PEG 300/Tween 80 aqueous solution at the sliding velocity range of 1-100 mm s-1 and pressure range of 10-22 kPa. However, the lubrication behaviors varied, while PEG 300 chains and Tween 80 micelles were demonstrated to form a multilayer and a single layer adsorption structure on the sliding surface, respectively. On the whole, the composite lubrication systems, especially the one composed of Tween 80, showed excellent tribological properties owing to the stable slow-release and full hydration effects under ocular conditions, which hold great potential for improving ocular lubrication and maintaining human visual health.
Collapse
Affiliation(s)
- Hongdong Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Qi Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| | - Yunjuan Su
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| | - Junyu Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Xiacong Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yuhong Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| |
Collapse
|
7
|
Kang J, Zhang X, Yang X, Yang X, Wang S, Song W. Mucosa-Inspired Electro-Responsive Lubricating Supramolecular-Covalent Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307705. [PMID: 37742109 DOI: 10.1002/adma.202307705] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Indexed: 09/25/2023]
Abstract
Enabling the living capability of secreting liquids dynamically triggered by external stimuli while maintaining the bulk frame is a significant challenge for mucosa-inspired hydrogels. A mucosa-inspired electro-responsive hydrogel is developed in this study using the synergy between electro-responsive silk fibroin supramolecular non-covalent networks and covalent polyacrylamide and polyvinyl alcohol polymer networks. The formed supramolecular-covalent hydrogel exhibits a partial gel-sol transition upon the application of an electric field, and the liquid layer on the hydrogel surface near the cathode is used to mimic the mucus-secreting capability to regulate lubrication. The electro-responsive lubricating process can operate under a safe voltage and exhibits good reversibility. It is also a universal strategy to construct an electro-responsive hydrogel by introducing an electro-responsive supramolecular network into the polymer network. This mucosa-inspired electro-responsive supramolecular-covalent hydrogel offers a promising method for designing soft actuators or robots that can regulate lubrication using an electric strategy.
Collapse
Affiliation(s)
- Jianye Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuewei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinyu Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
Vishwanath K, McClure SR, Bonassar LJ. Polyacrylamide hydrogel lubricates cartilage after biochemical degradation and mechanical injury. J Orthop Res 2023; 41:63-71. [PMID: 35384042 DOI: 10.1002/jor.25340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Intra-articular injections of hyaluronic acid have been a mainstay of osteoarthritis treatment for decades. However, controversy surrounds the mechanism of action and efficacy of this therapy. As such, there has been recent interest in developing synthetic lubricants that lubricate cartilage. Recently, a synthetic 4 wt% polyacrylamide (pAAm) hydrogel was shown to effectively decrease lameness in horses. However, its mechanism of action and ability to lubricate cartilage is unknown. The goal of this study was to characterize the lubricating ability of this hydrogel and determine its efficacy for healthy and degraded cartilage. The study utilized previously established IL-1β-induced biochemical degradation and mechanical impact injury models to degrade cartilage. The lubricating ability of the hydrogel was then characterized using a custom-built tribometer using a glass counterface and friction was evaluated using the Stribeck framework for articular cartilage. pAAm hydrogel was shown to significantly lower the friction coefficient of cartilage explants from both degradation models (30%-40% reduction in friction relative to controls). A striking finding from this study was the aggregation of the pAAm hydrogel at the articulating surface. The surface aggregation was observed in the histological sections of explants from all treatment groups after tribological evaluation. Using the Stribeck framework, the hydrogel was mapped to higher Sommerfeld numbers and was characterized as a viscous lubricant predominantly in the minimum friction mode. In summary, this study revealed that pAAm hydrogel lubricates native and degraded cartilage explants effectively and may have an affinity for the articulating surface of the cartilage.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Scott R McClure
- Midwest Equine Surgery and Sports Medicine, Boone, Iowa, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Investigation of the Time-Dependent Friction Behavior of Polyacrylamide Hydrogels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Jha A, Karnal P, Frechette J. Adhesion of fluid infused silicone elastomer to glass. SOFT MATTER 2022; 18:7579-7592. [PMID: 36165082 DOI: 10.1039/d2sm00875k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elastomers swollen with non-polar fluids show potential as anti-adhesive materials. We study the effect of oil fraction and contact time on the adhesion between swollen spherical probes of PDMS (polydimethylsiloxane) and flat glass surfaces. The PDMS probes are swollen with pre-determined amount of 10 cSt silicone oil to span the range where the PDMS is fluid free (via solvent extraction) up to the limit where it is oil saturated. Probe tack measurements show that adhesion decreases rapidly with an increase in oil fraction. The decrease in adhesion is attributed to excess oil present at the PDMS-air interface. Contact angle measurements and optical microscopy images support this observation. Adhesion also increases with contact time for a given oil fraction. The increase in adhesion with contact time can be interpreted through different competing mechanisms that depend on the oil fraction where the dominant mechanism changes from extracted to fully swollen PDMS. For partially swollen PDMS, we observe that adhesion initially increases because of viscoelastic relaxation and at long times increases because of contact aging. In contrast, adhesion between fully swollen PDMS and glass barely increases over time and is mainly due to capillary forces. While the relaxation of PDMS in contact is well-described by a visco-poroelastic model, we do not see evidence that poroelastic relaxation of the PDMS contributes to an increase of adhesion with glass whether it is partially or fully swollen.
