1
|
Çimen D, Ünal S, Denizli A. Nanoparticle-assisted plasmonic sensors: Recent developments in clinical applications. Anal Biochem 2025; 698:115753. [PMID: 39719190 DOI: 10.1016/j.ab.2024.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Nanotechnology is an important science that finds a wide range of applications from energy production to industrial production processes and biomedical applications. Nanoparti-cles, which are the most frequently preferred nanomaterials that form the basis of nanotechnolo-gy, are prepared with different composition, size, shape and surface chemistry to provide new techniques in applications in many different fields. The use of nanoparticles in the preparation of plasmonic sensors has increased the interest in plasmonic sensors such as surface plasmon resonance, electrochemical sensors, surface enhanced raman scattering and colorimetric sensors due to their increased sensing capacity on sensor surfaces. Plasmonic sensors are an important option in many different fields, such as medicine, environmental agriculture and food safety, thanks to their ability to solve a multitude of challenges. Because, plasmonic sensors are defined as sensing devices with important features such as sensitive and fast detection, no need for labels, real-time analysis, portability. In this review, the information about nanoparticles and their types and working principles of plasmonic sensors is given. Then, examples in clinical applications using different plasmonic sensors prepared with plasmonic nanoparticles are discussed in detail.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Chayavanich K, Sapyen W, Imyim A. An easy-to-use platform for colorimetric determination of dextran: A potential application for the sugar industry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123761. [PMID: 38141504 DOI: 10.1016/j.saa.2023.123761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
A user-friendly platform based on foam sheets and silica solid support was developed for colorimetric sensing of dextran via phenol-sulfuric acid assay. The chemical reagents, sulfuric acid and phenol were separately preserved by silica gel. The brown color product of the phenol-sulfuric acid reaction occurred on the silica solid support when sample solutions were added. The color intensity of brown products was easily obtained by a smartphone and color processing software. Subsequently, a broad concentration range of dextran could be determined up to 10,000 mg/L dextran, with a detection limit of 360 mg/L. Furthermore, a precision study, including inter-day and intra-day studies, presented a satisfactory performance for dextran detection. The developed platform was successfully applied for the sugar industry's dextran determination of syrup samples.
Collapse
Affiliation(s)
- Kasitnun Chayavanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wannida Sapyen
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichat Imyim
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Baghban HN, Hasanzadeh M. Multifunctional one-droplet microfluidic chemosensing of ractopamine in real samples: a user-oriented flexible nano-architecture for on-site food and pharmaceutical analysis using optical sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4506-4517. [PMID: 37615053 DOI: 10.1039/d3ay01064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Illegal use of ractopamine (RAC) in the food industry has dire consequences for health which should be curbed by inexpensive on-site checks. In this study, four advanced nanostructures of AuNPs were examined for this purpose. For the first time, a novel cost-effective colorimetric opto-sensor based on gold nanoparticles in aqueous solution was developed and successfully utilized for the recognition of RAC in real samples. The colorimetric chemosensor based on AuNPs-CysA exhibited a linear range of 0.1 μM to 0.01 M with a limit of detection (LOD) of 0.001 μM. Also, using AuNPs-DDT as a photonic probe two ranges of linearity of 0.01 to 50 μM and 0.005 to 0.01 M were obtained (LOD = 1 nM). The outstanding features of the utilized nanostructures are the simple preparation, the suitable stability of AuNPs-CysA and the excellent selectivity of AuNPs-DDT toward RAC recognition. Finally, the engineered colorimetric systems were combined with a simple and inexpensive optimized microfluidic glass fiber-based device. This work paves the way for devising inexpensive and efficient on-site recognition devices for food safety checks.
Collapse
Affiliation(s)
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Chen X, Xu J, Zhou H, Zhao Y, Wu Y, Zhang J, Zhang S. Tree-based machine learning models assisted fluorescent sensor array for detection of metal ions based on silver nanocluster probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122738. [PMID: 37080051 DOI: 10.1016/j.saa.2023.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The growing concern over heavy metal pollution and its impact on the environment and human health has led to a proliferation of research on the detection and differentiation of heavy metal ions. A novel fluorescent sensor array utilizing only one single Ag-nanoclusters (Ag NCs) was developed for the efficient detection of six metal ions. The Ag NCs probe was prepared by using poly(methyl vinyl ether-alt-maleic acid) (PMVEM) as the ligand and has different fluorescence properties in water and dimethyl sulfoxide (DMSO). The interaction between metal ions and Ag NCs resulted in a characteristic fluorescence variation pattern which was subsequently analyzed using various tree-based machine learning models. We have compared different combinations of classification models and pre-processing methods of which the K-Nearest Neighbors Classifier with the first five linear discriminants has the highest accuracy. Through the integration of concentration models within a tree-based pipeline optimization framework, six unique concentration regression models were selected for each metal ion. In addition, the developed sensor array could identify metal ions in binary mixtures. And it still kept high accuracy for the classification of six target metal ions in river water. In conclusion, the proposed framework was found to be effective in the detection of heavy metal ions in environmental samples, thus providing a promising approach for addressing heavy metal pollution.
