1
|
Elumalai M, Baskaran A, Sadaiyandi V, Ramaraj SG, Kumar N, Karthika PC, Rajendiran N. Eco-friendly synthesis of N- cholyl mercapto histidine capped silver nanoparticles and its sensing of mercury (II) ions and photo catalytic degradation of methyl orange. CHEMOSPHERE 2024; 362:142748. [PMID: 38960050 DOI: 10.1016/j.chemosphere.2024.142748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
In this report, we have developed highly water soluble and stable silver nanoparticles (Ag NPs) utilizing N-Cholyl Mercapto Histidine (NCMH) as a reducing and stabilizing agent with near the primary critical micellar concentration (CMC) under ambient sunlight irradiation. Moreover, The NCMH was firstly synthesized by demonstrating the reaction between cholic acid and 2- Mercapto Histidine through a simple acid amine coupling approach. The primary and secondary CMC of NCMH surfactant was measured by pyrene (1 × 10-6 M) as a fluorescent probe, and values were found to be 3.2 and 13.1 mM respectively. The synthesized Ag NPs showed at neutral pH and highly stable for more than one year without any noticeable aggregation. The TEM analysis displays the synthesized Ag NPs having a spherical shape and average size of 9.6 ± 0.5 nm. The synthesis of stabilized Ag NPs was used for ultra-sensitive and selective detection of Hg2+ ions in aqueous medium were monitored by Uv-visible spectrometer and naked eyes with a lowest limit of detection (LOD) 7 nM. The photo-catalytic degradation of methyl orange (MO) by utilizing Ag NPs as nano-catalyst exhibits a potential degradation within a study period of 180 min. Concluding that, facile and cost effective green synthesis of NCMH capped Ag NPs possess excellent reducing ability towards the selective detection of Hg2+ ions along with photo-catalytic degradation of MO dye. These true findings detached an innovative pathway of Ag NPs towards the reactivity against the catalytic activity of dye degradation and selective sensing of Hg2+ ions. Thus it paves the way for extensive range of novel potential applications of Ag NPs in various environment friendly approaches of sensitive and analytical protocol in the future.
Collapse
Affiliation(s)
- Manikandan Elumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India.
| | - Aravind Baskaran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| | - Vivekananthan Sadaiyandi
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Sankar Ganesh Ramaraj
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Japan; Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - Niraj Kumar
- Department of Electronics & Communication Engineering, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhad, India
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India.
| |
Collapse
|
2
|
Menandro AS, Péres LO, Bohne C. Solubilization and Photostabilization in a Sodium Deoxycholate Hydrogel of a Neutral Conjugated Thiophene Oligomer and Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11215-11227. [PMID: 38748867 DOI: 10.1021/acs.langmuir.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Oligo(3-hexylthiophene-co-1,4-phenylene) and poly(3-hexylthiophene) were solubilized in sodium deoxycholate self-assemblies in water solutions and hydrogels, with the goal of solubilizing sufficient material in a hydrogel for fluorescence applications. The neutral conjugated oligomer and polymer were incorporated as monomers into the self-assemblies with sodium deoxycholate aggregates, leading to the photoprotection of these neutral conjugated and water-insoluble molecules. Dynamic light scattering, rheology, and fluorescence experiments established that the deoxycholate aggregation and gel formation properties were not altered with the incorporation of the oligomer or polymer into the deoxycholate self-assemblies, showing that this adaptable host system with some molecular recognition elements is a viable strategy to incorporate into hydrogels neutral conjugated molecules as isolated monomers. This strategy has the potential to be used when conjugated molecules are used for fluorescence applications in hydrogels.
Collapse
Affiliation(s)
- Alessandra S Menandro
- Laboratory of Hybrid Materials, Federal University of São Paulo, Diadema, SP 09913-030, Brazil
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| | - Laura O Péres
- Laboratory of Hybrid Materials, Federal University of São Paulo, Diadema, SP 09913-030, Brazil
| | - Cornelia Bohne
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
3
|
Ceccarelli G, Goracci L, Carotti A, Paccoia F, Passeri D, Cipolloni M, Di Bona S, Cruciani G, Pellicciari R, Gioiello A. Discovery and Structure-Activity Relationships of Novel ssDAF-12 Receptor Modulators. J Med Chem 2024; 67:4150-4169. [PMID: 38417155 DOI: 10.1021/acs.jmedchem.3c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The nuclear receptor ssDAF-12 has been recognized as the key molecular player regulating the life cycle of the nematode parasite Strongyloides stercoralis. ssDAF-12 ligands permit the receptor to function as an on/off switch modulating infection, making it vulnerable to therapeutic intervention. In this study, we report the design and synthesis of a set of novel dafachronic acid derivatives, which were used to outline the first structure-activity relationship targeting the ssDAF-12 receptor and to unveil hidden properties shared by the molecular shape of steroidal ligands that are relevant to the receptor binding and modulation. Moreover, biological results led to the discovery of sulfonamide 3 as a submicromolar ssDAF-12 agonist endowed with a high receptor selectivity, no toxicity, and improved properties, as well as to the identification of unprecedented ssDAF-12 antagonists that can be exploited in the search for novel chemical tools and alternative therapeutic approaches for treating parasitism such as Strongyloidiasis.