Collapse
Affiliation(s)
- Anushka Jha
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Preetika Karnal
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton St, Building 205, Bethlehem, Pennsylvania 18015, USA
| | - Joelle Frechette
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94760, USA.
| |
Collapse
|
11
|
Lin W, Klein J. Hydration Lubrication in Biomedical Applications: From Cartilage to Hydrogels. ACCOUNTS OF MATERIALS RESEARCH 2022; 3:213-223. [PMID: 35243350 PMCID: PMC8886567 DOI: 10.1021/accountsmr.1c00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/21/2022] [Indexed: 05/11/2023]
Abstract
In the course of evolution, nature has achieved remarkably lubricated surfaces, with healthy articular cartilage in the major (synovial) joints being the prime example, that can last a lifetime as they slide past each other with ultralow friction (friction coefficient μ = the force to slide surfaces past each other/load compressing the surfaces < 0.01) under physiological pressures (up to 10 MPa or more)). Such properties are unmatched by any man-made materials. The precise mechanism of low friction between such sliding cartilage tissues, which is closely related to osteoarthritis (OA), the most widespread joint disease, affecting hundreds of millions worldwide, has been studied for nearly a century, but is still not fully understood. Traditionally, the roles of load bearing by interstitial fluid within the cartilage bulk and that of thin exuded fluid films at the interface between the sliding cartilage surfaces have been proposed as the main lubrication mechanism. More recent work, however, suggests that molecular boundary layers at the surfaces of articular cartilage and other tissues play a major role in their lubrication. In particular, in recent years hydration lubrication has emerged as a new paradigm for boundary lubrication in aqueous media based on subnanometer hydration shells which massively reduce frictional dissipation. The vectors of hydration lubrication include trapped hydrated ions, hydrated surfactants, biological macromolecules, biomimetic polymers, polyelectrolytes and polyzwitterionic brushes, and close-packed layers of phosphatidylcholine (PC) vesicles, all having in common the exposure of highly hydrated groups at the slip plane. Among them, vesicles (or bilayers) of PC lipids, which are the most widespread lipid class in mammals, are exceptionally efficient lubricating elements as a result of the high hydration of the phosphocholine headgroups they expose. Such lipids are ubiquitous in joints, leading to the proposal that macromolecular surface complexes exposing PC bilayers are responsible for the remarkable lubrication of cartilage. Cartilage, comprising ∼70% water, may be considered to be a complex biological hydrogel, and studying the frictional properties of hydrogels may thus provide new insights into its lubrication mechanisms, leading in turn to novel, highly lubricious hydrogels that may be used in a variety of biomedical and other applications. A better understanding of cartilage lubrication could moreover lead to better treatments for OA, for example, through intra-articular injections of appropriate lubricants or through the creation of low-friction hydrogels that may be used as tissue engineering scaffolds for diseased cartilage. In this Account, we begin by introducing the concept and origin of hydration lubrication, extending from the seminal study of lubrication by hydrated simple ions to more complex systems. We then briefly review different modes of lubrication in synovial joints, focusing primarily on boundary lubrication. We consider modes of hydrogel lubrication and different kinds of such low-friction synthetic gels and then focus on cartilage-inspired, boundary-lubricated hydrogels. We conclude by discussing challenges and opportunities.
Collapse
|
12
|
Terzano M, Spagnoli A, Dini D, Forte AE. Fluid-solid interaction in the rate-dependent failure of brain tissue and biomimicking gels. J Mech Behav Biomed Mater 2021; 119:104530. [PMID: 33895665 DOI: 10.1016/j.jmbbm.2021.104530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Brain tissue is a heterogeneous material, constituted by a soft matrix filled with cerebrospinal fluid. The interactions between, and the complexity of each of these components are responsible for the non-linear rate-dependent behaviour that characterises what is one of the most complex tissue in nature. Here, we investigate the influence of the cutting rate on the fracture properties of brain, through wire cutting experiments. We also present a computational model for the rate-dependent behaviour of fracture propagation in soft materials, which comprises the effects of fluid interaction through a poro-hyperelastic formulation. The method is developed in the framework of finite strain continuum mechanics, implemented in a commercial finite element code, and applied to the case of an edge-crack remotely loaded by a controlled displacement. Experimental and numerical results both show a toughening effect with increasing rates, which is linked to the energy dissipated by the fluid-solid interactions in the region surrounding the crack tip.
Collapse
Affiliation(s)
- M Terzano
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - A Spagnoli
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy.
| | - D Dini
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - A E Forte
- DEIB, Politecnico di Milano, Via Ponzio, 34/5 - 20133 Milano, Italy; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
13
|
Gan S, Bai S, Chen C, Zou Y, Sun Y, Zhao J, Rong J. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels. Int J Biol Macromol 2021; 181:418-425. [PMID: 33781814 DOI: 10.1016/j.ijbiomac.2021.03.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/21/2023]
Abstract
Ionic conductive hydrogels with both high-performance in conductivity and mechanical properties have received increasing attention due to their unique potential in artificial soft electronics. Here, a dual physically cross-linked double network (DN) hydrogel with high ionic conductivity and tensile strength was fabricated by a facile approach. Hydroxypropyl cellulose (HPC) biopolymer fibers were embedded in a poly (vinyl alcohol)‑sodium alginate (PVA/SA) hydrogel, and then the prestretched PVA-HPC/SA composite hydrogel was immersed in a CaCl2 solution to prepare PVA-HPCT/SA-Ca DN hydrogels. The obtained composite hydrogel has an excellent tensile strength up to 1.4 MPa. Importantly, the synergistic effect of hydroxypropyl cellulose (HPC) and prestretching reduces the migration resistance of ions in the hydrogel, and the conductivity reaches 3.49 S/ m. In addition, these composite hydrogels are noncytotoxic, and they have a low friction coefficient and an excellent wear resistance. Therefore, PVA-HPCT/SA-Ca DN hydrogels have potential applications in nerve replacement materials and biosensors.