Collapse
Affiliation(s)
- Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China.
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China; NYU-ECNU Institute of Physics at NYU Shanghai, No.3663, North Zhongshan Rd., Shanghai 200062, China.
| |
Collapse
|
5
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
6
|
Yang G, Li Y, Tang C, Lin F, Wu T, Bao J. Smartphone-Based Quantitative Analysis of Protein Array Signals for Biomarker Detection in Lupus. CHEMOSENSORS (BASEL, SWITZERLAND) 2022; 10:330. [PMID: 36072130 PMCID: PMC9447405 DOI: 10.3390/chemosensors10080330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescence-based microarray offers great potential in clinical diagnostics due to its high-throughput capability, multiplex capabilities, and requirement for a minimal volume of precious clinical samples. However, the technique relies on expensive and complex imaging systems for the analysis of signals. In the present study, we developed a smartphone-based application to analyze signals from protein microarrays to quantify disease biomarkers. The application adopted Android Studio open platform for its wide access to smartphones, and Python was used to design a graphical user interface with fast data processing. The application provides multiple user functions such as "Read", "Analyze", "Calculate" and "Report". For rapid and accurate results, we used ImageJ, Otsu thresholding, and local thresholding to quantify the fluorescent intensity of spots on the microarray. To verify the efficacy of the application, three antigens each with over 110 fluorescent spots were tested. Particularly, a positive correlation of over 0.97 was achieved when using this analytical tool compared to a standard test for detecting a potential biomarker in lupus nephritis. Collectively, this smartphone application tool shows promise for cheap, efficient, and portable on-site detection in point-of-care diagnostics.
Collapse
Affiliation(s)
- Guang Yang
- Materials Science & Engineering, University of Houston, Houston, TX 77204, USA
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Feng Lin
- Department of Electrical and Computer Engineering, Texas Center for Superconductivity (TCSUH), University of Houston, Houston, TX 77204, USA
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Jiming Bao
- Materials Science & Engineering, University of Houston, Houston, TX 77204, USA
- Department of Electrical and Computer Engineering, Texas Center for Superconductivity (TCSUH), University of Houston, Houston, TX 77204, USA
| |
Collapse
|
7
|
Jiao F, Cao F, Gao Y, Shuang F, Dong D. A biosensor based on a thermal camera using infrared radiance as the signal probe. Talanta 2022; 246:123453. [DOI: 10.1016/j.talanta.2022.123453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
|
8
|
Zhang J, Li Y, Gong X, Wang Y, Fu W. Colorimetric detection of total antioxidants in green tea with oxidase-mimetic CoOOH nanorings. Colloids Surf B Biointerfaces 2022; 218:112711. [PMID: 35907355 DOI: 10.1016/j.colsurfb.2022.112711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022]
Abstract
Green tea is a popular beverage and is widely consumed due to its taste and antioxidative polyphenols. Herein, a smartphone-based colorimetric reader using cobalt oxyhydroxide (CoOOH) nanorings has been successfully applied to detect antioxidants in green tea with high reliability and robustness. By exploiting the oxidase-mimicking activity, the as-synthesized CoOOH nanorings replaces natural enzymes to directly catalyze oxidate colorless 3,3 ´ ,5,5 ´ -tetramethylbenzidine (TMB), while antioxidants can disintegrate CoOOH, leading to an antioxidant concentration-dependent color change. Benefiting from the CoOOH nanorings-based colorimetric strategy, a smartphone-assistant nanosensor was devised for portable and visual detection of antioxidants in green tea. The proposed method can be extended to visual detection of a diverse range of diseases by responding to their specific antioxidant, and thus provide a pivotal disease toolbox that is compatible for development at the point-of-care.
Collapse
Affiliation(s)
- Jiajia Zhang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Yongfei Li
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Xue Gong
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Yi Wang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| | - Wensheng Fu
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
9
|
Xu C, Lin M, Wang T, Yao Z, Zhang W, Feng X. Colorimetric aptasensor for on-site detection of acetamiprid with hybridization chain reaction-assisted amplification and smartphone readout strategy. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Ha S, Kim J, Park CS, Lee S, Yoo D, Kim KH, Seo SE, Park SJ, An JE, Song HS, Bae J, Kim WK, Kwon OS. In situ, real-time, colorimetric detection of γ-hydroxybutyric acid (GHB) using self-protection products coated with chemical receptor-embedded hydrogel. Biosens Bioelectron 2022; 207:114195. [PMID: 35325719 DOI: 10.1016/j.bios.2022.114195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/28/2023]
Abstract
Due to the increase in drug-facilitated sexual assault (DFSA) enabled by the illegal use of drugs, there have been constant demands for simple methods that can be used to protect oneself against crime in real life. γ-Hydroxybutyric acid (GHB), a central nervous system depressant, is one of the most dangerous drugs for use in DFSA because it is colorless and has slow physiological effects, which pose challenges for developing in situ, real-time GHB monitoring techniques. In this study, we developed a method for in situ colorimetric GHB detection using various self-protection products (SPPs) coated with 2-(3-bromo-4-hydroxystyryl)-3-ethylbenzothiazol-3-ium iodide (BHEI) as a chemical receptor embedded in hydrogels. Additionally, smartphone-based detection offers enhanced colorimetric sensitivity compared to that of the naked eye. The developed SPPs will help address drug-facilitated social problems.
