1
|
Zhang T, Zheng J, Chen M, Li D, Sun Y, Liu R, Sun T. A mini review of polysaccharides from Zanthoxylum bungeanum maxim: Their extraction, purification, structural characteristics, bioactivity and potential applications. Int J Biol Macromol 2024; 282:137007. [PMID: 39486707 DOI: 10.1016/j.ijbiomac.2024.137007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Zanthoxylum bungeanum Maxim (Z. bungeanum), commonly known as Sichuan pepper or Chinese prickly ash, is a deciduous shrub in the Rutaceae family, with a lengthy history of use as a food ingredient and traditional medicine in China. Z. bungeanum polysaccharides (ZBPs) represent one of the crucial bioactive components of Z. bungeanum, garnering global attention due to their potential medicinal value, culinary significance, and promising application prospects. The principal methods for extracting ZBPs are hot water extraction, ultrasound-assisted extraction, enzyme-assisted extraction and microbial fermentation extraction. However, the structural characteristics of ZBPs remain ambiguous, necessitating further exploration and elucidation of the structure-activity relationship using the advanced analytical techniques. In addition, ZBPs demonstrate diverse bioactivities, including antioxidant activity, neuroprotective effect, antibacterial activity, and the anti-fatigue effect, positioning them as promising candidates for various therapeutic and health-promoting applications. This review provides a comprehensive overview of the extraction, purification, structural characteristics, bioactivities, and potential applications of ZBPs, emphasizing the significant promise of ZBPs as valuable natural compounds with a range of bioactivities, supporting their further exploitation and application in various fields of industries and therapeutics.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Jianfeng Zheng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Trespi S, Mazzotti M. HPLC method development for the quantification of a mixture of reacting species: The case of lactose. J Chromatogr A 2024; 1715:464553. [PMID: 38159403 DOI: 10.1016/j.chroma.2023.464553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Preparative and analytical chromatography are impaired by analytes that undergo a chemical reaction during the chromatographic separation, leading to peak distortion and systematic errors during the subsequent quantification phase. The pitfalls are highlighted through a combination of analytical results and numerical simulations. Two different quantification strategies for partially overlapping and reacting peaks are compared. A novel method development strategy based on the valley-to-peak ratio instead of the more common resolution is proposed. The method has been used to experimentally investigate the chromatographic behavior of a mutarotating sugar, lactose. The separation of the unprotected lactose isomers, α and β, has been optimized using a C18 column and pure water as the mobile phase. Phase dewetting phenomena during method development have also been studied and discussed.
Collapse
Affiliation(s)
- Silvio Trespi
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
3
|
Tsai ST, Hsu HC, Ni CK. A simple tandem mass spectrometry method for structural identification of pentose oligosaccharides. Analyst 2023; 148:1712-1731. [PMID: 36929945 DOI: 10.1039/d3an00068k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Differentiation of stereoisomers that are only dissimilar in the orientation of chemical bonds in space by mass spectrometry remains challenging. Structural determination of carbohydrates by mass spectrometry is difficult, mainly due to the large number of stereoisomers in carbohydrates. Arabinose and xylose are pentose stereoisomers typically present in plant polysaccharides and exist in α- and β-anomeric configurations of furanose and pyranose forms. Conventional methods used to determine the structures of polysaccharides include hydrolysis of polysaccharides into oligosaccharides followed by identification of these oligosaccharides' structures individually through nuclear magnetic resonance spectroscopy (NMR). Although the sensitivity of mass spectrometry is much higher than that of NMR, conventional mass spectrometry provides only limited useful information on oligosaccharide structure determination, only the linkage positions of glycosidic bonds. In this study, we demonstrated a mass spectrometry method for the identification of linkage positions, anomeric configurations, and monosaccharide stereoisomers of intact oligosaccharides consisting of arabinose and xylose. We separated arabinose and xylose monosaccharides into α-furanose, β-furanose, α-pyranose, and β-pyranose forms through high-performance liquid chromatography and obtained the corresponding collision-induced dissociation mass spectra. Using these monosaccharide spectra and a flow chart consisting of the proper CID sequences derived from the dissociation mechanisms of pentose, a simple multi-stage tandem mass spectrometry method for structural identification of intact oligosaccharides consisting of arabinose and xylose was developed. The new mass spectrometry method provides a simple method for determining the structure of polysaccharides consisting of arabinose and xylose. The flow chart can be used in computer coding for automation, an ultimate goal for oligosaccharide structure determination.