Collapse
Affiliation(s)
- Shuchun Gan
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Shihang Bai
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Cheng Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Yongliang Zou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Yingjuan Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
14
|
Porte E, Cann P, Masen M. A lubrication replenishment theory for hydrogels. SOFT MATTER 2020; 16:10290-10300. [PMID: 33047773 DOI: 10.1039/d0sm01236j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hydrogels are suggested as less invasive alternatives to total joint replacements, but their inferior tribological performance compared to articular cartilage remains a barrier to implementation. Existing lubrication theories do not fully characterise the friction response of all hydrogels, and a better insight into the lubrication mechanisms must be established to enable optimised hydrogel performance. We therefore studied the lubricating conditions in a hydrogel contact using fluorescent imaging under simulated physiological sliding conditions. A reciprocating configuration was used to examine the effects of contact dimension and stroke length on the lubricant replenishment in the contact. The results show that the lubrication behaviour is strongly dependent on the contact configurations; When the system operates in a 'migrating' configuration, with the stroke length larger than the contact width, the contact is uniformly lubricated and shows low friction; When the contact is in an 'overlapping' configuration with a stroke length smaller than the contact width, the contact is not fully replenished, resulting in high friction. The mechanism of non-replenishment at small relative stroke length was also observed in a cartilage contact, indicating that the theory could be generalised to soft porous materials. The lubrication replenishment theory is important for the development of joint replacement materials, as most physiological joints operate under conditions of overlapping contact, meaning steady-state lubrication does not necessarily occur.
Collapse
Affiliation(s)
- Elze Porte
- Tribology Group, Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK
| | | | | |
Collapse
|
15
|
Bonyadi SZ, Demott CJ, Grunlan MA, Dunn AC. Cartilage-like tribological performance of charged double network hydrogels. J Mech Behav Biomed Mater 2020; 114:104202. [PMID: 33243694 DOI: 10.1016/j.jmbbm.2020.104202] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
A synthetic hydrogel material may offer utility as a cartilage replacement if it is able to maintain low friction in different sliding environments and achieve bulk mechanical properties to withstand the severe environment of the joint. In this work, we compared the tribological behavior of four double network (DN) hydrogels to that of fresh porcine cartilage in both water and fetal bovine serum (FBS). The DN hydrogels were comprised of a negatively charged 1st network and a 2nd network wherein comonomers of varying charge (i.e. neutral, positive, negative, and zwitterionic) were introduced at 10 wt% to an otherwise neutral network. A steel ball probe was used to perform microindentation tests to determine the surface elastic modulus of the samples and estimate their contact areas during sliding. Friction tests using a stationary probe with a stage that reciprocated at a range of speeds were performed to develop lubrication curves in both water and FBS. We found that the DN hydrogels with a neutral or zwitterionic 2nd network had the lowest friction and shear stresses, notably below that of cartilage. The differences in charge and structure of the samples were more evident in water than in FBS, as the lubrication responses for all the hydrogels spanned a wider range of values. In FBS, the lubrication responses were pushed towards elasto-hydrodynamics with nearly all friction coefficient values falling below 0.3. This indicates that the FBS interacts with the hydrogels and cartilage samples in a similar manner as that of cartilage by maintaining a robust layer of solution at the interface during sliding. These DN hydrogels prove to fulfill, and in some cases surpass, the lubrication demands for cartilage replacement in load bearing joints.
Collapse
Affiliation(s)
- Shabnam Z Bonyadi
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA; Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Alison C Dunn
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
16
|
Abstract
Since their inception, hydrogels have gained popularity among multiple fields, most significantly in biomedical research and industry. Due to their resemblance to biological tribosystems, a significant amount of research has been conducted on hydrogels to elucidate biolubrication mechanisms and their possible applications as replacement materials. This review is focused on lubrication mechanisms and covers friction models that have attempted to quantify the complex frictional characteristics of hydrogels. From models developed on the basis of polymer physics to the concept of hydration lubrication, assumptions and conditions for their applicability are discussed. Based on previous models and our own experimental findings, we propose the viscous-adhesive model for hydrogel friction. This model accounts for the effects of confinement of the polymer network provided by a solid surface and poroelastic relaxation as well as the (non) Newtonian shear of a complex fluid on the frictional force and quantifies the frictional response of hydrogels-solid interfaces. Finally, the review delineates potential areas of future research based on the current knowledge.