Collapse
Affiliation(s)
- Siyoung Ha
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Chul Soon Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea; Process Development Team, Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Sangwoo Lee
- Biosystem Research Lab, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Donggon Yoo
- Biosystem Research Lab, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jai Eun An
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Joonwon Bae
- Department of Applied Chemistry, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Woo-Keun Kim
- Biosystem Research Lab, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea; Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Ponlakhet K, Phooplub K, Phongsanam N, Phongsraphang T, Phetduang S, Surawanitkun C, Buranachai C, Loilome W, Ngeontae W. Smartphone-based portable fluorescence sensor with gold nanoparticle mediation for selective detection of nitrite ions. Food Chem 2022; 384:132478. [PMID: 35219228 DOI: 10.1016/j.foodchem.2022.132478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/20/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
A simple, portable device for the detection of NO2- via a fluorescence method was developed. The proposed device consisted of a dark box containing a blue LED as a low-power excitation light source and a smartphone with a mobile application for RGB analysis as a light detector. Detection was mediated by using synthesized cetyltrimethylammonium bromide-stabilized gold nanoparticles (CTAB-AuNPs). The CTAB-AuNPs were etched with NO2- to yield Au3+, which catalyzes the oxidation of o-phenylenediamine (OPD) in the presence of H2O2 to generate 2,3-diaminophenazine (DAP). Triton X-100 (TX-100) micelles were introduced to improve the DAP fluorescence emission. The fluorescence intensity of DAP was recorded by the smartphone in terms of RGB intensity, which was correlated with the NO2- concentration. This method provided a wide linear working concentration range (0.5-100 μM), a limit of detection of 0.17 μM and excellent selectivity for NO2- over other anions.
Collapse
Affiliation(s)
- Kitayanan Ponlakhet
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kittirat Phooplub
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Nopphakon Phongsanam
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thirakan Phongsraphang
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Samuch Phetduang
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chayada Surawanitkun
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand
| | - Chittanon Buranachai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wittaya Ngeontae
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
12
|
Xu C, Lin M, Song C, Chen D, Bian C. A gold nanoparticle-based visual aptasensor for rapid detection of acetamiprid residues in agricultural products using a smartphone. RSC Adv 2022; 12:5540-5545. [PMID: 35425533 PMCID: PMC8981225 DOI: 10.1039/d2ra00348a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 01/02/2023] Open
Abstract
Based on the colorimetric analysis of gold nanoparticles and a smartphone readable strategy, a stable, sensitive, and visual method was established for rapid detection of acetamiprid residues in agricultural products. By optimizing the key parameters, the detection process only took 40 minutes with good specificity. The acetamiprid aptamer can help AuNPs to resist salt-induced aggregation. Conversely, in the presence of acetamiprid, the anti-protection is weakened and the AuNPs aggregated with the color change of the solution. The photographs of the solution are recorded by the smartphone and analyzed through image processing. In the range from 25 to 300 μM the method can realize a quantitative analysis of acetamiprid, and the detection limit is about 3.81 μM. Excellent recoveries are taken in samples of cucumber, cabbage, and river water, ranging from 96.78% to 129.95%. These results show no significant difference from the results obtained by the microplate reader. What's more, the method employs a smartphone to read without the assistance of professional equipment, which greatly reduces the cost of detection, and shows a promising application prospect for on-site rapid detection of acetamiprid.
Collapse
Affiliation(s)
- Chengnan Xu
- Zhejiang Citrus Research Institute Taizhou 318026 China
| | - Mei Lin
- Zhejiang Citrus Research Institute Taizhou 318026 China
| | - Chaonan Song
- School of Life Science, Taizhou University Taizhou 318001 China
| | - Danli Chen
- School of Life Science, Taizhou University Taizhou 318001 China
| | - Caimiao Bian
- School of Life Science, Taizhou University Taizhou 318001 China
| |
Collapse
|
13
|
Smartphone-Based Device for Colorimetric Detection of MicroRNA Biomarkers Using Nanoparticle-Based Assay. SENSORS 2021; 21:s21238044. [PMID: 34884049 PMCID: PMC8659705 DOI: 10.3390/s21238044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/15/2023]
Abstract
The detection of microRNAs (miRNAs) is emerging as a clinically important tool for the non-invasive detection of a wide variety of diseases ranging from cancers and cardiovascular illnesses to infectious diseases. Over the years, miRNA detection schemes have become accessible to clinicians, but they still require sophisticated and bulky laboratory equipment and trained personnel to operate. The exceptional computing ability and ease of use of modern smartphones coupled with fieldable optical detection technologies can provide a useful and portable alternative to these laboratory systems. Herein, we present the development of a smartphone-based device called Krometriks, which is capable of simple and rapid colorimetric detection of microRNA (miRNAs) using a nanoparticle-based assay. The device consists of a smartphone, a 3D printed accessory, and a custom-built dedicated mobile app. We illustrate the utility of Krometriks for the detection of an important miRNA disease biomarker, miR-21, using a nanoplasmonics-based assay developed by our group. We show that Krometriks can detect miRNA down to nanomolar concentrations with detection results comparable to a laboratory-based benchtop spectrophotometer. With slight changes to the accessory design, Krometriks can be made compatible with different types of smartphone models and specifications. Thus, the Krometriks device offers a practical colorimetric platform that has the potential to provide accessible and affordable miRNA diagnostics for point-of-care and field applications in low-resource settings.
