1
|
Mei B, Moreno AJ, Schweizer KS. Unified Understanding of the Structure, Thermodynamics, and Diffusion of Single-Chain Nanoparticle Fluids. ACS NANO 2024; 18:15529-15544. [PMID: 38842208 DOI: 10.1021/acsnano.4c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Single-chain nanoparticles (SCNPs) are a fascinating class of soft nano-objects with promising properties and relevance to protein condensates, polymer nanocomposites, nanomedicine, bioimaging, catalysis, and drug delivery. We combine molecular dynamics simulations and equilibrium and time-dependent statistical mechanical theory to construct a unified understanding of how the internal conformational structure of SCNPs, of both a simple fractal globule-like form and more complex objects with multiple internal intermediate length scales, determines nm-scale intermolecular packing correlations, thermodynamic properties, and center-of-mass diffusion over a wide range of concentrations up to dense melts. The intermolecular pair correlations generically exhibit a distinctive deep correlation hole form due to SCNP internal connectivity structure and repulsive interparticle interactions associated with a globular-like conformation on the macromolecular scale, with concentration-dependent deviations at small separations. Unanticipated exponential-like dependences of the equation-of-state, osmotic compressibility, and center-of-mass diffusion constant on SCNP macromolecular packing fraction are theoretically predicted and confirmed via simulations. System-specific behaviors are found associated with SCNP internal structure, but overarching regularities are identified and understood based on a generalized effective globule conformation on macromolecular scales. Diffusivity slows down by 2-3 decades with increasing concentration and is understood as a consequence of a nonactivated excluded volume-driven weak-caging process associated with space-time correlated intermolecular forces experienced by the SCNP. Good agreement between the theory and simulations is established, testable predictions are made, and a quantitative comparison with viscosity measurements on a specific SCNP fluid is carried out. The basic theoretical approach can potentially be extended to treat the chemical and physical consequences of varying the structure of other classes of soft nanoparticles with distinctive internal nanoscale organization relevant in nanotechnology and nanomedicine, and the possible emergence of macromolecular kinetically arrested glasses.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, Donostia-San Sebastián E-20018, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San Sebastián E-20018, Spain
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Luo J, Zhu Y, Ruan Y, Wu W, Ouyang X, Du Z, Liu G. Diameter and Elasticity Governing the Relaxation of Soft-Nanoparticle Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jintian Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yihui Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifu Ruan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weiwei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xikai Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhukang Du
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - GengXin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Engelke J, Tuten BT, Schweins R, Komber H, Barner L, Plüschke L, Barner-Kowollik C, Lederer A. An in-depth analysis approach enabling precision single chain nanoparticle design. Polym Chem 2020. [DOI: 10.1039/d0py01045f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of single chain nanoparticles (SCNPs) is a vibrant field in macromolecular science. However, to achieve an in-depth understanding of the nature of intramolecular polymer folding, a step-change in the methodologies for SCNP analysis is required.
Collapse
Affiliation(s)
- Johanna Engelke
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Leibniz-Institut für Polymerforschung Dresden
| | - Bryan T. Tuten
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| | - Ralf Schweins
- Institut Laue-Langevin
- DS/LSS
- CS 20 156
- 38042 Grenoble CEDEX 9
- France
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden
- 01069 Dresden
- Germany
| | - Leonie Barner
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| | - Laura Plüschke
- Leibniz-Institut für Polymerforschung Dresden
- 01069 Dresden
- Germany
- School of Science
- Technische Universität Dresden
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden
- 01069 Dresden
- Germany
- School of Science
- Technische Universität Dresden
| |
Collapse
|
4
|
Klonos PA, Patelis N, Glynos E, Sakellariou G, Kyritsis A. Molecular Dynamics in Polystyrene Single-Chain Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Nikolaos Patelis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografrou, 15771 Athens, Greece
| | - Emmanouil Glynos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O.
Box 1385, Heraklion, 711 10 Crete, Greece
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografrou, 15771 Athens, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
5
|
Engelke J, Brandt J, Barner-Kowollik C, Lederer A. Strengths and limitations of size exclusion chromatography for investigating single chain folding – current status and future perspectives. Polym Chem 2019. [DOI: 10.1039/c9py00336c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synthetic approaches for Single-Chain Nanoparticles (SCNPs) developed rapidly during the last decade, opening a multitude of avenues for the design of functional macromolecular chains able to collapse into defined nanoparticles. However, the analytical evaluation of the SCNP formation process still requires critical improvements.
Collapse
Affiliation(s)
- Johanna Engelke
- Polymer Separation Group
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Technische Universität Dresden
| | - Josef Brandt
- Polymer Separation Group
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Albena Lederer
- Polymer Separation Group
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Technische Universität Dresden
| |
Collapse
|
6
|
Vargas-Lara F, Hassan AM, Mansfield ML, Douglas JF. Knot Energy, Complexity, and Mobility of Knotted Polymers. Sci Rep 2017; 7:13374. [PMID: 29042576 PMCID: PMC5645353 DOI: 10.1038/s41598-017-12461-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/08/2017] [Indexed: 11/15/2022] Open
Abstract
The Coulomb energy E C is defined by the energy required to charge a conductive object and scales inversely to the self-capacity C, a basic measure of object size and shape. It is known that C is minimized for a sphere for all objects having the same volume, and that C increases as the symmetry of an object is reduced at fixed volume. Mathematically similar energy functionals have been related to the average knot crossing number 〈m〉, a natural measure of knot complexity and, correspondingly, we find E C to be directly related to 〈m〉 of knotted DNA. To establish this relation, we employ molecular dynamics simulations to generate knotted polymeric configurations having different length and stiffness, and minimum knot crossing number values m for a wide class of knot types relevant to the real DNA. We then compute E C for all these knotted polymers using the program ZENO and find that the average Coulomb energy 〈E C〉 is directly proportional to 〈m〉. Finally, we calculate estimates of the ratio of the hydrodynamic radius, radius of gyration, and the intrinsic viscosity of semi-flexible knotted polymers in comparison to the linear polymeric chains since these ratios should be useful in characterizing knotted polymers experimentally.
Collapse
Affiliation(s)
- Fernando Vargas-Lara
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Ahmed M Hassan
- Department of Computer Science and Electrical Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Marc L Mansfield
- Bingham Research Center, Utah State University, Vernal, UT, 84078, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| |
Collapse
|