1
|
Davoodi F, Azizi S, Aghazadeh S, Dezfoulian O. Effects of linalool on postoperative peritoneal adhesions in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5145-5155. [PMID: 38240782 DOI: 10.1007/s00210-024-02943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 06/12/2024]
Abstract
The current study examines the effects of linalool in preventing postoperative abdominal adhesions. Twenty male Wistar rats were randomly divided into four groups. (1) Sham: in this group, the abdomen was approached, and without any manipulations, it was sutured. (2) Control: rats in this group underwent a surgical procedure to induce adhesions. This involved making three incisions on the right abdominal side and removing a 1×1-cm piece of the peritoneum on the left abdominal side. (3) Treatment groups: these groups underwent the same surgical procedure as the control group to induce adhesions. Animals in these groups received linalool orally with doses of 50 and 100 mg/kg, respectively, for a period of 14 days. Moreover, rats in the sham and control groups received normal saline via gavage for 14 days. The evaluation of TNF-α, TGF-β, VEGF, and caspase 3 was performed using western blot and IHC methods. Furthermore, oxidative stress biomarkers such as MDA, TAC, GSH, and NO were assessed in the peritoneal adhesion tissue. The findings revealed that linalool significantly reduced peritoneal adhesions by reducing TNF-α, TGF-β, VEGF, and caspase 3 levels. Moreover, MDA concentration was significantly decreased, while NO, TAC, and GSH levels were notably increased. Overall, linalool was effective in preventing adhesion formation and reduced inflammation, angiogenesis, apoptosis, and oxidative stress. Therefore, linalool as a potent antioxidant is suggested for reducing postoperative adhesions in rats.
Collapse
Affiliation(s)
- Farshid Davoodi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Saeed Azizi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Safiyeh Aghazadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| |
Collapse
|
2
|
Zhou F, Li H, Liu Y, Deng H, Rong J, Zhao J. Hyaluronan derivative decorated calcium carbonate nanoparticle as a potential platform for breast cancer synergistic therapy via blood coagulation and drug delivery. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Akhlaghi S, Rabbani S, Karimi H, Haeri A. Hyaluronic acid gel incorporating curcumin-phospholipid complex nanoparticles prevents postoperative peritoneal adhesion. J Pharm Sci 2022. [DOI: 10.1016/j.xphs.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Zhou Y, Zeng G, Zhang F, Luo J, Li K, Li X, Li J, Fang Z. High strength and flame retardant soybean polysaccharide-based wood adhesive produced by borate chemistry and crosslinking strategy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Lee YJ, Ryoo HJ, Shim HS. Prevention of postoperative adhesions after flexor tendon repair with acellular dermal matrix in Zones III, IV, and V of the hand: A randomized controlled (CONSORT-compliant) trial. Medicine (Baltimore) 2022; 101:e28630. [PMID: 35060544 PMCID: PMC8772763 DOI: 10.1097/md.0000000000028630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Various techniques have been attempted for preventing postoperative flexor tendon adhesion, such as modification of suture technique, pharmacological agents, and mechanical barriers. However, there is no evidence of the efficacy of these methods in clinical settings. In this study, we present the long-term outcomes of a randomized prospective study in which acellular dermal matrix (ADM) was used to prevent postoperative adhesions after tendon injury in the hand. METHODS From January 2017 to January 2020, all patients with an acute single flexor tendon injury in hand Zones III, IV, or V were candidates. A single-digit, total tendon rupture repaired within 48 hours, from the index finger to the little finger, was included in the study. Patients were randomly allocated to either a control or ADM group. Complications and the range of movements were recorded. Functional outcomes and a patient satisfaction questionnaire were evaluated after 12 months following the tendon repair surgery. The present study is adhered to the CONSORT guidelines. RESULTS A total of 25 patients was enrolled in the study: 13 patients in the ADM group and 12 in the control group. According to Buck-Gramcko II criteria, the postoperative functional outcome score was 14.38 ± 1.71 in the ADM group and 13.08 ± 1.82 in the control group (P value = .0485). Patient satisfaction was recorded at 8.38 ± 1.44 in the ADM group and 7.08 ± 1.58 in the control group (P value = .0309), a significant difference. There were no differences in complications between the 2 groups. CONCLUSION The beneficial effects of ADM after tendon repair were confirmed by improved postoperative functional outcome at flexor Zones III, IV, and V, preventing peritendinous adhesions and acting effectively as an anti-adhesive barrier.
