1
|
Hu T, Wan C, Zhan Y, Li X, Zheng Y. Preparation and performance of biocompatible gadolinium polymer as liver-targeting magnetic resonance imaging contrast agent. J Biosci Bioeng 2024; 137:134-140. [PMID: 38195341 DOI: 10.1016/j.jbiosc.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
A biocompatible macromolecule-conjugated gadolinium chelate complex (PAV2-EDA-DOTA-Gd) as a new liver-specific contrast agent for magnetic resonance imaging (MRI) was synthesized and evaluated. An aspartic acid-valine copolymer was used as a carrier and ethylenediamine as a chemical linker, and the aspartic acid-valine copolymer was covalently linked to the small molecule MRI contrast agent Gd-DOTA (Dotarem) to synthesize a large molecule contrast agent. In vitro MR relaxation showed that the T1-relaxivity of PAV2-EDA-DOTA-Gd (13.7 mmol-1 L s-1) was much higher than that of the small-molecule Gd-DOTA (4.9 mmol-1 L s-1). In vivo imaging of rats showed that the enhancement effect of PAV2-EDA-DOTA-Gd (55.37 ± 2.80%) on liver imaging was 2.6 times that of Gd-DOTA (21.12 ± 3.86%), and it produced a longer imaging window time (40-70 min for PAV2-EDA-DOTA-Gd and 10-30 min for Gd-DOTA). Preliminary safety experiments, such as cell experiments and tissue sectioning, showed that PAV2-EDA-DOTA-Gd had low toxicity and satisfactory biocompatibility. The results of this study indicated that PAV2-EDA-DOTA-Gd had high potential as a liver-specific MRI contrast agent.
Collapse
Affiliation(s)
- Tingting Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chuanling Wan
- School of Science, Changchun Institute of Technology, Changchun 130012, Jilin Province, China
| | - Youyang Zhan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
2
|
Anane-Adjei AB, Fletcher NL, Cavanagh RJ, Houston ZH, Crawford T, Pearce AK, Taresco V, Ritchie AA, Clarke P, Grabowska AM, Gellert PR, Ashford MB, Kellam B, Thurecht KJ, Alexander C. Synthesis, characterisation and evaluation of hyperbranched N-(2-hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines in vitro and in vivo. Biomater Sci 2022; 10:2328-2344. [PMID: 35380131 DOI: 10.1039/d1bm01548f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperbranched polymers have many promising features for drug delivery, owing to their ease of synthesis, multiple functional group content, and potential for high drug loading with retention of solubility. Here we prepared hyperbranched N-(2-hydroxypropyl)methacrylamide (HPMA) polymers with a range of molar masses and particle sizes, and with attached dyes, radiolabel or the anticancer drug gemcitabine. Reversible addition-fragmentation chain transfer (RAFT) polymerisation enabled the synthesis of pHPMA polymers and a gemcitabine-comonomer functionalised pHPMA polymer pro-drug, with diameters of the polymer particles ranging from 7-40 nm. The non-drug loaded polymers were well-tolerated in cancer cell lines and macrophages, and were rapidly internalised in 2D cell culture and transported efficiently to the centre of dense pancreatic cancer 3D spheroids. The gemcitabine-loaded polymer pro-drug was found to be toxic both to 2D cultures of MIA PaCa-2 cells and also in reducing the volume of MIA PaCa-2 spheroids. The non-drug loaded polymers caused no short-term adverse effects in healthy mice following systemic injection, and derivatives of these polymers labelled with 89Zr-were tracked for their distribution in the organs of healthy and MIA PaCa-2 xenograft bearing Balb/c nude mice. Tumour accumulation, although variable across the samples, was highest in individual animals for the pHPMA polymer of ∼20 nm size, and accordingly a gemcitabine pHPMA polymer pro-drug of ∼18 nm diameter was evaluated for efficacy in the tumour-bearing animals. The efficacy of the pHPMA polymer pro-drug was very similar to that of free gemcitabine in terms of tumour growth retardation, and although there was a survival benefit after 70 days for the polymer pro-drug, there was no difference at day 80. These data suggest that while polymer pro-drugs of this type can be effective, better tumour targeting and enhanced in situ release remain as key obstacles to clinical translation even for relatively simple polymers such as pHPMA.