Collapse
|
17
|
Precise Correlation of Contact Area and Forces in the Unstable Friction between a Rough Fluoroelastomer Surface and Borosilicate Glass. MATERIALS 2020; 13:ma13204615. [PMID: 33081263 PMCID: PMC7602959 DOI: 10.3390/ma13204615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 01/21/2023]
Abstract
Stick-slip friction of elastomers arises due to adhesion, high local strains, surface features, and viscous dissipation. In situ techniques connecting the real contact area to interfacial forces can reveal the contact evolution of a rough elastomer surface leading up to gross slip, as well as provide high-resolution dynamic contact areas for improving current slip models. Samples with rough surfaces were produced by the same manufacturing processes as machined seals. In this work, a machined fluoroelastomer (FKM) hemisphere was slid against glass, and the stick-slip behavior was captured optically in situ. The influence of sliding velocity on sliding behavior was studied over a range of speeds from 1 µm/s to 100 µm/s. The real contact area was measured from image sequences thresholded using Otsu’s method. The motion of the pinned region was delineated with a machine learning scheme. The first result is that, within the macroscale sticking, or pinned phase, local pinned and partial slip regions were observed and modeled as a combined contact with contributions to friction by both regions. As a second result, we identified a critical velocity below which the stick-slip motion converted from high frequency with low amplitude to low frequency with high amplitude. This study on the sliding behavior of a viscoelastic machined elastomer demonstrates a multi-technique approach which reveals precise changes in contact area before and during pinning and slip.
Collapse
|
18
|
Degen GD, Chen YT, Chau AL, Månsson LK, Pitenis AA. Poroelasticity of highly confined hydrogel films measured with a surface forces apparatus. SOFT MATTER 2020; 16:8096-8100. [PMID: 32935726 DOI: 10.1039/d0sm01312a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The influence of poroelasticity on the contact mechanics of thin polyacrylamide films was investigated with a surface forces apparatus (SFA). A model based on a thin film approximation described compression forces for hydrated gels; polymer scaling theory explained the effects of gel dehydration. The results demonstrate that fluid flow dictates the apparent stiffness of highly confined poroelastic films.
Collapse
Affiliation(s)
- George D Degen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Yen-Tsung Chen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Allison L Chau
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Lisa K Månsson
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Angela A Pitenis
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
19
|
Ciapa L, Delavoipière J, Tran Y, Verneuil E, Chateauminois A. Transient sliding of thin hydrogel films: the role of poroelasticity. SOFT MATTER 2020; 16:6539-6548. [PMID: 32602511 DOI: 10.1039/d0sm00641f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report on the transient frictional response of contacts between a rigid spherical glass probe and a micrometer-thick poly(dimethylacrylamide) hydrogel film grafted onto a glass substrate when a lateral relative motion is applied to the contact initially at rest. From dedicated experiments with in situ contact visualization, both the friction force and the contact size are observed to vary well beyond the occurrence of a full sliding condition at the contact interface. Depending on the imposed velocity and on the static contact time before the motion is initiated, either an overshoot or an undershoot in the friction force is observed. These observations are rationalized by considering that the transient is predominantly driven by the flow of water within the stressed hydrogel networks. From the development of a poroelastic contact model using a thin film approximation, we provide a theoretical description of the main features of the transient. We especially justify the experimental observation that the relaxation of friction force Ft(t) toward steady state is uniquely dictated by the time-dependence of the contact radius a(t), independently on the sliding velocity and on the applied normal load.
Collapse
Affiliation(s)
- Lola Ciapa
- Soft Matter Science and Engineering Laboratory (SIMM), CNRS UMR 7615, ESPCI Paris, PSL University, Sorbonne Université, F-75005 Paris, France.
| | - Jessica Delavoipière
- Soft Matter Science and Engineering Laboratory (SIMM), CNRS UMR 7615, ESPCI Paris, PSL University, Sorbonne Université, F-75005 Paris, France. and Saint-Gobain Recherche Paris, 39 quai Lucien Lefranc, 93303 Aubervilliers Cedex, France
| | - Yvette Tran
- Soft Matter Science and Engineering Laboratory (SIMM), CNRS UMR 7615, ESPCI Paris, PSL University, Sorbonne Université, F-75005 Paris, France.
| | - Emilie Verneuil
- Soft Matter Science and Engineering Laboratory (SIMM), CNRS UMR 7615, ESPCI Paris, PSL University, Sorbonne Université, F-75005 Paris, France.
| | - Antoine Chateauminois
- Soft Matter Science and Engineering Laboratory (SIMM), CNRS UMR 7615, ESPCI Paris, PSL University, Sorbonne Université, F-75005 Paris, France.
| |
Collapse
|
20
|
Cuccia NL, Pothineni S, Wu B, Méndez Harper J, Burton JC. Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces. Proc Natl Acad Sci U S A 2020; 117:11247-11256. [PMID: 32398363 PMCID: PMC7260953 DOI: 10.1073/pnas.1922364117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogels consist of a cross-linked polymer matrix imbibed with a solvent such as water at volume fractions that can exceed 90%. They are important in many scientific and engineering applications due to their tunable physiochemical properties, biocompatibility, and ultralow friction. Their multiphase structure leads to a complex interfacial rheology, yet a detailed, microscopic understanding of hydrogel friction is still emerging. Using a custom-built tribometer, here we identify three distinct regimes of frictional behavior for polyacrylic acid (PAA), polyacrylamide (PAAm), and agarose hydrogel spheres on smooth surfaces. We find that at low velocities, friction is controlled by hydrodynamic flow through the porous hydrogel network and is inversely proportional to the characteristic pore size. At high velocities, a mesoscopic, lubricating liquid film forms between the gel and surface that obeys elastohydrodynamic theory. Between these regimes, the frictional force decreases by an order of magnitude and displays slow relaxation over several minutes. Our results can be interpreted as an interfacial shear thinning of the polymers with an increasing relaxation time due to the confinement of entanglements. This transition can be tuned by varying the solvent salt concentration, solvent viscosity, and sliding geometry at the interface.