Collapse
|
6
|
Mrázek J, Kohout J, Kmječ T, Nešporová K, Chmelař J, Kubala L, Velebný V. Insoluble hyaluronan films obtained by heterogeneous crosslinking with iron(III) as resorbable implants. Int J Biol Macromol 2021; 191:201-210. [PMID: 34543627 DOI: 10.1016/j.ijbiomac.2021.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
We present water-insoluble hyaluronan films crosslinked by trivalent iron developed as potential resorbable implants. The films were crosslinked by sorption of ferric salt into solid HA films in water/2-propanol bath. These heterogeneously crosslinked films (het-FeHA) remained tough and dimensionally stable when rehydrated in saline. In contrast, films prepared by drying the well-known homogeneous ferric hyaluronate gels (hom-FeHA) softened upon rehydration and expanded rapidly. Differences between hom-FeHA and het-FeHA result from polymer network topology (dominant inter- or intra-molecular crosslink, respectively). Moreover, Mössbauer spectroscopy of het-FeHA revealed diiron complexes, while iron in the hom-FeHA was present exclusively as γ-FeOOH nanoparticles or amorphous FeOOH. The biocompatibility tests of het-FeHA did not show any adverse effect and the sample disintegrated within one day when implanted in mice peritoneum. In conclusion, we developed implantable hyaluronan-based free-standing film with minimal swelling that can be resorbed quickly enough to avoid induction of foreign-body reaction.
Collapse
Affiliation(s)
- Jiří Mrázek
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czechia; Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Jaroslav Kohout
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czechia
| | - Tomáš Kmječ
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czechia
| | | | - Josef Chmelař
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czechia
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czechia; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czechia
| | | |
Collapse
|
7
|
Cai Z, Tang Y, Wei Y, Wang P, Zhang H. Physically Cross-Linked Hyaluronan-Based Ultrasoft Cryogel Prepared by Freeze-Thaw Technique as a Barrier for Prevention of Postoperative Adhesions. Biomacromolecules 2021; 22:4967-4979. [PMID: 34499463 DOI: 10.1021/acs.biomac.1c00878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Postsurgical peritoneal adhesions are a common and serious postoperative complication after various peritoneal surgeries, such as pelvic and abdominal surgery. Various studies have shown that peritoneal adhesions can be minimized or prevented by physical anti-adhesion barriers, including membranes, knits, and hydrogels. Hydrogels have attracted great attention in preventing peritoneal adhesions because the dimensional architecture of hydrogels is similar to that of the native extracellular matrix. However, chemical cross-linkers had to be used in the preparation of chemical hydrogels, which may have problems in cytotoxicity or unwanted side effects. This fact prompts us to create alternative cross-linking methods for the development of biocompatible hydrogels as physical barriers. Herein, we report a physically cross-linked flexible hyaluronan (HA) cryogel prepared via a freeze-thaw technique as a novel anti-adhesion biomaterial for completely preventing postsurgical peritoneal adhesions. In vitro studies demonstrated that this physically cross-linked HA cryogel exhibited excellent biocompatibility, the inherently desirable biocompatibility and functionality of HA being integrally retained as much as possible. Intriguingly, the rheological properties and appropriate biodegradability of the cryogels were readily tailored and tunable by way of the gelation process. In vivo assessments suggested that the cryogel, as a physical barrier, satisfactorily prevented fibroblast penetration and attachment between the injured tissues and nearby normal organs. Furthermore, the molecular mechanism studies revealed that the HA cryogel could prevent peritoneal adhesion by inhibiting inflammatory response and modulation of the fibrinolytic system. Our results show that HA ultrasoft cryogel is a promising clinical candidate for prolonged adhesion prevention.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanmei Tang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, P. R. China.,National Center for Stomatology, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai 200011, P. R. China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pengguang Wang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Xue F, Zhang H, Hu J, Liu Y. Hyaluronic acid nanofibers crosslinked with a nontoxic reagent. Carbohydr Polym 2021; 259:117757. [PMID: 33674011 DOI: 10.1016/j.carbpol.2021.117757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
The poor water resistance of the eletrospun hyaluronic acid (HA) nanofibers prevents their biomedical applications. In this manuscript, we crosslinked HA nanofibers with the periodate oxidation - adipic acid dihydrazide (ADH) crosslinking strategy. Quantification results showed that ∼ 57 % of aldehydes in oxidized HA were crosslinked by ADH and the crosslinking density could reach 75.7 %. Correspondingly, the crosslinked HA nanofiber mats exhibited wet tensile strength up to 0.88 MPa and could maintain their nanofibrous morphology after 14 days in simulated body fluid. Although ∼ 28 % of the aldehydes in oxidized HA were unreacted, the crosslinked HA nanofibers did not cause toxicity to L929 fibroblast cells, possibly because that the unreacted aldehyde groups were linked on macromolecular fragments and could not go across cell membranes. The water resistant and biocompatible HA nanofibers are expected to seek extensive applications in biomedical fields such as wound healing, adhesion prevention, and tissue engineering.
