1
|
Yu CH, Yang SQ, Zhang YJ, Rong L, Yi ZC. The role of GATA switch in benzene metabolite hydroquinone inhibiting erythroid differentiation in K562 cells. Arch Toxicol 2023; 97:2169-2181. [PMID: 37329354 DOI: 10.1007/s00204-023-03541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
The phenolic metabolite of benzene, hydroquinone (HQ), has potential risks for hematological disorders and hematotoxicity in humans. Previous studies have revealed that reactive oxygen species, DNA methylation, and histone acetylation participate in benzene metabolites inhibiting erythroid differentiation in hemin-induced K562 cells. GATA1 and GATA2 are crucial erythroid-specific transcription factors that exhibit dynamic expression patterns during erythroid differentiation. We investigated the role of GATA factors in HQ-inhibited erythroid differentiation in K562 cells. When K562 cells were induced with 40 μM hemin for 0-120 h, the mRNA and protein levels of GATA1 and GATA2 changed dynamically. After exposure to 40 μM HQ for 72 h, K562 cells were induced with 40 μM hemin for 48 h. HQ considerably reduced the percentage of hemin-induced Hb-positive cells, decreased the GATA1 mRNA, protein, and occupancy levels at α-globin and β-globin gene clusters, and increased the GATA2 mRNA and protein levels significantly. ChIP-seq analysis revealed that HQ reduced GATA1 occupancy, and increased GATA2 occupancy at most gene loci in hemin-induced K562 cells. And GATA1 and GATA2 might play essential roles in the erythroid differentiation protein interaction network. These results elucidate that HQ decreases GATA1 occupancy and increases GATA2 occupancy at the erythroid gene loci, thereby downregulating GATA1 and upregulating GATA2 expression, which in turn modulates the expression of erythroid genes and inhibits erythroid differentiation. This partially explains the mechanism of benzene hematotoxicity.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100043, China
| | - Yu-Jing Zhang
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Long Rong
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
2
|
Identification of potential pathways and microRNA-mRNA networks associated with benzene metabolite hydroquinone-induced hematotoxicity in human leukemia K562 cells. BMC PHARMACOLOGY AND TOXICOLOGY 2022; 23:20. [PMID: 35366954 PMCID: PMC8976366 DOI: 10.1186/s40360-022-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Background Hydroquinone (HQ) is a phenolic metabolite of benzene with a potential risk for hematological disorders and hematotoxicity in humans. In the present study, an integrative analysis of microRNA (miRNA) and mRNA expressions was performed to identify potential pathways and miRNA-mRNA network associated with benzene metabolite hydroquinone-induced hematotoxicity. Methods K562 cells were treated with 40 μM HQ for 72 h, mRNA and miRNA expression changes were examined using transcriptomic profiles and miRNA microarray, and then bioinformatics analysis was performed. Results Out of all the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) induced by HQ, 1482 DEGs and 10 DEMs were up-regulated, and 1594 DEGs and 42 DEMs were down-regulated. HQ-induced DEGs were involved in oxidative stress, apoptosis, DNA methylation, histone acetylation and cellular response to leukemia inhibitory factor GO terms, as well as metabolic, Wnt/β-catenin, NF-κB, and leukemia-related pathways. The regulatory network of mRNAs and miRNAs includes 23 miRNAs, 1108 target genes, and 2304 potential miRNAs-mRNAs pairs. MiR-1246 and miR-224 had the potential to be major regulators in HQ-exposed K562 cells based on the miRNAs-mRNAs network. Conclusions This study reinforces the use of in vitro model of HQ exposure and bioinformatic approaches to advance our knowledge on molecular mechanisms of benzene hematotoxicity at the RNA level. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00556-8.
Collapse
|
3
|
Hydroquinone destabilizes BIM mRNA through upregulation of p62 in chronic myeloid leukemia cells. Biochem Pharmacol 2022; 199:115017. [DOI: 10.1016/j.bcp.2022.115017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022]
|
4
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Yan R, Chen XL, Xu YM, Lau ATY. Epimutational effects of electronic cigarettes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17044-17067. [PMID: 33655478 DOI: 10.1007/s11356-021-12985-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Electronic cigarettes (e-cigarettes), since they do not require tobacco combustion, have traditionally been considered less harmful than conventional cigarettes (c-cigarettes). In recent years, however, researchers have found many toxic compounds in the aerosols of e-cigarettes, and numerous studies have shown that e-cigarettes can adversely affect the human epigenome. In this review, we provide an update on recent findings regarding epigenetic outcomes of e-cigarette aerosols. Moreover, we discussed the effects of several typical e-cigarette ingredients (nicotine, tobacco-specific nitrosamines, volatile organic compounds, carbonyl compounds, and toxic metals) on DNA methylation, histone modifications, and noncoding RNA expression. These epigenetic effects could explain some of the diseases caused by e-cigarettes. It also reminds the public that like c-cigarettes, inhaling e-cigarette aerosols could also be accompanied with potential epigenotoxicity on the human body.