Collapse
Affiliation(s)
| | | | - Brady Wu
- Department of Physics, Emory University, Atlanta, GA 30322
| | | | | |
Collapse
|
21
|
Chau AL, Rosas J, Degen GD, Månsson LK, Chen J, Valois E, Pitenis AA. Aqueous surface gels as low friction interfaces to mitigate implant-associated inflammation. J Mater Chem B 2020; 8:6782-6791. [PMID: 32364211 DOI: 10.1039/d0tb00582g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aqueous surface gels are fragile yet resilient biopolymer-based networks capable of sustaining extremely low friction coefficients despite tribologically-challenging environments. These superficial networks are ubiquitous in natural sliding interfaces and protect mechanosensitive cells from excessive contact pressures and frictional shear stresses from cell-fluid, cell-cell, or cell-solid interactions. Understanding these complex lubrication mechanisms may aid in the development of materials-based strategies for increasing biocompatibility in medical devices and implants. Equally as important is characterizing the interplay between soft and passive yet mobile implant materials and cellular reactions in response to direct contact and frictional shear stresses. Physically interrogating living biological systems without rupturing them in the process is nontrivial. To this end, custom biotribometers have been designed to precisely modulate contact pressures against living human telomerase-immortalized corneal epithelial (hTCEpi) cell layers using soft polyacrylamide membrane probes. Reverse-transcription quantitative polymerase chain-reaction (RT-qPCR) indicated that increased duration and, to a much greater extent, the magnitude of frictional shear stress lead to increased production of pro-inflammatory (IL-1β, IL-6, MMP9) and pro-apoptotic (DDIT3, FAS) genes, which in clinical studies are linked to pathological pain. The hierarchical structure often found in biological systems has also been investigated through the fabrication of high-water content (polyacrylamide) hydrogels through free-radical polymerization inhibition. Nanoindentation experiments and friction coefficient measurements indicate that these "gradient surface gels" reduce contact pressures and frictional shear stresses at the surface of the material while still maintaining stiffness within the bulk. Reducing frictional shear stresses through informed materials and surface design may concomitantly increase lubricity and quiet the immune response, and thus provide bio-inspired routes to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Allison L Chau
- Materials Department University of California, Santa Barbara, CA 93106, USA.
| | - Jonah Rosas
- Biomolecular Science and Engineering Department University of California, Santa Barbara, CA 93106, USA
| | - George D Degen
- Department of Chemical Engineering, University of California, Santa Barbara Santa Barbara, CA 93106, USA
| | - Lisa K Månsson
- Department of Physics Chalmers, University of Technology, 412 58 Gothenburg, Sweden
| | - Jonathan Chen
- Department of Chemical Engineering, University of California, Santa Barbara Santa Barbara, CA 93106, USA
| | - Eric Valois
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Angela A Pitenis
- Materials Department University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
22
|
Gan S, Lin W, Zou Y, Xu B, Zhang X, Zhao J, Rong J. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair. Carbohydr Polym 2020; 229:115523. [DOI: 10.1016/j.carbpol.2019.115523] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
|
23
|
Meier YA, Zhang K, Spencer ND, Simic R. Linking Friction and Surface Properties of Hydrogels Molded Against Materials of Different Surface Energies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15805-15812. [PMID: 31369280 PMCID: PMC6899455 DOI: 10.1021/acs.langmuir.9b01636] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biological tissues subjected to rubbing, such as the cornea and eyelid or articular cartilage, are covered in brushy, hydrated mucous structures in order to reduce the shear stress on the tissue. To mimic such biological tissues, we have prepared polyacrylamide (PAAm) hydrogels with various concentrations of un-cross-linked chains on their surfaces by synthesizing them in molds of different surface energies. The selected molding materials included hydrophilic glass, polyoxymethylene (POM), polystyrene (PS), polyethylene (PE), polypropylene (PP), and polytetrafluoroethylene (PTFE). After synthesis, demolding, and equilibration in water, the elastic modulus at the hydrogel surface decreased with increasing water contact angle of the mold. The softer, brushier surfaces did not completely collapse under compressive pressures up to 10 kPa, remaining better hydrated compared to their denser, cross-linked analogs. The hydrogels with brushier surfaces displayed an order of magnitude lower coefficient of friction than the cross-linked ones, which is attributed to the ability of their near-surface regions to retain larger amounts of liquid at the interface. The characteristic speed-dependent friction of the denser, cross-linked hydrogel surface is compared to the speed-independent friction of the brushy hydrogels and discussed from the perspectives of (elasto)hydrodynamic lubrication, permeability, and shear-induced hydrodynamic penetration depth.