Collapse
Affiliation(s)
- Giada Ceccarelli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, 06123 Perugia, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Federico Paccoia
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | | | | | - Stefano Di Bona
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, 06123 Perugia, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, 06123 Perugia, Italy
| | | | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
4
|
Zhang Z, Zou Y, Liu J. A single 8-hydroxyquinoline-appended bile acid fluorescent probe obtained by click chemistry for solvent-dependent and distinguishable sensing of zinc(II) and cadmium(II). LUMINESCENCE 2024; 39:e4610. [PMID: 37880919 DOI: 10.1002/bio.4610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Construction of fluorescent probes for zinc ion (Zn2+ ) and cadmium ion (Cd2+ ) is significant for the safety of humans. However, the discriminating recognition of Zn2+ and Cd2+ by a single probe remains challenging owing to their similar properties. Herein, a novel deoxycholic acid derivative containing 8-hydroxyquinoline fluorophore has been facilely synthesized through click chemistry to form a clamp-like probe. Using its perfect bonding cavity from 1,2,3-triazole and quinoline, this molecule showed favorable solvent-dependent fluorescent responses and distinguished Zn2+ and Cd2+ in different solvents. In ethanol aqueous solution, it displayed good selectivity and ratiometric fluorescence to Zn2+ with 30 nm spectroscopic red-shifts. In acetonitrile aqueous solution, it exhibited good selectivity and ratiometric fluorescence to Cd2+ with 18 nm spectroscopic red-shifts. Moreover, the unique microstructural features of the probe in assembly were used to reflect its recognition processes. Due to its merits of low detection limit and instant response time, the probe was utilized for sensing Zn2+ and Cd2+ in water, beer and urine with high accuracy. Meanwhile, this probe served as a handy tool and was employed to obtain inexpensive test strips for the prompt and semiqualitative analysis of Zn2+ and Cd2+ with the naked eye.
Collapse
Affiliation(s)
- Zhen Zhang
- Institute of Molecular Science and Application, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, China
| | - Yuan Zou
- Institute of Molecular Science and Application, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, China
| | - Jihua Liu
- Xi'an Modern Chemistry Research Institute, Xi'an, China
| |
Collapse
|
5
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Fluorescent sensors and rapid detection films for Fe3+ and Cu2+ based on naphthalene and cholesterol derivative organogels. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Parekh PY, Patel VI, Khimani MR, Bahadur P. Self-assembly of bile salts and their mixed aggregates as building blocks for smart aggregates. Adv Colloid Interface Sci 2023; 312:102846. [PMID: 36736167 DOI: 10.1016/j.cis.2023.102846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The present communication offers a comprehensive overview of the self-assembly of bile salts emphasizing their mixed smart aggregates with a variety of amphiphiles. Using an updated literature survey, we have explored the dissimilar interactions of bile salts with different types of surfactants, phospholipids, ionic liquids, drugs, and a variety of natural and synthetic polymers. While assembling this review, special attention was also provided to the potency of bile salts to alter the size/shape of aggregates formed by several amphiphiles to use these aggregates for solubility improvement of medicinally important compounds, active pharmaceutical ingredients, and also to develop their smart delivery vehicles. A fundamental understanding of bile salt mixed aggregates will enable the development of new strategies for improving the bioavailability of drugs solubilized in newly developed potential hosts and to formulate smart aggregates of desired morphology for specific targeted applications. It enriches our existing knowledge of the distinct interactions exerted in mixed systems of bile salts with variety of amphiphiles. By virtue of this, researchers can get innovative ideas to construct novel nanoaggregates from bile salts by incorporating various amphiphiles that serve as a building block for smart aggregates for their numerous industrial applications.
Collapse
Affiliation(s)
- Paresh Y Parekh
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - Vijay I Patel
- Department of Chemistry, Navyug Science College, Rander Road, Surat 395009, Gujarat, India.