Collapse
|
14
|
Li H, Wang X, Li X, Yu HZ. Quantitative pH Determination Based on the Dominant Wavelength Analysis of Commercial Test Strips. Anal Chem 2021; 93:15452-15458. [PMID: 34762419 DOI: 10.1021/acs.analchem.1c03393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The determination of pH values is essential in many chemical, medical, and environmental monitoring processes, which has been relying on conventional pH meters (glass electrodes) for quantitation and pH test strips for qualitative (or semi-quantitative) assessment. In this work, we demonstrate a smartphone-based pH determination technique, which performs digital image analysis of commercial test strips, particularly the determination of either the dominant wavelength (λd) or complementary wavelength (λc) of the color image. In conjunction with a 3D-printed optical accessory (with a surface light source and a macro lens), the quality of captured images have been warranted, and the quantitation accuracy of 0.05 pH units has been achieved. More importantly, the performance of this smartphone-based pH reading system (namely "Smart-pH-Reader") was validated using multiple real-world samples, as the results are consistent with those determined with a standard pH meter. The Smart-pH-Reader is envisioned to be a simple, portable, and accurate tool for pH determination in the fields of environmental monitoring, medical diagnosis, and beyond.
Collapse
Affiliation(s)
- Haiqin Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030600, P.R. China
| | - Xiaoyuan Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030600, P.R. China
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030600, P.R. China
| | - Hua-Zhong Yu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030600, P.R. China.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
15
|
Kim HY, Jo M, La JA, Choi Y, Cho EC, Kim SH, Jung Y, Kim K, Ryu JH. Detection of Lysyl Oxidase Activity in Tumor Extracellular Matrix Using Peptide-Functionalized Gold Nanoprobes. Cancers (Basel) 2021; 13:cancers13184523. [PMID: 34572752 PMCID: PMC8471099 DOI: 10.3390/cancers13184523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Although various malignant tumors express high levels of lysyl oxidase (LOX) and though its role in tumor progression is well-defined, there is a lack of sensing techniques to target LOX. This study highlights the application of peptide-functionalized gold nanoprobes for sensing the LOX levels in tumor microenvironments. The gold nanoparticles (AuNPs) in these nanoprobes aggregate upon exposure to LOX, resulting in a red shift of the surface plasmon resonance peak, accompanied by a characteristic color change. This colorimetric assay based on peptide-functionalized AuNP sensitively detects LOX secreted from various cancer cells not only in vitro but also in the tissue extract. In this study, the suggested analytical approach demonstrated high specificity to LOX and did not show any color change in the presence of other enzymes. Abstract High LOX levels in the tumor microenvironment causes the cross-linking of extracellular matrix components and increases the stiffness of tumor tissue. Thus, LOX plays an important role in tumorigenesis and in lowering the tumor response to anticancer drugs. Despite comprehensive efforts to identify the roles of LOX in the tumor microenvironment, sensitive and accurate detection methods have not yet been established. Here, we suggest the use of gold nanoparticles functionalized with LOX-sensitive peptides (LS-AuNPs) that aggregate upon exposure to LOX, resulting in a visual color change. LOX-sensitive peptides (LS-peptides) contain lysine residues that are converted to allysine in the presence of LOX, which is highly reactive and binds to adjacent allysine, resulting in the aggregation of the AuNPs. We demonstrated that the synthesized LS-AuNPs are capable of detecting LOX sensitively, specifically both in vitro and in the tissue extract. Moreover, the suggested LS-AuNP-based assay is more sensitive than commonly employed assays or commercially available kits. Therefore, the LS-AuNPs developed in this study can be used to detect LOX levels and can be further used to predict the stiffness or the anticancer drug resistance of the tumor.
Collapse
Affiliation(s)
- Han Young Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Gyeonggi-do, Korea;
| | - Mihee Jo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (M.J.); (Y.C.); (K.K.)
| | - Ju A La
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea; (J.A.L.); (E.C.C.)
| | - Youngjin Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (M.J.); (Y.C.); (K.K.)
| | - Eun Chul Cho
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea; (J.A.L.); (E.C.C.)
| | - Su Hee Kim
- R&D Center, Medifab Ltd., Seoul 08584, Korea;
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (M.J.); (Y.C.); (K.K.)
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (M.J.); (Y.C.); (K.K.)