Collapse
|
24
|
Bonyadi SZ, Atten M, Dunn AC. Self-regenerating compliance and lubrication of polyacrylamide hydrogels. SOFT MATTER 2019; 15:8728-8740. [PMID: 31553022 DOI: 10.1039/c9sm01607d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pristine hydrogel surfaces typically have low friction, which is controlled by composition, slip speeds, and immediate slip history. The stiffness of such samples is typically measured with bulk techniques, and is assumed to be homogeneous at the surface. While the surface properties of homogeneous hydrogel samples are generally controlled by composition, the surface also interfaces with the open bath, which distinguishes it from the bulk. In this work, we disrupt as-molded polyacrylamide surfaces with abrasive wear and connect the effects on the surface stiffness and lubrication to the wear events. At both the nanoscale and the microscale, quasistatic indentations reveal a stiffer surface by up to two times following wear events, even considering roughness. Longitudinal experiments with a series of wear episodes interposed with periods of re-equilibration show that increased stiffness is reversible: more compliant surfaces regenerate within 24 hours. The timescale suggests an osmotic swelling mechanism, and we postulate that abrasive wear removes a swollen surface layer, revealing the stiffer bulk. The newly-revealed bulk becomes the surface, which re-swells over time. We quantify the effects on the self-lubricating ability of these surfaces following abrasive wear using micro-tribometry. The lubrication curve shows that robust low friction is maintained, and that the friction becomes less dependent upon the sliding speed. The unique ability of these materials to regenerate swollen surfaces and maintain robust low friction following abrasive wear is promising for designing their slip behavior into aqueous soft robotics components or biomedicine applications.
Collapse
Affiliation(s)
- Shabnam Z Bonyadi
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, MechSE @ UIUC, 1206 W Green St, MC 244, Urbana, IL 61801, USA.
| | - Michael Atten
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, MechSE @ UIUC, 1206 W Green St, MC 244, Urbana, IL 61801, USA.
| | - Alison C Dunn
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, MechSE @ UIUC, 1206 W Green St, MC 244, Urbana, IL 61801, USA.
| |
Collapse
|
25
|
Han G, Eriten M, Henak CR. Rate-dependent adhesion of cartilage and its relation to relaxation mechanisms. J Mech Behav Biomed Mater 2019; 102:103493. [PMID: 31634661 DOI: 10.1016/j.jmbbm.2019.103493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/25/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Cartilage adhesion has been found to play an important role in friction responses in the boundary lubrication regime, but its underlying mechanisms have only been partially understood. This study investigates the rate dependence of adhesion from pre-to post-relaxation timescales of cartilage and its possible relation to relaxation responses of the tissue. Adhesion tests on cartilage were performed to obtain rate-dependent cartilage adhesion from relaxed to unrelaxed states and corresponding relaxation responses. The rate dependence of cartilage adhesion was analyzed based on experimental relaxation responses. Cartilage adhesion increased about 20 times from relaxed to unrelaxed states. This rate-dependent enhancement correlated well with the load relaxation responses in a characteristic time domain. These experimental results indicated that the degree of recovery (or relaxation) in the vicinity of contact during unloading governed the rate dependence of cartilage adhesion. In addition, the experimentally measured enhancement of adhesion was interpreted with the aid of computationally and analytically predicted adhesion trends in viscoelastic, poroviscoelastic, and cohesive contact models. Agreement between the experimental and predicted trends implied that the enhancement of cartilage adhesion originated from complex combinations of interfacial peeling and negative fluid pressure generated within the contact area during unloading. These findings enhance the current understanding of rate-dependent adhesion mechanisms explored within short time scales and thus could provide new insight into friction responses and stick-induced damage in cartilage.
Collapse
Affiliation(s)
- Guebum Han
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Johannes KG, Calahan KN, Qi Y, Long R, Rentschler ME. Three-Dimensional Microscale Imaging and Measurement of Soft Material Contact Interfaces under Quasi-Static Normal Indentation and Shear. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10725-10733. [PMID: 31291542 DOI: 10.1021/acs.langmuir.9b00830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the contact and friction between soft materials is vital to a wide variety of engineering applications including soft sealants and medical devices such as catheters and stents. Although the mechanisms of friction between stiff materials have been extensively studied, the mechanisms of friction between soft materials are much less understood. Time-dependent material responses, large deformations, and fluid layers at the contact interface, common in soft materials, pose new challenges toward understanding the friction between soft materials. This article aims to characterize the three-dimensional (3D) contact interfaces in soft materials under large deformations and complex contact conditions. Specifically, we introduce a microindentation and visualization (MIV) system capable of investigating soft material contact interfaces with combined normal and shear loading. When combined with a laser scanning confocal microscope, the MIV system enables the acquisition of 3D image stacks of the deformed substrate and the indenter under fixed normal and shear displacements. The 3D imaging data allows us to quantify the 3D contact profiles and correlate them with the applied normal and shear displacements. Using a spherical indenter and a hydrogel substrate as a model system, we demonstrate that the MIV system and the associated analysis techniques accurately measure the contact area under combined normal and shear loading. Although the limited speed of confocal scanning implies that this method is most suitable for quasi-static loading conditions, potential methods to increase the imaging speed and the corresponding trade-off in image resolution are discussed. The method presented here will be useful for the future investigation of soft material contact and friction involving complex surface geometries.