Collapse
Affiliation(s)
- Rui Yan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Xu-Li Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
6
|
Zeng M, Chen S, Zhang K, Liang H, Bao J, Chen Y, Zhu S, Jiang W, Yang H, Wei Y, Guo L, Tang H. Epigenetic changes involved in hydroquinone-induced mutations. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1744660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Minjuan Zeng
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | | | - Ke Zhang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jie Bao
- Department of Clinical Laboratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuting Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shiheng Zhu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Wei Jiang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yixian Wei
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lihao Guo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
7
|
Yu CH, Li Y, Zhao X, Yang SQ, Li L, Cui NX, Rong L, Yi ZC. Benzene metabolite 1,2,4-benzenetriol changes DNA methylation and histone acetylation of erythroid-specific genes in K562 cells. Arch Toxicol 2018; 93:137-147. [PMID: 30327826 DOI: 10.1007/s00204-018-2333-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
1,2,4-Benzenetriol (BT) is one of the phenolic metabolites of benzene, a general occupational hazard and ubiquitous environmental air pollutant with leukemogenic potential in humans. Previous studies have revealed that the benzene metabolites phenol and hydroquinone can inhibit hemin-induced erythroid differentiation in K562 cells. We investigated the roles of DNA methylation and histone acetylation in BT-inhibited erythroid differentiation in K562 cells. When K562 cells were treated with 0, 5, 10, 15 or 20 µM BT for 72 h, hemin-induced hemoglobin synthesis decreased in a concentration-dependent manner. Both 5-aza-2'-deoxycytidine (5-aza-CdR, DNA methyltransferase inhibitor) and trichostatin A (TSA, histone deacetylases inhibitor) could prevent 20 µM BT from inhibiting hemin-induced hemoglobin synthesis and the mRNA expression of erythroid genes. Exposure to BT changed DNA methylation levels at several CpG sites of erythroid-specific genes, as well as the acetylation of histone H3 and H4, chromatin occupancy of GATA-1 and recruitment of RNA polymerase II at α-globin and β-globin gene clusters after hemin induction. These results demonstrated that BT could inhibit hemin-induced erythroid differentiation, where DNA methylation and histone acetylation also played important roles by down-regulating erythroid-specific genes. This partly explained the mechanisms of benzene hematotoxicity.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Yang Li
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China
| | - Xiao Zhao
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Lei Li
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Ning-Xuan Cui
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Long Rong
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
8
|
Liang B, Chen Y, Yuan W, Qin F, Zhang Q, Deng N, Liu X, Ma X, Zhang X, Zhang B, Deng Q, Huang M, Tang H, Liu L, Chen W, Xiao Y. Down-regulation of miRNA-451a and miRNA-486-5p involved in benzene-induced inhibition on erythroid cell differentiation in vitro and in vivo. Arch Toxicol 2017; 92:259-272. [DOI: 10.1007/s00204-017-2033-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
|
9
|
Yu CH, Cui NX, Wang Y, Wang Y, Liu WJ, Gong M, Zhao X, Rong L, Yi ZC. Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to catechol in long term. Toxicol In Vitro 2017; 43:21-28. [PMID: 28552822 DOI: 10.1016/j.tiv.2017.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Catechol is one of phenolic metabolites of benzene that is a general occupational hazard and a ubiquitous environmental air pollutant. Catechol also occurs naturally in fruits, vegetables and cigarettes. Previous studies have revealed that 72h exposure to catechol improved hemin-induced erythroid differentiation of K562 cells accompanied with elevated methylation in erythroid specific genes. In present study, K562 cells were treated with 0, 10 or 20μM catechol for 1-4weeks, hemin-induced hemoglobin synthesis increased in a concentration- and time-dependent manner and the enhanced hemoglobin synthesis was relatively stable. The mRNA expression of α-, β- and γ-globin genes, erythroid heme synthesis enzymes PBGD and ALAS2, transcription factor GATA-1 and NF-E2 showed a significant increase in K562 cells exposed to 20μM catechol for 3w, and catechol enhanced hemin-induced mRNA expression of these genes. Quantitative MassARRAY methylation analysis also confirmed that the exposure to catechol changed DNA methylation levels at several CpG sites in several erythroid-specific genes and their far upstream of regulatory elements. These results demonstrated that long-term exposure to low concentration of catechol enhanced the hemin-induced erythroid differentiation of K562 cells, in which DNA methylation played a role by up-regulating erythroid specific genes.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ning-Xuan Cui
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wen-Juan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Meng Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiao Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Rong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|