Collapse
Affiliation(s)
- Akosua B Anane-Adjei
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Robert J Cavanagh
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Zachary H Houston
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Theodore Crawford
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia.
| | - Amanda K Pearce
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Vincenzo Taresco
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | | | - Phillip Clarke
- School of Medicine, University of Nottingham, NG7 2RD, UK
| | | | - Paul R Gellert
- Product Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Macclesfield, UK
| | - Barrie Kellam
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
3
|
|
4
|
Chen K, Cai H, Zhang H, Zhu H, Gu Z, Gong Q, Luo K. Stimuli-responsive polymer-doxorubicin conjugate: Antitumor mechanism and potential as nano-prodrug. Acta Biomater 2019; 84:339-355. [PMID: 30503561 DOI: 10.1016/j.actbio.2018.11.050] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 01/17/2023]
Abstract
Polymer-drug conjugates has significantly improved the anti-tumor efficacy of chemotherapeutic drugs and alleviated their side effects. N-(1,3-dihydroxypropan-2-yl) methacrylamide (DHPMA) copolymer was synthesized via RAFT polymerization and polymer-doxorubicin (DOX) (diblock pDHPMA-DOX) were formed by conjugation, resulting in a self-aggregation-induced nanoprodrug with a favorable size of 21 nm and great stability. The nanoprodrug with a molecular weight (MW) of 95 kDa released drugs in response to tumor microenvironmental pH variations and they were enzymatically hydrolyzed into low MW segments (45 kDa). The nanoprodrug was transported through the endolysosomal pathway, released the drug into the cytoplasm and some was localized in the mitochondria, resulting in disruption of the cellular actin cytoskeleton. Cellular apoptosis was also associated with reduction in the mitochondrial potential caused by the nanoprodrug. Notably, the nanoprodrug had a significantly prolonged blood circulation time with an elimination half time of 9.8 h, displayed high accumulation within tumors, and improved the in vivo therapeutic efficacy against 4T1 xenograft tumors compared to free DOX. The tumor xenograft immunohistochemistry study clearly indicated tumor inhibition was through the inhibition of cell proliferation and antiangiogenic effects. Our studies demonstrated that the diblock pDHPMA-DOX nanoprodrug with a controlled molecular structure is promising to alleviate adverse effects of free DOX and have a great potential as an efficient anticancer agent. STATEMENT OF SIGNIFICANCE: In this work, we prepared a biodegradable diblock DHPMA polymer-doxorubicin conjugate via one-pot of RAFT polymerization and conjugate chemistry. The conjugate-based nanoprodrug was internalized by endocytosis to intracellularly release DOX and further induce disruption of mitochondrial functions, actin cytoskeleton alterations and cellular apoptosis. The nanoprodrug with a high molecular weight (MW) (95 kDa) showed a long blood circulation time and achieved high accumulation into tumors. The nanoprodrug was degraded into low MW (∼45 kDa) products below the renal threshold, which ensured its biosafety. Additionally, the multi-stimuli-responsive nanoprodrug demonstrated an enhanced antitumor efficacy against 4T1 breast tumors and alleviated side effects, showing a great potential as an efficient and safe anticancer agent.
Collapse
Affiliation(s)
- Kai Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Cai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hu Zhang
- Amgen Bioprocess Centre, Keck Graduate Institute, CA 91711, USA
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Guo S, Xiao X, Wang X, Luo Q, Zhu H, Zhang H, Li H, Gong Q, Luo K. Reductive microenvironment responsive gadolinium-based polymers as potential safe MRI contrast agents. Biomater Sci 2019; 7:1919-1932. [PMID: 30773580 DOI: 10.1039/c8bm01103f] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A ROX and enzyme-responsive biodegradable gadolinium-based mCA was prepared, demonstrating a short gadolinium retention time and sufficient MRI contrast efficacy in tumors.
Collapse
Affiliation(s)
- Shiwei Guo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Xueyang Xiao
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Xiaoming Wang
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Hu Zhang
- Amgen Bioprocess Centre
- Keck Graduate Institute
- USA
| | - Haonan Li
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| | - Kui Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology
- West China Hospital
- and National Engineering Research Center for Biomaterials
- Sichuan University
| |
Collapse
|
6
|
Ou Y, Chen K, Cai H, Zhang H, Gong Q, Wang J, Chen W, Luo K. Enzyme/pH-sensitive polyHPMA-DOX conjugate as a biocompatible and efficient anticancer agent. Biomater Sci 2018; 6:1177-1188. [PMID: 29564431 DOI: 10.1039/c8bm00095f] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, to enhance the therapeutic function and reduce the side-effects of doxorubicin (DOX), a biodegradable N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-DOX conjugate has been prepared through reversible addition fragmentation chain transfer (RAFT) polymerization and conjugation chemistry, and the anticancer agent DOX was covalently linked to the polymeric vehicle through a pH-responsive hydrazone bond. The cellular mechanisms of the conjugate were explored, and the therapeutic indexes were studied as well. The high molecular weight (MW) polymeric conjugate (94 kDa) was degraded into products with low MW (45 kDa) in the presence of lysosomal cathepsin B and also showed pH-responsive drug release behavior. In vitro cellular mechanism studies revealed that the polymeric conjugate was uptaken by the 4T1 cells, leading to cell apoptosis and cytotoxicity to cancer cells, while the polymeric conjugate demonstrated excellent in vivo biosafety even at a high dose. Compared to free DOX, the conjugate has a much longer half-life in pharmacokinetics and accumulates in tumors with a much higher amount. The conjugate therefore has a much greater in vivo anticancer efficacy against 4T1 xenograft tumors and shows subtle side-effects, which were confirmed via tumor size and weight, immunohistochemistry and histological studies. Overall, this polymeric conjugate may be used as an enzyme/pH-sensitive anticancer agent.