- Correspondence: ; Tel.: +82-2-958-5942
| |
Collapse
|
16
|
Gold nanoparticle-based cascade reaction-triggered fluorogenicity for highly selective nitrite ion detection in forensic samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Wang F, Na N, Ouyang J. Particle-in-a-frame gold nanomaterials with an interior nanogap-based sensor array for versatile analyte detection. Chem Commun (Camb) 2021; 57:4520-4523. [PMID: 33956027 DOI: 10.1039/d1cc01094h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work, we studied the catalytic performance of gold nanomaterials, specifically a particle-in-a-frame nanostructure (PIAF) with interior nanogaps. Au PIAF was used to catalyse the 3,3',5,5'-tetramethylbenzidine (TMB) reaction. This array could accurately identify 7 proteins, 5 antioxidants, and 3 cell types.
Collapse
Affiliation(s)
- Feiyang Wang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
18
|
Lertvachirapaiboon C, Baba A, Shinbo K, Kato K. Colorimetric Detection Based on Localized Surface Plasmon Resonance for Determination of Chemicals in Urine. ANAL SCI 2021; 37:929-940. [PMID: 33132235 DOI: 10.2116/analsci.20r005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Colorimetric sensors based on localized surface plasmon resonance (LSPR) have attracted much attention for biosensor and chemical sensor applications. The unique optical effect of LSPR is based on the nanostructure of noble metals (e.g., Au, Ag, and Al) and the refractive index of the environment surrounding these metal nanomaterials. When either the structure or the environment of these nanomaterials is changed, their optical properties change and can be observed by spectroscopic techniques or the naked eye. Colorimetric-probe-based LSPR provides a simple, rapid, real-time, nonlabelled, sensitive biochemical detection and can be used for point-of-care testing as well as rapid screening for the diagnosis of various diseases. Gold and silver nanoparticles, which are the two most widely used plasmonic nanomaterials, demonstrate strong and sensitive LSPR signals that can be used for the selective detection of several chemicals in biochemical compounds provided by the human body (e.g., urine and blood). This information can be used for the diagnosis of several human health conditions. This paper provides information regarding colorimetric probes based on LSPR for the detection of three major chemicals in human urine: creatinine, albumin, and glucose. In addition, the mechanisms of selective detection and quantitative analysis of these chemicals using metal nanoparticles are discussed along with colorimetric-detection-based LSPR for many other specific chemicals that can be detected in urine, such as catecholamine neurotransmitters, thymine, and various medicines. Furthermore, issues regarding the use of portable platforms for health monitoring with colorimetric detection based on LSPR are discussed.
Collapse
Affiliation(s)
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University
| |
Collapse
|
19
|
Sun BR, Zhou AG, Li X, Yu HZ. Development and Application of Mobile Apps for Molecular Sensing: A Review. ACS Sens 2021; 6:1731-1744. [PMID: 33955727 DOI: 10.1021/acssensors.1c00512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern smartphone-based sensing devices are generally standalone detection platforms that can transduce signals (via the built-in USB port, audio jack, or camera), perform analysis through mobile applications (apps), and display results on the screen/user interface. The advancement toward this ultimate form of on-site chemical analysis and point-of-care diagnosis is tied closely with the evolution of mobile technology. Previous reviews in the field mainly focused on the physical platforms while overlooking the role of mobile apps in such devices. There exist three general stages throughout the development: (1) early generation telemedicine, (2) mobile phone-assisted clinical diagnosis (without apps), and (3) mobile app-based sensing devices for various analytes. This review presents the key breakthroughs during each stage, recent development, remaining challenges, and future perspectives of the field. Representative examples, spanning from the pioneering point-of-care testing to the latest devices with integrated mobile apps, are classified by their sensing mechanisms. The review also discusses the scarcity of open-source apps dedicated to molecular sensing. With the introduction of more open-source and commercial apps, the mobile app-based detection system is anticipated to dominate point-of-care diagnosis and on-site molecular sensing in our opinion.
Collapse
Affiliation(s)
- Brigitta R. Sun
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Alvin G. Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
20
|
Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021; 26:748. [PMID: 33535493 PMCID: PMC7867046 DOI: 10.3390/molecules26030748] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
With the increasing prevalence of growing population, aging and chronic diseases continuously rising healthcare costs, the healthcare system is undergoing a vital transformation from the traditional hospital-centered system to an individual-centered system. Since the 20th century, wearable sensors are becoming widespread in healthcare and biomedical monitoring systems, empowering continuous measurement of critical biomarkers for monitoring of the diseased condition and health, medical diagnostics and evaluation in biological fluids like saliva, blood, and sweat. Over the past few decades, the developments have been focused on electrochemical and optical biosensors, along with advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have evolved gradually with a mix of multiplexed biosensing, microfluidic sampling and transport systems integrated with flexible materials and body attachments for improved wearability and simplicity. These wearables hold promise and are capable of a higher understanding of the correlations between analyte concentrations within the blood or non-invasive biofluids and feedback to the patient, which is significantly important in timely diagnosis, treatment, and control of medical conditions. However, cohort validation studies and performance evaluation of wearable biosensors are needed to underpin their clinical acceptance. In the present review, we discuss the importance, features, types of wearables, challenges and applications of wearable devices for biological fluids for the prevention of diseased conditions and real-time monitoring of human health. Herein, we summarize the various wearable devices that are developed for healthcare monitoring and their future potential has been discussed in detail.