Collapse
Affiliation(s)
- Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan.
| | - Hsu-Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan.
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan. .,Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Kouzounis D, Sun P, Bakx EJ, Schols HA, Kabel MA. Strategy to identify reduced arabinoxylo-oligosaccharides by HILIC-MSn. Carbohydr Polym 2022; 289:119415. [DOI: 10.1016/j.carbpol.2022.119415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
|
6
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
7
|
Ben Faleh A, Warnke S, Bansal P, Pellegrinelli RP, Dyukova I, Rizzo TR. Identification of Mobility-Resolved N-Glycan Isomers. Anal Chem 2022; 94:10101-10108. [PMID: 35797429 PMCID: PMC9310030 DOI: 10.1021/acs.analchem.2c01181] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Glycan analysis has
evolved considerably during the last decade.
The advent of high-resolution ion-mobility spectrometry has enabled
the separation of isomers with only the slightest of structural differences.
However, the ability to separate such species raises the problem of
identifying all the mobility-resolved peaks that are observed, especially
when analytical standards are not available. In this work, we report
an approach based on the combination of IMSn with cryogenic
vibrational spectroscopy to identify N-glycan reducing-end
anomers. By identifying the reducing-end α and β anomers
of diacetyl-chitobiose, which is a disaccharide that forms part of
the common core of all N-glycans, we are able to
assign mobility peaks to reducing anomers of a selection of N-glycans of different sizes, starting from trisaccharides
such as Man-1 up to glycans containing nine monosaccharide units,
such as G2. By building an infrared fingerprint database of the identified N-glycans, our approach allows unambiguous identification
of mobility peaks corresponding to reducing-end anomers and distinguishes
them from positional isomers that might be present in a complex mixture.
Collapse
Affiliation(s)
- Ahmed Ben Faleh
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Priyanka Bansal
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Robert P Pellegrinelli
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Irina Dyukova
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, EPFL SB ISIC LCPM, École Polytechnique Fédérale de Lausanne, Station 6, Lausanne CH-1015, Switzerland
| |
Collapse
|
8
|
Norberg T, Johansson G, Kallin E. Derivatization of sugars with N,O-dimethylhydroxylamine. Efficient RP-HPLC separation of sugar mixtures. Carbohydr Res 2022; 520:108635. [DOI: 10.1016/j.carres.2022.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
|
9
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore‐Based Saccharide Sensor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Yao Liu
- Nanjing University Chemistry CHINA
| | | | | | | | | | - Shuo Huang
- Nanjing University Chemistry 163 Xianlin AveSchool of Chemistry and Chemical EngineeringXixia District 210023 Nanjing CHINA
| |
Collapse
|
10
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore-Based Saccharide Sensor. Angew Chem Int Ed Engl 2022; 61:e202203769. [PMID: 35718742 DOI: 10.1002/anie.202203769] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 12/19/2022]
Abstract
Saccharides play critical roles in many forms of cellular activities. Saccharide structures are however complicated and similar, setting a technical hurdle for direct identification. Nanopores, which are emerging single molecule tools sensitive to minor structural differences between analytes, can be engineered to identity saccharides. A hetero-octameric Mycobacterium smegmatis porin A nanopore containing a phenylboronic acid was prepared, and was able to clearly identify nine monosaccharide types, including D-fructose, D-galactose, D-mannose, D-glucose, L-sorbose, D-ribose, D-xylose, L-rhamnose and N-acetyl-D-galactosamine. Minor structural differences between saccharide epimers can also be distinguished. To assist automatic event classification, a machine learning algorithm was developed, with which a general accuracy score of 0.96 was achieved. This sensing strategy is generally suitable for other saccharide types and may bring new insights to nanopore saccharide sequencing.