| | - Mehul R Khimani
- Countryside International School, Nr. Bhesan Railway Crossing, CIS Barbodhan Road, Surat 394125, Gujarat, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| |
Collapse
|
8
|
Le M, Huang W, Ma Z, Shi Z, Li Q, Lin C, Wang L, Jia YG. Facially Amphiphilic Skeleton-Derived Antibacterial Cationic Dendrimers. Biomacromolecules 2023; 24:269-282. [PMID: 36495302 DOI: 10.1021/acs.biomac.2c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is urgent to develop biocompatible and high-efficiency antimicrobial agents since microbial infections have always posed serious challenges to human health. Herein, through the marriage of facially amphiphilic skeletons and cationic dendrimers, high-density positively charged dendrimers D-CA6-N+ (G2) and D-CA2-N+ (G1) were designed and synthesized using the "branch" of facially amphiphilic bile acids, followed by their modification with quaternary ammonium charges. Both dendrimers could self-assemble into nanostructured micelles in aqueous solution. D-CA6-N+ displays potent antibacterial activity against Staphylococcus aureus and Escherichia coli, with minimum inhibitory concentrations (MICs) as low as 7.50 and 7.79 μM, respectively, and has an evidently stronger antibacterial activity than D-CA2-N+. Moreover, D-CA6-N+ can kill S. aureus faster than E. coli. The facial amphiphilicity of the bile acid skeleton facilitates the selective destruction of bacterial membranes and endows dendrimers with negligible hemolysis and cytotoxicity even under a high concentration of 16× MIC. In vivo studies show that D-CA6-N+ is much more effective and safer than penicillin G in treating S. aureus infection and promoting wound healing, which suggests facially amphiphilic skeleton-derived cationic dendrimers can be a promising approach to effectively enhance antibacterial activity and biocompatibility of antibacterial agent, simultaneously.
Collapse
Affiliation(s)
- Mengqi Le
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Wen Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zunwei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
9
|
Synthesis and Properties of a New Type of Terpyridine Cholesterol Derivative Gelator with Applications to Medical Treatments. INT J POLYM SCI 2022. [DOI: 10.1155/2022/3695462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low molecular mass gelators (LMMGs), as a new type of intelligent soft material, possess good response properties to light, electricity, heat, and ultrasound and have many potential applications in fields such as intelligent sensing, biological materials, and drug release. Additionally, steroid derivatives have been a focus in the study of LMMGs for their desirable properties as well, such as their rigid framework, multichiral center, and strong van der Waals accumulation. Furthermore, the coordination ability of terpyridine has been an emphasis in the study of supramolecular chemistry and coordination chemistry as well. Attempts have been made with terpyridine groups that have special responses, such as terpyridine with steroid derivatives, to build more specialized and functional gelators. In this study, we used 2-acetylpyridine, 2-formaldehyde, and cholesterol to synthesize 6-(2,2:6
,2
-terpyridine-4
-carboxamide group) hexanoic acid (with a yield of 64.39%, P1), glycine cholesterol ester (with a yield of 70.36%, P2), and DMTCP (with a yield of 88.92%). Infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry, elemental analysis, and gelator performance tests were then conducted to measure the gelation effect of the materials and to explore their gelation mechanisms. Compared to P1 and P2, the DMTCP synthesized by P1 and P2 was able to form gel in more kinds of solvents. In addition, when it contains both terpyridine and cholesterol functional groups, the gelation properties of DMTCP were also significantly improved, and all the gels prepared in the four solvents in which DMTCP can form gels were stimulus responsive.
Collapse
|
10
|
Li P, Malveau C, Zhu XX, Wuest JD. Using Nuclear Magnetic Resonance Spectroscopy to Probe Hydrogels Formed by Sodium Deoxycholate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5111-5118. [PMID: 34730971 DOI: 10.1021/acs.langmuir.1c02175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels of bile acids and their salts are promising materials for drug delivery, cellular immobilization, and other applications. However, these hydrogels are poorly understood at the molecular level, and further study is needed to allow improved materials to be created by design. We have used NMR spectroscopy to probe hydrogels formed from mixtures of formic acid and sodium deoxycholate (NaDC), a common bile acid salt. By assaying the ratio of deoxycholate molecules that are immobilized as part of the fibrillar network of the hydrogels and those that can diffuse, we have found that 65% remain free under typical conditions. The network appears to be composed of both the acid and salt forms of deoxycholate, possibly because a degree of charge inhibits excessive aggregation and precipitation of the fibrils. Spin-spin relaxation times provided a molecular-level estimate of the temperature of gel-sol transition (42 °C), which is virtually the same as the value determined by analyzing macroscopic parameters. Saturation transfer difference (STD) NMR spectroscopy established that formic acid, which is present mainly as formate, is not immobilized as part of the gelating network. In contrast, HDO interacts with the network, which presumably has a surface with exposed hydrophilic groups that form hydrogen bonds with water. Moreover, the STD NMR experiments revealed that the network is a dynamic entity, with molecules of deoxycholate associating and dissociating reversibly. This exchange appears to occur preferentially by contact of the hydrophobic edges or faces of free molecules of deoxycholate with those of molecules immobilized as components of the network. In addition, DOSY experiments revealed that gelation has little effect on the diffusion of free NaDC and HDO.