Collapse
Affiliation(s)
- Karl G Johannes
- Department of Mechanical Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Kristin N Calahan
- Department of Mechanical Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Yuan Qi
- Department of Mechanical Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Rong Long
- Department of Mechanical Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Mark E Rentschler
- Department of Mechanical Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
27
|
Bolmin O, Wei L, Hazel AM, Dunn AC, Wissa A, Alleyne M. Latching of the click beetle (Coleoptera: Elateridae) thoracic hinge enabled by the morphology and mechanics of conformal structures. ACTA ACUST UNITED AC 2019; 222:jeb.196683. [PMID: 31113839 DOI: 10.1242/jeb.196683] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Elaterid beetles have evolved to 'click' their bodies in a unique maneuver. When this maneuver is initiated from a stationary position on a solid substrate, it results in a jump not carried out by the traditional means of jointed appendages (i.e. legs). Elaterid beetles belong to a group of organisms that amplify muscle power through morphology to produce extremely fast movements. Elaterids achieve power amplifications through a hinge situated in the thoracic region. The actuating components of the hinge are a peg and mesosternal lip, two conformal parts that latch to keep the body in a brace position until their release, the 'click', that is the fast launch maneuver. Although prior studies have identified this mechanism, they were focused on the ballistics of the launched body or limited to a single species. In this work, we identify specific morphological details of the hinges of four click beetle species - Alaus oculatus, Parallelostethus attenuatus, Lacon discoideus and Melanotus spp. - which vary in overall length from 11.3 to 38.8 mm. Measurements from environmental scanning electron microscopy (ESEM) and computerized tomography (CT) were combined to provide comparative structural information on both exterior and interior features of the peg and mesosternal lip. Specifically, ESEM and CT reveal the morphology of the peg, which is modeled as an Euler-Bernoulli beam. In the model, the externally applied force is estimated using a micromechanical experiment. The equivalent stiffness, defined as the ratio between the applied force and the peg tip deflection, is estimated for all four species. The estimated peg tip deformation indicates that, under the applied forces, the peg is able to maintain the braced position of the hinge. This work comprehensively describes the critical function of the hinge anatomy through an integration of specific anatomical architecture and engineering mechanics for the first time.
Collapse
Affiliation(s)
- Ophelia Bolmin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lihua Wei
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Alison C Dunn
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aimy Wissa
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marianne Alleyne
- Department of Entomology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Delavoipière J, Tran Y, Verneuil E, Heurtefeu B, Hui CY, Chateauminois A. Friction of Poroelastic Contacts with Thin Hydrogel Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9617-9626. [PMID: 30028620 DOI: 10.1021/acs.langmuir.8b01466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report on the frictional behavior of thin poly(dimethylacrylamide) hydrogel films grafted on glass substrates in sliding contact with a glass spherical probe. Friction experiments are carried out at various velocities and normal loads applied with the contact fully immersed in water. In addition to friction force measurements, a novel optical setup is designed to image the shape of the contact under steady-state sliding. The velocity dependence of both friction force Ft and contact shape is found to be controlled by a Péclet number, Pe, defined as the ratio of the time τ needed to drain the water out of the contact region to a contact time a/ v, where v is the sliding velocity and a is the contact radius. When Pe < 1, the equilibrium circular contact achieved under static normal indentation remains unchanged during sliding. Conversely, for Pe > 1, a decrease in the contact area is observed together with the development of a contact asymmetry when the sliding velocity is increased. A maximum in Ft is also observed at Pe ≈1. These experimental observations are discussed in the light of a poroelastic contact model based on a thin-film approximation. This model indicates that the observed changes in contact geometry are due to the development of a pore pressure imbalance when Pe > 1. An order-of-magnitude estimate of the friction force and its dependence on normal load and velocity are also provided under the assumption that most of the frictional energy is dissipated by poroelastic flow at the leading and trailing edges of the sliding contact.
Collapse
Affiliation(s)
- Jessica Delavoipière
- Soft Matter Sciences and Engineering Laboratory (SIMM) , PSL Research University, UPMC Univ. Paris 06, Sorbonne Universités, ESPCI Paris, CNRS , 10 rue Vauquelin , 75231 Paris Cedex 05, France
- Saint-Gobain Recherche , 39 quai Lucien Lefranc 93303 Aubervilliers Cedex, France
| | - Yvette Tran
- Soft Matter Sciences and Engineering Laboratory (SIMM) , PSL Research University, UPMC Univ. Paris 06, Sorbonne Universités, ESPCI Paris, CNRS , 10 rue Vauquelin , 75231 Paris Cedex 05, France
| | - Emilie Verneuil
- Soft Matter Sciences and Engineering Laboratory (SIMM) , PSL Research University, UPMC Univ. Paris 06, Sorbonne Universités, ESPCI Paris, CNRS , 10 rue Vauquelin , 75231 Paris Cedex 05, France
| | - Bertrand Heurtefeu
- Saint-Gobain Recherche , 39 quai Lucien Lefranc 93303 Aubervilliers Cedex, France
| | - Chung Yuen Hui
- Department of Mechanical and Aerospace Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Antoine Chateauminois
- Soft Matter Sciences and Engineering Laboratory (SIMM) , PSL Research University, UPMC Univ. Paris 06, Sorbonne Universités, ESPCI Paris, CNRS , 10 rue Vauquelin , 75231 Paris Cedex 05, France
| |
Collapse
|
29
|
Han G, Eriten M. Effect of relaxation-dependent adhesion on pre-sliding response of cartilage. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172051. [PMID: 29892390 PMCID: PMC5990745 DOI: 10.1098/rsos.172051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Possible links between adhesive properties and the pre-sliding (static) friction response of cartilage are not fully understood in the literature. The aims of this study are to investigate the relation between adhesion and relaxation time in articular cartilage, and the effect of relaxation-dependent adhesion on the pre-sliding response of cartilage. Adhesion tests were performed to evaluate the work of adhesion of cartilage at different relaxation times. Friction tests were conducted to identify the pre-sliding friction response of cartilage at relaxation times corresponding to adhesion tests. The pre-sliding friction response of cartilage was systematically linked to the work of adhesion and contact conditions by a slip-based failure model. It was found that the work of adhesion increases with relaxation time. Also, the work of adhesion is linearly correlated to the resistance to slip-based failure. In addition, as the work of adhesion increases, the adhered (stick) area at the moment of failure increases, and the propagation rate of the annular slip (crack) area towards its centre increases. These findings offer a mechanistic explanation of the pre-sliding friction behaviour and stick-slip response of soft hydrated interfaces such as articular cartilage and hydrogels. In addition, the linear correlation between adhesion and threshold to slip-based failure enables estimation of the adhesive strength of such interfaces directly from the pre-sliding friction response (e.g. shear wave elastography).