Collapse
Affiliation(s)
- Atul Sharma
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana 122505, India
| | - Mihaela Badea
- Fundamental, Prophylactic and Clinical Specialties Department, Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt Ravishankar Shukla University, Raipur, CHATTISGARH 492010, India;
| | - Jean Louis Marty
- University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
21
|
Pan MM, Wang YF, Wang L, Yu X, Xu L. Recent advances in visual detection for cancer biomarkers and infectious pathogens. J Mater Chem B 2021; 9:35-52. [PMID: 33225338 DOI: 10.1039/d0tb01883j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is an urgency to detect infectious pathogens or cancer biomarkers using rapid, simple, convenient and cost-effective methods in complex biological samples. Many existing approaches (traditional virus culture, ELISA or PCR) for the pathogen and biomarker assays face several challenges in the clinical applications that require lengthy time, sophisticated sample pre-treatment and expensive instruments. Due to the simple and rapid detection manner as well as no requirement of expensive equipment, many visual detection methods have been considered to resolve the aforementioned problems. Meanwhile, various new materials and colorimetric/fluorescent methods have been tried to construct new biosensors for infectious pathogens and biomarkers. However, the recent progress of these aspects is rarely reviewed, especially in terms of integration of new materials, microdevice and detection mechanism into the visual detection systems. Herein, we provide a broad field of view to discuss the recent progress in the visual detection of infectious pathogens and cancer biomarkers along with the detection mechanism, new materials, novel detection methods, special targets as well as multi-functional microdevices and systems. The novel visual approaches for the infectious pathogens and biomarkers, such as bioluminescence resonance energy transfer (BRET), metal-induced metallization and clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors, are discussed. Additionally, recent advancements in visual assays utilizing various new materials for proteins, nucleic acids, viruses, exosomes and small molecules are comprehensively reviewed. Future perspectives on the visual sensing systems for infectious pathogens and cancers are also proposed.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | |
Collapse
|
22
|
Schell J, McCauley SC, Glaser R. Video colorimetry of single-chromophore systems based on vector analysis in the 3D color space: Unexpected hysteresis loops in oscillating chemical reactions. Talanta 2020; 220:121303. [PMID: 32928377 DOI: 10.1016/j.talanta.2020.121303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/19/2022]
Abstract
Colorimetry, the quantitative determination of color, usually of a digital image, has useful applications in diverse areas of research. Many methods have been proposed for translating the RGB data of an image to obtain concentration information. Among the many methods for RGB analysis, we focus on the vector projection method (VP), which is based on a vector analysis in 3D RGB color space. This method has the major advantages of being conceptually intelligible and generalizable to various systems. For solutions with variable concentrations of one chromophore, we will show that the analysis of the trace in RGB color space allows for a judgment about the reliability of the linear concentration dependence of the chromapostasi parameter. We discuss the theoretical underpinnings of the method in two test cases, a simple dye solution and a titration of an organic acid with phenolphthalein indicator. The VP method was then applied to the Ce-catalyzed Belousov-Zhabotinsky reaction with the expectation that the colorimetry would quantify [Ce4+] oscillations. Surprisingly, the 3D color space analysis revealed hysteresis loops and the origin and implications of this observation are discussed.
Collapse
Affiliation(s)
- Joseph Schell
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Sara C McCauley
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Rainer Glaser
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
| |
Collapse
|
23
|
Grazioli C, Faura G, Dossi N, Toniolo R, Abate M, Terzi F, Bontempelli G. 3D printed portable instruments based on affordable electronics, smartphones and open-source microcontrollers suitable for monitoring food quality. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Abstract
Further complications associated with infection by severe acute respiratory syndrome coronavirus 2 (a.k.a. SARS-CoV-2) continue to be reported. Very recent findings reveal that 20-30% of patients at high risk of mortality from COVID-19 infection experience blood clotting that leads to stroke and sudden death. Timely assessment of the severity of blood clotting will be of enormous help to clinicians in determining the right blood-thinning medications to prevent stroke or other life-threatening consequences. Therefore, rapid identification of blood-clotting-related proteins in the plasma of COVID-19 patients would save many lives. Several nanotechnology-based approaches are being developed to diagnose patients at high risk of death due to complications from COVID-19 infections, including blood clots. This Perspective outlines (i) the significant potential of nanomedicine in assessing the risk of blood clotting and its severity in SARS-CoV-2 infected patients and (ii) its synergistic roles with advanced mass-spectrometry-based proteomics approaches in identifying the important protein patterns that are involved in the occurrence and progression of this disease. The combination of such powerful tools might help us understand the clotting phenomenon and pave the way for development of new diagnostics and therapeutics in the fight against COVID-19.