Collapse
Affiliation(s)
- Fuxin Xue
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin, 130024, China.
| | - Hui Zhang
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin, 130024, China.
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin, 130024, China.
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin, 130024, China.
| |
Collapse
|
9
|
Chandel AKS, Shimizu A, Hasegawa K, Ito T. Advancement of Biomaterial-Based Postoperative Adhesion Barriers. Macromol Biosci 2021; 21:e2000395. [PMID: 33463888 DOI: 10.1002/mabi.202000395] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Indexed: 01/16/2023]
Abstract
Postoperative peritoneal adhesion (PPA) is a prevalent incidence that generally happens during the healing process of traumatized tissues. It causes multiple severe complications such as intestinal obstruction, chronic abdominal pain, and female infertility. To prevent PPA, several antiadhesion materials and drug delivery systems composed of biomaterials are used clinically, and clinical antiadhesive is one of the important applications nowadays. In addition to several commercially available materials, like film, spray, injectable hydrogel, powder, or solution type have been energetically studied based on natural and synthetic biomaterials such as alginate, hyaluronan, cellulose, starch, chondroitin sulfate, polyethylene glycol, polylactic acid, etc. Moreover, many kinds of animal adhesion models, such as cecum abrasion models and unitary horn models, are developed to evaluate new materials' efficacy. A new animal adhesion model based on hepatectomy and conventional animal adhesion models is recently developed and a new adhesion barrier by this new model is also developed. In summary, many kinds of materials and animal models are studied; thus, it is quite important to overview this field's current progress. Here, PPA is reviewed in terms of the species of biomaterials and animal models and several problems to be solved to develop better antiadhesion materials in the future are discussed.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Shimizu
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
10
|
Chen R, Lin L, Wang H, Zhai X, Liang Y, Zhao B, Yu Z, Li K, Shen W. Effects of Morphologies of Thermosensitive Electrospun Nanofibers on Controllable Drug Release. Tissue Eng Part A 2020; 27:724-732. [PMID: 33143573 DOI: 10.1089/ten.tea.2020.0258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Electrospun nanofibers is a promising and versatile avenue for building controlled drug release system because of the facile fabrication and the broad range of polymer materials. This research systematically studied the morphological effect of thermosensitive electrospun nanofibers, including porous and coaxial structures, on controllable drug release. Three types of drugs, nicotinamide, paracetamol, and ibuprofen, with different hydrophilicity were applied in this study. The data of drug release were all fitted to the first-order kinetic model regardless of the drug properties, and the release rates paralleled with their hydrophilicity. Sol-gel phase transition of the thermosensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel led to slower drug release at 37°C compared with those at 25°C. Regarding morphology, coaxial nanofibers could provide higher loading efficiency and slower drug release rather than porous nanofibers. Our research highlighted the overall effects of compound property, temperature, and the morphological structures of thermosensitive electrospun nanofibers on the controlled drug release. Our results concluded that hydrophobic drug encapsulated in the core-shell PNIPAAm nanofibers could perform excellent sustained release and also controllable release under temperature stumuli. Impact statement The behaviors for the controlled release of drugs loaded in the thermosensitive electrospun nanofibers could be affected by various factors including the properties of loaded drug, morphologies of nanofibrous, and lower critical solution temperatures of thermosensitive hydrogels. However, few systematical investigations have been performed in this area. In this article, we designed and fabricated porous and coaxial thermosensitive poly(N-isopropylacrylamide) electrospun nanofibers with different drug loading to study the comprehensive effect. This study suggested when adopting thermosensitive electrospun hydrogel nanofibers as the controllable drug release carrier, the hydrophilicity of loaded compounds and the morphologies of nanofibers are necessary to be optimized.