Collapse
Affiliation(s)
- Puzhen Li
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3 Canada
| | - Cédric Malveau
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3 Canada
| | - X X Zhu
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3 Canada
| | - James D Wuest
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3 Canada
| |
Collapse
|
11
|
Sahoo S, Ghosh P, Khan MEH, De P. Recent Progress in Macromolecular Design and Synthesis of Bile Acid‐Based Polymeric Architectures. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subhasish Sahoo
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| | - Md Ezaz Hasan Khan
- School of General Education College of the North Atlantic ‐ Qatar Arab League Street Doha 24449 Qatar
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| |
Collapse
|
12
|
Lin C, Li Y, Tang W, Zhou S, Rao X. Facile Construction of Bio-Based Supramolecular Hydrogels from Dehydroabietic Acid with a Tricyclic Hydrophenanthrene Skeleton and Stabilized Gel Emulsions. Molecules 2021; 26:molecules26216526. [PMID: 34770933 PMCID: PMC8586928 DOI: 10.3390/molecules26216526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 01/16/2023] Open
Abstract
Supramolecular hydrogels have attracted great attention due to their special properties. In this research, bio-based supramolecular hydrogels were conveniently constructed by heating and ultrasounding two components of dehydroabietic acid with a rigid tricyclic hydrophenanthrene skeleton and morpholine. The microstructures and properties of hydrogels were investigated by DSC, rheology, SAXS, CD spectroscopy, and cryo-TEM, respectively. The critical gel concentration (CGC) of the hydrogel was 0.3 mol·L−1 and the gel temperature was 115 °C. In addition, the hydrogel showed good stability and mechanical properties according to rheology results. Cryo-TEM images reveal that the microstructure of hydrogel is fibrous meshes; its corresponding mechanism has been studied using FT-IR spectra. Additionally, oil-in-water gel emulsions were prepared by the hydrogel at a concentration above its CGC, and the oil mass fraction of the oil-in-water gel emulsions could be freely adjusted between 5% and 70%. This work provides a convenient way to prepare bio-based supramolecular hydrogels and provides a new method for the application of rosin.
Collapse
|
13
|
Lin C, Wang Y, Le M, Chen KF, Jia YG. Recent Progress in Bile Acid-Based Antimicrobials. Bioconjug Chem 2021; 32:395-410. [PMID: 33683873 DOI: 10.1021/acs.bioconjchem.0c00642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the emergence of drug-resistant bacteria and the formation of biofilms by bacteria and fungi, microbial infections gradually threaten global health. Natural antimicrobial peptides (AMPs) have low susceptibility for developing resistance due to the membrane targeted mechanism, but instability and high manufacturing cost limit their applications in clinic. Bile acids, a group of steroids in the human body, with high stability, biocompatibility, and inherent facial amphiphilic structure similar to the characteristics of AMPs, have been applied to the biological field, such as drug delivery systems, self-healing hydrogels, antimicrobials, and so on. In this review, we mainly focus on the different classes of bile acid-based antimicrobials in recent years. Various designs and methods for the preparation of unimolecular antimicrobials with bile acid skeletons are first introduced, including coupling of primary amine, quaternary ammonium, and amino acid units with bile acid skeletons. Some representative oligomeric antimicrobials, including dimers of bile acids, are summarized. Finally, macromolecular antimicrobials bearing some positive charges at the main chain or side chain and interaction mechanisms of these bile acid-based antimicrobials are discussed.
Collapse
Affiliation(s)
- Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yushi Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Kai-Feng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Özdemir Z, Šaman D, Bertula K, Lahtinen M, Bednárová L, Pazderková M, Rárová L, Wimmer Z. Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid-Spermine Conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2693-2706. [PMID: 33595317 DOI: 10.1021/acs.langmuir.0c03335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid-triazole-spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show rapid self-recovery (up to 96% of the initial storage modulus) and sol ⇔ gel transition under several cycles. Interestingly, rheological flow curves reveal the thixotropic behavior of the gels. To the best of our knowledge, this kind of behavior was not shown in the literature before, neither for a triterpenoid nor for its derivatives. Conjugate 4, having a bolaamphiphile-like structure, was found to be a nongelator. Our results indicate that the position and number of spermine units alter the gelation properties, gel strength, and their self-assembly behavior. Preliminary cytotoxicity studies of the target compounds 2-4 in four human cancer cell lines suggest that the position and number of spermine units affect the biological activity. Our results also encourage exploring other triterpenoids and their derivatives as sustainable, renewable, and biologically active building blocks for multifunctional soft organic nanomaterials.
Collapse
Affiliation(s)
- Zulal Özdemir
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Kia Bertula
- Department of Applied Physics, Aalto University, Puumiehenkuja 2, FI-02150 Espoo, Finland
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
15
|
García-Álvarez F, Martínez-García M. Dendrimer Porphyrins: Applications in Nanomedicine. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201026203527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanomedicine is a fascinating field of multidisciplinary study focused on developing
techniques that fight various diseases using nanoparticles. Among the various nanoparticles
used in nanomedicine, dendrimers have received increasing interest in recent years because
of the versatility that their structural characteristics give them. Specifically, dendrimer
porphyrins are compounds that incorporate macro heterocyclic-aromatic units within the dendritic
architecture and exhibit interesting photodynamic properties that are used to combat
various diseases using non-invasive methods. In the past 17 years, few studies of the application
of dendrimer porphyrins in nanomedicine have been published. This review focuses on
presenting recent studies of dendrimer porphyrins with possible applications in the field of
nanomedicine.