Collapse
Affiliation(s)
- Yuan Ou
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China. and Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Cai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- School of Chemical Engineering, The University of Adelaide, SA 5005, Australia
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Yuan S, Wu M, Han L, Song Y, Yuan S, Zhang Y, Wu Z, Wu Z, Qi X. Surface partially neutralized dendtric polymer demonstrating proton-triggered self-assembled aggregation for tumor therapy. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Luo Q, Xiao X, Dai X, Duan Z, Pan D, Zhu H, Li X, Sun L, Luo K, Gong Q. Cross-Linked and Biodegradable Polymeric System as a Safe Magnetic Resonance Imaging Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1575-1588. [PMID: 29260844 DOI: 10.1021/acsami.7b16345] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Owing to the low efficacy of clinically used small-molecule gadolinium (Gd)-based magnetic resonance imaging (MRI) agents, we designed and explored biodegradable macromolecular conjugates as MRI contrast agents. The linear polymeric structure and core-cross-linked formulation possessed different characteristics and features, so we prepared and comparatively studied the two kinds of Gd-based N-(2-hydroxypropyl) methacrylamide (HPMA) polymeric systems (the core-cross-linked pHPMA-DOTA-Gd and the linear one) using the clinical agent diethylene-triamine pentaacetic acid-Gd(III) (DTPA-Gd) as a control. This study was aimed to find the optimal polymeric formulation as a biocompatible and efficient MRI contrast agent. The high molecular weight (MW, 181 kDa) and core-cross-linked copolymer was obtained via the cross-linked block linear copolymer and could be degraded to low-MW segments (29 kDa) in the presence of glutathione (GSH) and cleaned from the body. Both core-cross-linked and linear pHPMA-DOTA-Gd copolymers displayed 2-3-fold increased relaxivity (r1 value) than that of DTPA-Gd. Animal studies demonstrated that two kinds of macromolecular systems led to much longer blood circulation time, higher tumor accumulation, and much higher signal intensity compared with the linear and clinical ones. Finally, in vivo and in vitro toxicity studies indicated that the two macromolecular agents had great biocompatibility. Therefore, we performed preliminary but important studies on the Gd-based HPMA polymeric systems as biocompatible and efficient MRI contrast agents and found that the biodegradable core-cross-linked pHPMA-DOTA-Gd copolymer might have greater benefits for the foreground.
Collapse
Affiliation(s)
- Qiang Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Xueyang Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Xinghang Dai
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Xue Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Ling Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, and §West China School of Medicine, Sichuan University , Chengdu 610041, Sichuan, China
| |
Collapse
|
9
|
Xu W, Long H, Xu X, Fu G, Pu L, Ding L. Poly(HPMA)-DTPA/DOTA-Gd conjugates for magnetic resonance imaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj04355h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Poly(HPMA)-DTPA/DOTA-Gd conjugates were fabricated, and the cytotoxicity, hemocompatibility and T1 relaxivity property were evaluated.
Collapse
Affiliation(s)
- Weibing Xu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Haitao Long
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Xinxin Xu
- College of Life Science
- Northwest Normal University
- Lanzhou 730000
- China
| | - Guorui Fu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Lumei Pu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Lan Ding
- College of Life Science
- Northwest Normal University
- Lanzhou 730000
- China
| |
Collapse
|
10
|
Liras M, Quijada-Garrido I, García O. QDs decorated with thiol-monomer ligands as new multicrosslinkers for the synthesis of smart luminescent nanogels and hydrogels. Polym Chem 2017. [DOI: 10.1039/c7py00954b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QDs decorated with thiol-monomer ligands as new multicrosslinkers for the synthesis of smart (photoluminescent and pH/temperature sensitive) nanogels and hydrogels.
Collapse
Affiliation(s)
- M. Liras
- Instituto IMDEA-Energía
- Parque Tecnológico de Móstoles
- E-28935 Móstoles-Madrid
- Spain
| | - I. Quijada-Garrido
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- E-28006-Madrid
- Spain
| | - O. García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- E-28006-Madrid
- Spain
| |
Collapse
|