Collapse
Affiliation(s)
- Rong Chen
- School of Science, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| | - Lulu Lin
- School of Science, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| | - Hanyang Wang
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Xinhui Zhai
- School of Science, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| | - Yuwen Liang
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Benzheng Zhao
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Zhuo Yu
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Kaiyue Li
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Liu S, Zhang Q, Yu J, Shao N, Lu H, Guo J, Qiu X, Zhou D, Huang Y. Absorbable Thioether Grafted Hyaluronic Acid Nanofibrous Hydrogel for Synergistic Modulation of Inflammation Microenvironment to Accelerate Chronic Diabetic Wound Healing. Adv Healthc Mater 2020; 9:e2000198. [PMID: 32338465 DOI: 10.1002/adhm.202000198] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Indexed: 01/18/2023]
Abstract
Current standard of care dressings are unsatisfactorily inefficacious for the treatment of chronic wounds. Chronic inflammation is the primary cause of the long-term incurable nature of chronic wounds. Herein, an absorbable nanofibrous hydrogel is developed for synergistic modulation of the inflammation microenvironment to accelerate chronic diabetic wound healing. The electrospun thioether grafted hyaluronic acid nanofibers (FHHA-S/Fe) are able to form a nanofibrous hydrogel in situ on the wound bed. This hydrogel degrades and is absorbed gradually within 3 days. The grafted thioethers on HHA can scavenge the reactive oxygen species quickly in the early inflammation phase to relieve the inflammation reactions. Additionally, the HHA itself is able to promote the transformation of the gathered M1 macrophages to the M2 phenotype, thus synergistically accelerating the wound healing phase transition from inflammation to proliferation and remodeling. On the chronic diabetic wound model, the average remaining wound area after FHHA-S/Fe treatment is much smaller than both that of FHHA/Fe without grafted thioethers and the control group, especially in the early wound healing stage. Therefore, this facile dressing strategy with intrinsic dual modulation mechanisms of the wound inflammation microenvironment may act as an effective and safe treatment strategy for chronic wound management.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Jie Yu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Nannan Shao
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Hongtong Lu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Jinshan Guo
- Department of Histology and EmbryologySchool of Basic Medical SciencesSouthern Medical University Guangzhou 510515 P. R. China
| | - Xuepeng Qiu
- University of Science and Technology of China Hefei 230026 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510515 P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
12
|
Wang Y, Liu G, Wu L, Qu H, Song D, Huang H, Wu C, Xu M. Rational design of porous starch/hyaluronic acid composites for hemostasis. Int J Biol Macromol 2020; 158:S0141-8130(20)33164-0. [PMID: 32387600 DOI: 10.1016/j.ijbiomac.2020.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
Effective hemorrhage control is pivotal for decreasing the trauma death both in civilian and military but has proven to be dauntingly challenging, especially for solid viscera and artery trauma. Here we report the fabrication of a novel starch-based hemostat, sodium trimethaphosphate (STMP)-crosslinked starch/hyaluronic acid (HA) (ScSH) porous composites. Aiming at hemostatic potential, physicochemical properties, cytocompatibility, hemocompatibility, histocompatibility and hemostatic performance of ScSH composites have been studied. As it turned out, the incorporation of HA greatly improved the water absorption capacity and hemostatic performance of ScSH composites. In addition, the composites with a non-toxic crosslinker exhibited non-cytotoxicity, low hemolysis ratio (0.97%) and favorable histocompatibility. Meanwhile, the composites performed exceptionally well in blood clotting of superficial injury, solid viscera and artery trauma and displayed similar hemostatic efficacy to commercialized hemostat (Quickclean® particles). Unambiguously, these encouraging results highlighted potential of our materials to be used as hemostats and made the approach, constructing porous starch/HA composites, a promising strategy to accelerate further development of hemostatic agents applied both in vivo and in vitro.
Collapse
Affiliation(s)
- Yanling Wang
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China; Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Guangwan Liu
- Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China.
| | - Lijuan Wu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China; Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Hongyuan Qu
- Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Deli Song
- Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Hailong Huang
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China
| | - Changlin Wu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China; Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China.