Collapse
Affiliation(s)
- Fernando García-Álvarez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., Mexico
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., Mexico
| |
Collapse
|
16
|
Agarwal DS, Prakash Singh R, Jha PN, Sakhuja R. Fabrication of deoxycholic acid tethered α-cyanostilbenes as smart low molecular weight gelators and AIEE probes for bio-imaging. Steroids 2020; 160:108659. [PMID: 32439407 DOI: 10.1016/j.steroids.2020.108659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
Four novel deoxycholic acid tethered α-cyanostilbenes were designed, synthesized and characterized using detailed spectroscopic analysis. The synthesized deoxycholic acid tethered α-cyanostilbene derivatives formed stable gels with a variety of solvents, such as xylene, toluene, mesitylene, decane, dodecane etc. The stable gels showed lamellar sheet type structures stacked over each other, consisting of entangled fibres as evident from SEM, TEM and Fluorescence Microscopy images; The synthesized compounds exhibited AIEE behaviour in H2O/THF mixture, with the maximum emission observed in 70% H2O/THF fraction along with a bathochromic shift. A solvent thickening experiment was perform to establish the mechanism of AIEE and the AIEE property was explored for bacterial bio-imaging. The synthesized derivatized steroids proved their potential as multifunctional organic materials.
Collapse
Affiliation(s)
- Devesh S Agarwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Rajnish Prakash Singh
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Prabhat N Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
17
|
Wang J, Xu X, Chen H, Zhang SS, Peng YX. Oxidation of Sodium Deoxycholate Catalyzed by Gold Nanoparticles and Chiral Recognition Performances of Bile Salt Micelles. Molecules 2019; 24:E4508. [PMID: 31835427 PMCID: PMC6943626 DOI: 10.3390/molecules24244508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/28/2022] Open
Abstract
Au nanoparticles (NPs) were prepared by UV light irradiation of a mixed solution of HAuCl4 and sodium deoxycholate (NaDC) under alkaline condition, in which NaDC served as both reducing agent and capping agent. The reaction was monitored by circular dichroism (CD) spectra, and it was found that the formed gold NPs could catalyze the oxidation of NaDC. A CD signal at ~283 nm in the UV region was observed for the oxidation product of NaDC. The intensity of the CD signal of the oxidation product was enhanced gradually with the reaction time. Electrospray ionization (ESI) mass spectra and nuclear magnetic resonance (NMR) spectra were carried out to determine the chemical composition of the oxidation product, revealing that NaDC was selectively oxidized to sodium 3-keto-12-hydroxy-cholanate (3-KHC). The chiral discrimination abilities of the micelles of NaDC and its oxidation product, 3-KHC, were investigated by using chiral model molecules R,S-1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate (R,S-BNDHP). Compared with NaDC, the micelles of 3-KHC displayed higher binding ability to the chiral model molecules. In addition, the difference in binding affinity of 3-KHC micelles towards R,S-isomer was observed, and S-isomer was shown to preferentially bind to the micelles.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (X.X.); (H.C.); (S.-S.Z.)
| | | | | | | | - Yin-Xian Peng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (X.X.); (H.C.); (S.-S.Z.)
| |
Collapse
|
18
|
Du Y, Gao J, Zhou L, Ma L, He Y, Zheng X, Huang Z, Jiang Y. MOF-Based Nanotubes to Hollow Nanospheres through Protein-Induced Soft-Templating Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801684. [PMID: 30937262 PMCID: PMC6425429 DOI: 10.1002/advs.201801684] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/06/2018] [Indexed: 06/09/2023]
Abstract
A controllable and facile strategy is established for constructing metal-organic frameworks-based (MOF-based) hollow composites via a protein-induced soft-templating pathway. Using metal-sodium deoxycholate hydrogel as soft-template, nanotubes are gained while the protein is absent. With the presence of protein, hollow nanospheres structure are prepared by changing the amount of protein. To verify the universality of the proposed pathway, two kinds of proteins (Burkholderia cepacia lipase and penicillin G acylase) and three kinds of MOF (ZIF-8, ZIF-67, and Fe-MOF) are adopted as model proteins and materials, and the obtained protein-containing composites (named protein@H-MOF) possess high bioactivity and stability. This proposed strategy provides a facile method for preparing MOF-based composites under mild conditions, facilitating the applications of MOF in the fields of biocatalyst construction, biomolecule encapsulation, and drug delivery.