Collapse
Affiliation(s)
- Guebum Han
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
30
|
Urueña JM, McGhee EO, Angelini TE, Dowson D, Sawyer WG, Pitenis AA. Normal Load Scaling of Friction in Gemini Hydrogels. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biotri.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Shoaib T, Heintz J, Lopez-Berganza JA, Muro-Barrios R, Egner SA, Espinosa-Marzal RM. Stick-Slip Friction Reveals Hydrogel Lubrication Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:756-765. [PMID: 28961012 DOI: 10.1021/acs.langmuir.7b02834] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lubrication behavior of the hydrated biopolymers that constitute tissues in organisms differs from that outlined by the classical Stribeck curve, and studying hydrogel lubrication is a key pathway to understand the complexity of biolubrication. Here, we have investigated the frictional characteristics of polyacrylamide (PAAm) hydrogels with various acrylamide concentrations, exhibiting Young's moduli (E) that range from 1 to 40 kPa, as a function of applied normal load and sliding velocities by colloid probe lateral force microscopy. The speed-dependence of the friction force shows an initial decrease in friction with increasing velocity, while, above a transition velocity V*, friction increases with speed. This study reveals two different boundary lubrication mechanisms characterized by distinct scaling laws. An unprecedented and comprehensive study of the lateral force loops reveals intermittent friction or stick-slip above and below V*, with characteristics that depend on the hydrogel network, applied load, and sliding velocity. Our work thus provides insight into the closely tied parameters governing hydrogel lubrication mechanisms, and stick-slip friction.
Collapse
Affiliation(s)
- Tooba Shoaib
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Joerg Heintz
- Health Care Engineering Systems Center, University of Illinois at Urbana-Champaign , 1206 West Clark Street, Urbana, Illinois 61801, United States
| | - Josue A Lopez-Berganza
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| | - Raymundo Muro-Barrios
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Simon A Egner
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Milner PE, Parkes M, Puetzer JL, Chapman R, Stevens MM, Cann P, Jeffers JRT. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater 2018; 65:102-111. [PMID: 29109026 DOI: 10.1016/j.actbio.2017.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023]
Abstract
Partial joint repair is a surgical procedure where an artificial material is used to replace localised chondral damage. These artificial bearing surfaces must articulate against cartilage, but current materials do not replicate both the biphasic and boundary lubrication mechanisms of cartilage. A research challenge therefore exists to provide a material that mimics both boundary and biphasic lubrication mechanisms of cartilage. In this work a polymeric network of a biomimetic boundary lubricant, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), was incorporated into an ultra-tough double network (DN) biphasic (water phase + polymer phase) gel, to form a PMPC triple network (PMPC TN) hydrogel with boundary and biphasic lubrication capability. The presence of this third network of MPC was confirmed using ATR-FTIR. The PMPC TN hydrogel had a yield stress of 26 MPa, which is an order of magnitude higher than the peak stresses found in the native human knee. A preliminary pin on plate tribology study was performed where both the DN and PMPC TN hydrogels experienced a reduction in friction with increasing sliding speed which is consistent with biphasic lubrication. In the physiological sliding speed range, the PMPC TN hydrogel halved the friction compared to the DN hydrogel indicating the boundary lubricating PMPC network was working. A biocompatible, tough, strong and chondral lubrication imitating PMPC TN hydrogel was synthesised in this work. By complementing the biphasic and boundary lubrication mechanisms of cartilage, PMPC TN hydrogel could reduce the reported incidence of chondral damage opposite partial joint repair implants, and therefore increase the clinical efficacy of partial joint repair. STATEMENT OF SIGNIFICANCE This paper presents the synthesis, characterisation and preliminary tribological testing of a new biomaterial that aims to recreate the primary chondral lubrication mechanisms: boundary and biphasic lubrication. This work has demonstrated that the introduction of an established zwitterionic, biomimetic boundary lubricant can improve the frictional properties of an ultra-tough hydrogel. This new biomaterial, when used as a partial joint replacement bearing material, may help avoid damage to the opposing chondral surface-which has been reported as an issue for other non-biomimetic partial joint replacement materials. Alongside the synthesis of a novel biomaterial focused on complementing the lubrication mechanisms of cartilage, your readership will gain insights into effective mechanical and tribological testing methods and materials characterisation methods for their own biomaterials.
Collapse
Affiliation(s)
- Piers E Milner
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maria Parkes
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jennifer L Puetzer
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Robert Chapman
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom; School of Chemistry, Centre for Advanced Macromolecular Design, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philippa Cann
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jonathan R T Jeffers
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|