| | - Min Xu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
13
|
Chen CT, Chen CH, Sheu C, Chen JP. Ibuprofen-Loaded Hyaluronic Acid Nanofibrous Membranes for Prevention of Postoperative Tendon Adhesion through Reduction of Inflammation. Int J Mol Sci 2019; 20:E5038. [PMID: 31614502 PMCID: PMC6834315 DOI: 10.3390/ijms20205038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
A desirable multi-functional nanofibrous membrane (NFM) for prevention of postoperative tendon adhesion should be endowed with abilities to prevent fibroblast attachment and penetration and exert anti-inflammation effects. To meet this need, hyaluronic acid (HA)/ibuprofen (IBU) (HAI) NFMs were prepared by electrospinning, followed by dual ionic crosslinking with FeCl3 (HAIF NFMs) and covalent crosslinking with 1,4-butanediol diglycidyl ether (BDDE) to produce HAIFB NFMs. It is expected that the multi-functional NFMs will act as a physical barrier to prevent fibroblast penetration, HA will reduce fibroblast attachment and impart a lubrication effect for tendon gliding, while IBU will function as an anti-inflammation drug. For this purpose, we successfully fabricated HAIFB NFMs containing 20% (HAI20FB), 30% (HAI30FB), and 40% (HAI40FB) IBU and characterized their physico-chemical properties by scanning electron microscopy, Fourier transformed infrared spectroscopy, thermal gravimetric analysis, and mechanical testing. In vitro cell culture studies revealed that all NFMs except HAI40FB possessed excellent effects in preventing fibroblast attachment and penetration while preserving high biocompatibility without influencing cell proliferation. Although showing significant improvement in mechanical properties over other NFMs, the HAI40FB NFM exhibited cytotoxicity towards fibroblasts due to the higher percentage and concentration of IBU released form the membrane. In vivo studies in a rabbit flexor tendon rupture model demonstrated the efficacy of IBU-loaded NFMs (HAI30FB) over Seprafilm® and NFMs without IBU (HAFB) in reducing local inflammation and preventing tendon adhesion based on gross observation, histological analyses, and biomechanical functional assays. We concluded that an HAI30FB NFM will act as a multi-functional barrier membrane to prevent peritendinous adhesion after tendon surgery.
Collapse
Affiliation(s)
- Chien-Tzung Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Collage of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University, College of Medicine, Keelung 20401, Taiwan.
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Collage of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Chialin Sheu
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Collage of Medicine, Kwei-San, Taoyuan 33305, Taiwan.
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
14
|
Cai X, Hu S, Yu B, Cai Y, Yang J, Li F, Zheng Y, Shi X. Transglutaminase-catalyzed preparation of crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen composite membrane for postsurgical peritoneal adhesion prevention. Carbohydr Polym 2018; 201:201-210. [PMID: 30241812 DOI: 10.1016/j.carbpol.2018.08.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023]
Abstract
Peritoneal adhesion is a general complication following pelvic and abdominal surgery, which may lead to chronic abdominal pain, bowel obstruction, organ injury, and female infertility. Biodegradable polymer membranes have been suggested as physical barriers to prevent peritoneum adhesion. In this work, a transglutaminase (TGase)-catalyzed crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen (CMCS/CMCL/COL) composite anti-adhesion membrane with various proportions of CMCS, CMCL, and COL (40/40/20, 35/35/30, 25/25/50) was developed. After crosslinking by TGase, the composite anti-adhesion membranes shown enhanced mechanical properties and improved biodegradability. Meanwhile, the high cytocompatibility of anti-adhesion membranes was proved by in vitro cell culture study. Moreover, the anti-adhesion membrane with the proportion of 25/25/50 was implanted between the artificially defected cecum and peritoneal wall in rats and following by general observation, histological examination, and inflammatory factors assay. The results indicated that the anti-adhesion membrane can significantly prevent peritoneal adhesion with negligible immunogenicity. Therefore, the composite membrane crosslinked by TGase had satisfactory anti-adhesive effects with high biocompatibility and low antigenicity, which could be used as a preventive barrier for peritoneal adhesion.
Collapse
Affiliation(s)
- Xianqun Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Shengxue Hu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Bangrui Yu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Yilei Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China.
| | - Feng Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Yunquan Zheng
- Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, Fujian 350108, China.