Collapse
Affiliation(s)
- Yingjie Du
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Jing Gao
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Liya Zhou
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Li Ma
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Ying He
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Xuefang Zheng
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Zhihong Huang
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| | - Yanjun Jiang
- School of Chemical EngineeringHebei University of TechnologyNo. 8 Guangrong RoadHongqiao DistrictTianjin300130China
| |
Collapse
|
19
|
Zhang R, Lei L, Song Q, Li X. Calcium ion cross-linking alginate/dexamethasone sodium phosphate hybrid hydrogel for extended drug release. Colloids Surf B Biointerfaces 2019; 175:569-575. [DOI: 10.1016/j.colsurfb.2018.11.083] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023]
|
20
|
Rahman MA, Bam M, Luat E, Jui MS, Ganewatta MS, Shokfai T, Nagarkatti M, Decho AW, Tang C. Macromolecular-clustered facial amphiphilic antimicrobials. Nat Commun 2018; 9:5231. [PMID: 30531920 PMCID: PMC6286373 DOI: 10.1038/s41467-018-07651-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
Bacterial infections and antibiotic resistance, particularly by Gram-negative pathogens, have become a global healthcare crisis. We report the design of a class of cationic antimicrobial polymers that cluster local facial amphiphilicity from repeating units to enhance interactions with bacterial membranes without requiring a globally conformational arrangement associated with highly unfavorable entropic loss. This concept of macromolecular architectures is demonstrated with a series of multicyclic natural product-based cationic polymers. We have shown that cholic acid derivatives with three charged head groups are more potent and selective than lithocholic and deoxycholic counterparts, particularly against Gram-negative bacteria. This is ascribed to the formation of true facial amphiphilicity with hydrophilic ion groups oriented on one face and hydrophobic multicyclic hydrocarbon structures on the opposite face. Such local facial amphiphilicity is clustered via a flexible macromolecular backbone in a concerted way when in contact with bacterial membranes.
Collapse
Affiliation(s)
- Md Anisur Rahman
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Edgar Luat
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States
| | - Moumita Sharmin Jui
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States
| | - Mitra S Ganewatta
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States
| | - Tinom Shokfai
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States.
| |
Collapse
|
21
|
Glycosylation-enhanced biocompatibility of the supramolecular hydrogel of an anti-inflammatory drug for topical suppression of inflammation. Acta Biomater 2018; 73:275-284. [PMID: 29660509 DOI: 10.1016/j.actbio.2018.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023]
Abstract
Intravitreal/periocular injection of triamcinolone acetonide (TA) suspension is a common uveitis treatment, but it displays a high risk for serious side effects (e.g., high intraocular pressure, retinal toxicity). We report here an intravitreally injectable thermosensitive glycosylated TA (TA-SA-Glu) hydrogel, formed by covalently conjugating glucosamine (Glu) with succinate TA (TA-SA), for treating uveitis. The TA-SA-Glu hydrogelator forms a supramolecular hydrogel spontaneously in aqueous solution with a minimal gelation concentration of 0.25 wt%. Structural analysis revealed that hydrogen bonds assisted by hydrophobic interaction resulted in self-assembled nanofibers. Rheology analysis demonstrated that this TA-SA-Glu hydrogel exhibited a typical thixotropic property. Sustained release of both TA-SA-Glu and TA from the hydrogel occurred throughout the 3-day in vitro release study. The obtained TA-SA-Glu hardly caused cytotoxicity against ARPE-19 and RAW264.7 cells after 24 h of incubation at drug concentration up to 600 μM. In particular, TA-SA-Glu exhibited a comparable anti-inflammatory efficacy to TA in terms of inhibiting the production of nitric oxide, tumor necrosis factor-α, and interleukin-6 in activated RAW264.7 macrophages. Following a single intravitreal injection, 69 nmol TA-SA-Glu hydrogel caused minimal apparent retinal toxicity, whereas the TA suspension displayed significant effects in terms of localized retinal toxicity. A single intravitreal injection of TA-SA-Glu hydrogel was more effective in controlling inflammatory response than that of the TA suspension treatment, particularly in down-regulating the pro-inflammatory Th1 and Th17 effector responses for treating experimental autoimmune uveitis. This study strongly indicates that supramolecular TA-SA-Glu hydrogels may represent a new option for posterior uveitis management. STATEMENT OF SIGNIFICANCE Intravitreal/periocular injection of triamcinolone acetonide (TA) suspension is a common uveitis treatment, but suffers a high risk for serious side effects (e.g., high intraocular pressure, retinal toxicity). We generated an injectable glycosylated triamcinolone acetonide hydrogelator (TA-SA-Glu) hydrogel for treating uveitis. Following a single intravitreal injection, the proposed TA-SA-Glu hydrogel hardly caused apparent retinal toxicity at a dosage of 69 nmol per eye. Furthermore, TA-SA-Glu hydrogel was more effective in controlling non-infectious uveitis over than a TA suspension, particularly in terms of down-regulating the pro-inflammatory Th1 and Th17 effector responses for treating experimental autoimmune uveitis (EAU). This study strongly indicates that TA-SA-Glu supramolecular hydrogels may represent a new option for the management of various intraocular inflammations.