Collapse
Affiliation(s)
- Amir Ata Saei
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Shahriar Sharifi
- Precision
Health Program and Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Precision
Health Program and Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
25
|
Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115754] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Field analysis free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and accuracy. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
28
|
Carneiro Cruz AA, Freire RM, Froelich DB, Alves de Lima AC, Muniz AR, Ferreira OP, Fechine PBA. Fluorescence Based Platform to Discriminate Protein Using Carbon Quantum Dots. ChemistrySelect 2019. [DOI: 10.1002/slct.201901014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antônio Alvernes Carneiro Cruz
- Grupo de Química de Materiais Avançados (GQMat)Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará – UFC, Campus do Pici CP 12100, CEP 60451–970 Fortaleza, CE Brazil
| | - Rafael Melo Freire
- Departamento de Física/CEDENNAUniversidad de Santiago de Chile USACH, Av. Ecuador 3493, Santiago Chile
| | - Deise Beatriz Froelich
- Departamento de Engenharia QuímicaUniversidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Ari Clesius Alves de Lima
- NUTEC- Fundação Núcleo de Tecnologia Industrial do Ceará – Rua Prof° Rômulo Proença- Pici CEP: 60.440-552 Fortaleza, CE Brazil
| | - André Rodrigues Muniz
- Departamento de Engenharia QuímicaUniversidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Odair Pastor Ferreira
- Laboratório de Materiais Funcionais Avançados (LaMFA)Departamento de FísicaUniversidade Federal do Ceará – UFC, Campus do Pici, Fortaleza – CE Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat)Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará – UFC, Campus do Pici CP 12100, CEP 60451–970 Fortaleza, CE Brazil
| |
Collapse
|
29
|
Wu H, Li Y, He X, Chen L, Zhang Y. Colorimetric sensor based on 4-mercaptophenylboronic modified gold nanoparticles for rapid and selective detection of fluoride anion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:393-398. [PMID: 30802796 DOI: 10.1016/j.saa.2019.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/30/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
A highly selective and sensitive colorimetric sensor based on aggregation-induced color change of 4-mercaptophenylboronic modified gold nanoparticles was designed for the determination of fluoride anion. The 4-mercaptophenylboronic modified gold nanoparticles were synthesized by a simple one-pot reaction. The aggregation process occurred when interaction between fluoride anion and 4-mercaptophenylboronic on the surface of gold nanoparticles took place; as a result, fluoroborate anions were formed coupled with changes in the electronic properties of the AuNPs. The change can be measured by UV-Vis absorption spectra. The sensor shows good selectivity and sensitivity for fluoride anion. The linear range is 10.0-30.0 μM for fluoride and the detection limit of fluoride is 3.45 × 10-7 M according to IUPAC criteria (3σ rule). Furthermore, the sensor has been used for the detection of fluoride anion in tap water, ground water and human serum samples, the recovery can achieve 94.0%-103.3%, 94.7%-101.0% and 89.8-100.9%, respectively. The excellent performance of colorimetric sensor in the detection of the fluoride anion demonstrated the potential application in the detecting fluoride anion present in the complex environmental and biological samples.
Collapse
Affiliation(s)
- Haocheng Wu
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yijun Li
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Xiwen He
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Langxing Chen
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| | - Yukui Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China.
| |
Collapse
|
30
|
Liu J, Geng Z, Fan Z, Liu J, Chen H. Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018). Biosens Bioelectron 2019; 132:17-37. [DOI: 10.1016/j.bios.2019.01.068] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
|
31
|
Colorimetric Gas Sensing Washable Threads for Smart Textiles. Sci Rep 2019; 9:5607. [PMID: 30948769 PMCID: PMC6449334 DOI: 10.1038/s41598-019-42054-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/22/2019] [Indexed: 11/09/2022] Open
Abstract
A fabrication method for a stable entrapment of optically responsive dyes on a thread substrate is proposed to move towards a detection system that can be integrated into clothing. We use the dyes 5,10,15,20-Tetraphenyl-21H,23H-porphine manganese(III) chloride (MnTPP), methyl red (MR), and bromothymol blue (BTB), for a proof-of-concept. Our optical approach utilizes a smartphone to extract and track changes in the red (R), green (G) and blue (B) channel of the acquired images of the thread to detect the presence of an analyte. We demonstrate sensing of 50–1000 ppm of vapors of ammonia and hydrogen chloride, components commonly found in cleaning supplies, fertilizer, and the production of materials, as well as dissolved gas sensing of ammonia. The devices are shown to be stable over time and with agitation in a centrifuge. This is attributed to the unique dual step fabrication process that entraps the dye in a stable manner. The facile fabrication of colorimetric gas sensing washable threads is ideal for the next generation of smart textile and intelligent clothing.