| |
Collapse
|
15
|
Li J, Feng X, Shi J, Liu T, Ding J. Porous Polylactide Film Plus Atorvastatin-Loaded Thermogel as an Efficient Device for Peritoneal Adhesion Prevention. ACS OMEGA 2018; 3:2715-2723. [PMID: 30023849 PMCID: PMC6045354 DOI: 10.1021/acsomega.8b00090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/22/2018] [Indexed: 05/26/2023]
Abstract
Peritoneal adhesion is a common postoperative complication that causes many kinds of organ dysfunctions. It can be minimized by the integration of physical isolation and pharmaceutical treatment. However, the gas permeability of traditional medical devices for adhesion prevention is not satisfactory, which increases the risk of infection and inflammation, thus facilitating the formation of peritoneal adhesion. In this study, a device of porous polylactide (PLA) film plus atorvastatin (ATV)-loaded thermogel was developed for peritoneal adhesion prevention. PLA film acted as a physical barrier to prevent the connection of fibrin bridges between the injured tissues and nearby normal organs. Simultaneously, ATV was released to achieve the antifibrin deposition and anti-inflammatory effect. The porous properties of PLA film and thermogel increased the gas permeability and further inhibited the inflammatory responses. The in vivo study demonstrated that the porous PLA film with ATV-loaded thermogel possessed excellent anti-inflammation ability and satisfactory antiadhesion capacity, indicating its great potential for clinical application.
Collapse
Affiliation(s)
- Jiannan Li
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Department
of General Surgery, The Second Hospital
of Jilin University, 218 Ziqiang Street, Changchun 130041, P. R. China
| | - Xiangru Feng
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Jian Shi
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Department
of General Surgery, The Second Hospital
of Jilin University, 218 Ziqiang Street, Changchun 130041, P. R. China
| | - Tongjun Liu
- Department
of General Surgery, The Second Hospital
of Jilin University, 218 Ziqiang Street, Changchun 130041, P. R. China
| | - Jianxun Ding
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
16
|
Aydemir Sezer U, Sanko V, Gulmez M, Sayman E, Aru B, Yuksekdag ZN, Aktekin A, Vardar Aker F, Sezer S. A Polypropylene-Integrated Bilayer Composite Mesh with Bactericidal and Antiadhesive Efficiency for Hernia Operations. ACS Biomater Sci Eng 2017; 3:3662-3674. [DOI: 10.1021/acsbiomaterials.7b00757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | | | - Basak Aru
- Department
of Immunology Section, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Zehra Nur Yuksekdag
- Faculty
of
Sciences, Department of Biology, Gazi University, Ankara 06500, Turkey
| | | | | | | |
Collapse
|
17
|
Bang S, Das D, Yu J, Noh I. Evaluation of MC3T3 Cells Proliferation and Drug Release Study from Sodium Hyaluronate-1,4-butanediol Diglycidyl Ether Patterned Gel. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E328. [PMID: 29036920 PMCID: PMC5666493 DOI: 10.3390/nano7100328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/20/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022]
Abstract
A pattern gel has been fabricated using sodium hyaluronate (HA) and 1,4-butanediol diglycidyl ether (BDDGE) through the micro-molding technique. The cellular behavior of osteoblast cells (MC3T3) in the presence and absence of dimethyloxalylglycine (DMOG) and sodium borate (NaB) in the pattern gel (HA-BDDGE) has been evaluated for its potential application in bone regeneration. The Fourier transform infrared spectroscopy (FTIR), 13C-nuclear magnetic resonance spectroscopy (13C NMR), and thermogravimetric analysis (TGA) results implied the crosslinking reaction between HA and BDDGE. The scanning electron microscopy (SEM) analysis confirmed the formation of pattern on the surface of HA-BDDGE. The gel property of the crosslinked HA-BDDGE has been investigated by swelling study in distilled water at 37 °C. The HA-BDDGE gel releases DMOG in a controlled way for up to seven days in water at 37 °C. The synthesized gel is biocompatible and the bolus drug delivery results indicated that the DMOG containing patterned gel demonstrates a better cell migration ability on the surface than NaB. For local delivery, the pattern gel with 300 µM NaB or 300 µM DMOG induced cell clusters formation, and the gel with 150 µM NaB/DMOG showed high cell proliferation capability only. The vital role of NaB for bone regeneration has been endorsed from the formation of cell clusters in presence of NaB in the media. The in vitro results indicated that the pattern gel showed angiogenic and osteogenic responses with good ALP activity and enhanced HIF-1α, and Runx2 levels in the presence of DMOG and NaB in MC3T3 cells. Hence, the HA-BDDGE gel could be used in bone regeneration application.
Collapse
Affiliation(s)
- Sumi Bang
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science of Technology, Seoul 01811, Korea.
| | - Dipankar Das
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science of Technology, Seoul 01811, Korea.
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science of Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea.
| | - Jiyun Yu
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science of Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea.
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science of Technology, Seoul 01811, Korea.
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science of Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea.
| |
Collapse
|