Collapse
|
22
|
Chatterjee S, Kuppan B, Maitra U. A self-assembled CdSe QD-organogel hybrid: photophysical and thermoresponsive properties. Dalton Trans 2018; 47:2522-2530. [PMID: 29384174 DOI: 10.1039/c7dt04454b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A luminescent hybrid gel was prepared by incorporating organic ligand capped CdSe quantum dots (QDs) into a steroid-dimer derived organogel. Photophysical measurements and electron microscopy studies allowed us to understand the nature of the hybrid. Detailed analysis of the excited state dynamics of the hybrid was carried out using a kinetic decay model. The luminescence of the QDs in the hybrid was unaltered by taking it through a gel-sol-gel cycle induced by thermal stimuli. We believe that the results obtained herein provide a route to develop a thermoresponsive device for practical applications, because of the spatial assembly between soft organic scaffolds and colloidal QDs.
Collapse
Affiliation(s)
- Sayantan Chatterjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| | | | | |
Collapse
|
23
|
Tripathy DB, Mishra A, Clark J, Farmer T. Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review. CR CHIM 2018. [DOI: 10.1016/j.crci.2017.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Guo Y, Wang R, Shang Y, Liu H. Effects of polymers on the properties of hydrogels constructed using sodium deoxycholate and amino acid. RSC Adv 2018; 8:8699-8708. [PMID: 35539841 PMCID: PMC9078593 DOI: 10.1039/c8ra00171e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/16/2018] [Accepted: 02/09/2018] [Indexed: 11/21/2022] Open
Abstract
Polymer can participate in the formation of hydrogel network structure and provide a lot of binding sites, leading to an enhancement of the mechanical strength of the hydrogels.
Collapse
Affiliation(s)
- Yi Guo
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ruijin Wang
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Honglai Liu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
25
|
Ma X, Cui Y, Liu S, Wu J. A thermo-responsive supramolecular gel and its luminescence enhancement induced by rare earth Y 3. SOFT MATTER 2017; 13:8027-8030. [PMID: 29104972 DOI: 10.1039/c7sm01726j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new acylhydrazone-functionalized dual benzimidazole derivative gelator (L) was synthesized. L can self-assemble in DMSO-EG (ethylene glycol) or DMF-water mixtures to form a thermo-responsive supramolecular organogel (L-gel). In order to increase the fluorescence intensity of L-gel (DMSO-EG system), L-gel slowly turned into a clear solution upon addition of one equivalent of RE (rare earth) Y3+. Interestingly, this gelator L and Y3+ can be assembled into an enhanced blue-light-emitting supramolecular metallogel (Y@gel) in DMF-water mixtures.
Collapse
Affiliation(s)
- Xinxian Ma
- School of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | | | | | | |
Collapse
|
26
|
|
27
|
Travaglini L, Giordano C, D'Annibale A, Gubitosi M, di Gregorio MC, Schillén K, Stefanucci A, Mollica A, Pavel NV, Galantini L. Twisted nanoribbons from a RGD-bearing cholic acid derivative. Colloids Surf B Biointerfaces 2017; 159:183-190. [PMID: 28787634 DOI: 10.1016/j.colsurfb.2017.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/05/2017] [Accepted: 07/29/2017] [Indexed: 11/16/2022]
Abstract
In light of the biomedical interest for self-assembling amphiphiles bearing the tripeptide Arg-Gly-Gly (RGD), a cholic acid derivative was synthesized by introducing an aromatic moiety on the steroidal skeleton and the RGD sequence on the carboxylic function of its chain 17-24, thus forming a peptide amphiphile with the unconventional rigid amphiphilic structure of bile salts. In aqueous solution, the compound self-assembled into long twisted ribbons characterized by a very low degree of polydispersity in terms of width (≈25nm), thickness (≈4.5nm) and pitch (≈145nm). It was proposed that in the ribbon the molecules are arranged in a bilayer structure with the aromatic moieties in the interior, strongly involved in the intermolecular interaction, whereas the RGD residues are located at the bilayer-water interface. The nanostructure is significantly different from those generally provided by RGD-containing amphiphiles with the conventional peptide-tail structure, for which fibers with a circular cross-section were observed, and successfully tested as scaffolds for tissue regeneration. From previous work on the use of this kind of nanostructures, it is known that features like morphology, rigidity, epitope spacing and periodicity are important factors that dramatically affect cell adhesion and signaling. Within this context, the reported results demonstrate that bile salt-based peptide surfactants are promising building blocks in the preparation of non-trivial RGD-decorated nanoaggregates with well-defined morphologies and epitope distributions.