Collapse
|
32
|
A smartphone-based ratiometric fluorescent device for field analysis of soluble copper in river water using carbon quantum dots as luminophore. Talanta 2019; 194:452-460. [DOI: 10.1016/j.talanta.2018.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/01/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022]
|
33
|
Prasad A, Hasan SMA, Grouchy S, Gartia MR. DNA microarray analysis using a smartphone to detect the BRCA-1 gene. Analyst 2019; 144:197-205. [PMID: 30302482 DOI: 10.1039/c8an01020j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA microarrays are used to examine changes in gene expression of a large number of genes simultaneously by fluorescent labeling of complementary DNAs (cDNAs). The major bottleneck in implementing microarray technology in resource-limited settings lies in the detection instrument used for generating images of spotted oligonucleotides post-hybridization. While various methods such as a lateral flow assay have been presented to accomplish point-of-care disease detection, there is no simple and effective instrument available to gather spot images maintaining the standard microarray procedures. Nanotechnology based sensors connected with a portable smartphone readout system have the potential to be implemented in microarray technology. Here, we describe a portable fluorescence microarray based imaging system connected to a smartphone for detecting breast cancer gene expression (BRCA-1) from exon 11. This is based on the interactive binding of probe DNA to Cy3-target DNA. A paper-based microfluidics approach was used to demonstrate the DNA hybridization assay. The imaging principles of the assembled device named "FluoroZen" are similar to those of a fluorescence microscope. It uses two light spectrum filters, one to excite the fluorescent dye and the other to capture the emission spectrum. The images were acquired by using CCD cameras from FluoroZen. The smartphone integrated paper microfluidics platform presented here could be translated into clinical settings to perform point-of-care testing.
Collapse
Affiliation(s)
- Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | - Syed Mohammad Abid Hasan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | - Steven Grouchy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
34
|
Li Y, Zhang P, Fu W, Chen L, Wu S, Long Y, Wang Y. Smartphone-based colorimetric assay of antioxidants in red wine using oxidase-mimic MnO2 nanosheets. Analyst 2019; 144:5479-5485. [DOI: 10.1039/c9an01202h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A smartphone-based colorimetric method is developed for the determination of total antioxidants in red wine using oxidase-mimic MnO2 nanosheets as probes.
Collapse
Affiliation(s)
- Yongfei Li
- Chongqing Key Laboratory of Photo-Electric Functional Materials
- and College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Pu Zhang
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- China
| | - Wensheng Fu
- Chongqing Key Laboratory of Photo-Electric Functional Materials
- and College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Lingli Chen
- Chongqing Key Laboratory of Photo-Electric Functional Materials
- and College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Shiyue Wu
- Chongqing Key Laboratory of Photo-Electric Functional Materials
- and College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Yunfei Long
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Yi Wang
- Chongqing Key Laboratory of Photo-Electric Functional Materials
- and College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| |
Collapse
|
35
|
Shang J, Yu L, Sun Y, Chen X, Kang Q, Shen D. On site determination of free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and reliability. NEW J CHEM 2019. [DOI: 10.1039/c9nj03954f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Absorbance in a long-path portable colorimetric device was measured by a ratiometric fluorescent strategy in a smartphone platform.
Collapse
Affiliation(s)
- Jian Shang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Lei Yu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Yan Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Xiaolan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| |
Collapse
|
36
|
Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev 2018; 119:231-292. [DOI: 10.1021/acs.chemrev.8b00226] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jon R. Askim
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
|
38
|
Fang C, Zhang X, Dong Z, Wang L, Megharaj M, Naidu R. Smartphone app-based/portable sensor for the detection of fluoro-surfactant PFOA. CHEMOSPHERE 2018; 191:381-388. [PMID: 29049961 DOI: 10.1016/j.chemosphere.2017.10.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
We developed a smartphone app-based monitoring tool for the detection of anionic surfactants (AS), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Akin to the methylene blue active substances (MBAS), liquid-phase extraction (LPE) is employed to extract the hydrophobic ion-pair of dye (ethyl violet)-AS to an organic phase (ethyl acetate). The colour (RGB) of the organic phase is read using a smartphone camera with the help of a reading kit. The value of RGB is carefully corrected and linked to the concentration of ASs with a standard deviation of <10% in the 10-1000 ppb (part per billion) range. In order to avoid the interference arising from inorganic anions (such as those found in tap water and groundwater), the water sample is pre-treated either by solid-phase extraction (SPE), which takes ∼30 min, or by dual liquid-phase extraction (dual-LPE, developed by us), which takes ∼5 min. In the latter case, the organic phase of the first LPE (equilibrium with water sample) is transferred and subjected to a second LPE (equilibrium with Milli-Q water) to remove any potential background interference. In the meantime, SPE can also pre-concentrate ASs at 100-1000 times (in volume) to benefit the sensitivity. Consequently, our smartphone app can detect PFOA spiked in tap/groundwater with an LOD of 10 ppb (∼12 nM, dual-LPE of ∼5 min), or 0.5 ppb (∼1.2 nM, SPE of ∼3 h), suggesting that it has the potential to succeed as a pre-screening tool for on-site application and in common laboratory tests.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Xian Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaomin Dong
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Liang Wang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
39
|
Abbasi-Moayed S, Golmohammadi H, Bigdeli A, Hormozi-Nezhad MR. A rainbow ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of biothiols. Analyst 2018; 143:3415-3424. [DOI: 10.1039/c8an00637g] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The crucial role of biothiols in many biological processes, which turns them into important biomarkers for the early diagnosis of various diseases, the development of an affordable, sensitive and portable probe for the detection and discrimination of these compounds is of great importance.
Collapse
Affiliation(s)
| | | | - Arafeh Bigdeli
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
| | - M. Reza Hormozi-Nezhad
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
- Institute for Nanoscience and Nanotechnology
| |
Collapse
|