Collapse
Affiliation(s)
- Leana Travaglini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cesare Giordano
- Institute of Molecular Biology and Pathology, CNR, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea D'Annibale
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Marta Gubitosi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | | | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Azzurra Stefanucci
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Nicolae Viorel Pavel
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
28
|
Wang H, Wu J, Xie K, Fang T, Chen C, Xie H, Zhou L, Zheng S. Precise Engineering of Prodrug Cocktails into Single Polymeric Nanoparticles for Combination Cancer Therapy: Extended and Sequentially Controllable Drug Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10567-10576. [PMID: 28271714 DOI: 10.1021/acsami.7b01938] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The synergistic combination of two or more chemotherapeutics frequently requires packaging in single delivery vehicles for the sequential release of each substance in a predictable manner. Here, we demonstrate for the first time that the rational engineering of a prodrug cocktail into single polymeric nanoparticles (NPs) can enable the sequential release of chemotherapeutics in a controllable manner. Exploiting combretastatin-A4 (CA4, 1) as a model antiangiogenesis agent, two ester derivatives, 2 and 3, tethered with saturated fatty acids (butanoic and heptanoic acid for 2 and 3, respectively) were synthesized. 7-Ethyl-10-hydroxycamptothecin (SN38) derivative 4, esterified with α-linolenic acid, was used as a cytotoxic drug. Because of their augmented lipophilicity and miscibility, all constructed prodrugs readily assembled with clinically approved polymeric matrices. Results showed that altering the aliphatic chains of modifiers for CA4 chemical derivatization enabled the drug retention capacity within particle systems to be adjusted, leading to the identification of the prodrug cocktail of 2 and 4 as an optimal combination for subsequent preclinical studies. Furthermore, in vivo assessements indicated that the resulting NPs simultaneously formulating 2 and 4 exhibited synergistic activities and outperformed NPs loaded with individual prodrugs 2 or 4 in terms of therapeutic efficacy. These findings highlight a novel and versatile strategy for tailoring chemically disparate prodrug cocktails for adaptation within a single nanoplatform as a potential modality for synergistic cancer therapy.
Collapse
Affiliation(s)
- Hangxiang Wang
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Jiaping Wu
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Ke Xie
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Tao Fang
- Jinhua People's Hospital , Jinhua, Zhejiang Province 321000, P.R. China
| | - Chao Chen
- College of Life Sciences, Huzhou University , Huzhou, Zhejiang Province 313000, P.R. China
| | - Haiyang Xie
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Lin Zhou
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Shusen Zheng
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| |
Collapse
|
29
|
Zhang M, Fives C, Waldron KC, Zhu XX. Self-Assembly of a Bile Acid Dimer in Aqueous Solutions: From Nanofibers to Nematic Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1084-1089. [PMID: 28048933 DOI: 10.1021/acs.langmuir.6b04033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A mixture of a cholic acid dimer with a secondary amine group and formic acid at a molar ratio of 1/1 is regarded as an organic salt, and it self-assembles in aqueous solutions to form monodisperse nanofibers. The nanofibers are separated at low concentrations of the mixture but entangle with each other at high concentrations to form well-dispersed and randomly arranged 3D fibrous networks. Above the minimum gelation concentration of the dimer, the fibrous network is strong enough to gelate the aqueous solutions to form a hydrogel. Hydrogels obtained from the dimer salt at a lower concentration are isotropic and show extinction between crossed polarizers in the polarizing microscope, whereas they become anisotropic (i.e., nematic hydrogels) upon increasing the dimer salt concentration or under physical stirring. The parallel arrangement of nanofibers from randomly directed fibrous networks may be responsible for the formation of such nematic hydrogels.
Collapse
Affiliation(s)
- Meng Zhang
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, Québec H3C 3J7, Canada
| | - Colin Fives
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, Québec H3C 3J7, Canada
| | - Karen C Waldron
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, Québec H3C 3J7, Canada
| | - X X Zhu
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, Québec H3C 3J7, Canada
| |
Collapse
|
30
|
Maity M, Maitra U. Metallogels of indium(iii) with bile salts: soft materials for nanostructured In2S3 synthesis. Dalton Trans 2017; 46:9266-9271. [DOI: 10.1039/c7dt02177a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metallo-hydrogels were formed from sodium cholate and deoxycholate in the presence of indium(iii). This soft hydrogel was used for nanostructured In2S3 synthesis.
Collapse
Affiliation(s)
- Mitasree Maity
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | - Uday Maitra
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| |
Collapse
|
31
|
Chatterjee S, Maitra U. Hierarchical self-assembly of photoluminescent CdS nanoparticles into a bile acid derived organogel: morphological and photophysical properties. Phys Chem Chem Phys 2017; 19:17726-17734. [DOI: 10.1039/c7cp02519j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple strategy for the preparation of a new bile acid derived organogel–CdS NP hybrid, and the study of its photophysical and morphological properties.
Collapse
Affiliation(s)
| | - Uday Maitra
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| |
Collapse
|