Collapse
Affiliation(s)
- Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Chengzhen Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
11
|
Yatsyna V, Abikhodr AH, Ben Faleh A, Warnke S, Rizzo TR. High-Throughput Multiplexed Infrared Spectroscopy of Ion Mobility-Separated Species Using Hadamard Transform. Anal Chem 2022; 94:2912-2917. [PMID: 35113536 PMCID: PMC8851427 DOI: 10.1021/acs.analchem.1c04843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022]
Abstract
Coupling vibrational ion spectroscopy with high-resolution ion mobility separation offers a promising approach for detailed analysis of biomolecules in the gas phase. Improvements in the ion mobility technology have made it possible to separate isomers with minor structural differences, and their interrogation with a tunable infrared laser provides vibrational fingerprints for unambiguous database-enabled identification. Nevertheless, wide analytical application of this technique requires high-throughput approaches for acquisition of vibrational spectra of all species present in complex mixtures. In this work, we present a novel multiplexed approach and demonstrate its utility for cryogenic ion spectroscopy of peptides and glycans in mixtures. Since the method is based on Hadamard transform multiplexing, it yields infrared spectra with an increased signal-to-noise ratio compared to a conventional signal averaging approach.
Collapse
Affiliation(s)
- Vasyl Yatsyna
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
- Department
of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Ali H. Abikhodr
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Vera C, Guerrero C, Illanes A. Trends in lactose-derived bioactives: synthesis and purification. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 2:393-412. [PMID: 38624767 PMCID: PMC8776390 DOI: 10.1007/s43393-021-00068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Lactose obtained from cheese whey is a low value commodity despite its great potential as raw material for the production of bioactive compounds. Among them, prebiotics stand out as valuable ingredients to be added to food matrices to build up functional foods, which currently represent the most active sector within the food industry. Functional foods market has been growing steadily in the recent decades along with the increasing awareness of the World population about healthy nutrition, and this is having a strong impact on lactose-derived bioactives. Most of them are produced by enzyme biocatalysis because of molecular precision and environmental sustainability considerations. The current status and outlook of the production of lactose-derived bioactive compounds is presented with special emphasis on downstream operations which are critical because of the rather modest lactose conversion and product yields that are attainable. Even though some of these products have already an established market, there are still several challenges referring to the need of developing better catalysts and more cost-effective downstream operations for delivering high quality products at affordable prices. This technological push is expected to broaden the spectrum of lactose-derived bioactive compounds to be produced at industrial scale in the near future. Graphical abstract
Collapse
Affiliation(s)
- Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| |
Collapse
|
13
|
Impact of HILIC Amino-Based Column Equilibration Conditions on the Analysis of Chitooligosaccharides. Chromatographia 2022. [DOI: 10.1007/s10337-021-04109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Abstract
Food carbohydrates are macronutrients that are found in fruits, grains, vegetables, and milk products. These organic compounds are present in foods in the form of sugars, starches, and fibers and are composed of carbon, hydrogen, and oxygen. These wide ranging macromolecules can be classified according to their chemical structure into three major groups: low molecular weight mono- and disaccharides, intermediate molecular weight oligosaccharides, and high molecular weight polysaccharides. Notably, the digestibility of specific carbohydrate components differ and nondigestible carbohydrates can reach the large intestine intact where they act as food sources for beneficial bacteria. In this review, we give an overview of advances made in food carbohydrate analysis. Overall, this review indicates the importance of carbohydrate analytical techniques in the quest to identify and isolate health-promoting carbohydrates to be used as additives in the functional foods industry.
Collapse
Affiliation(s)
- Leonie J Kiely
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
15
|
Warnke S, Ben Faleh A, Rizzo TR. Toward High-Throughput Cryogenic IR Fingerprinting of Mobility-Separated Glycan Isomers. ACS MEASUREMENT SCIENCE AU 2021; 1:157-164. [PMID: 34939078 PMCID: PMC8679095 DOI: 10.1021/acsmeasuresciau.1c00018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/10/2023]
Abstract
Infrared (IR) spectroscopy is a powerful tool used to infer detailed structural information on molecules, often in conjunction with quantum-chemical calculations. When applied to cryogenically cooled ions, IR spectra provide unique fingerprints that can be used for biomolecular identification. This is particularly important in the analysis of isomeric biopolymers, which are difficult to distinguish using mass spectrometry. However, IR spectroscopy typically requires laser systems that need substantial user attention and measurement times of tens of minutes, which limits its analytical utility. We report here the development of a new high-throughput instrument that combines ultrahigh-resolution ion-mobility spectrometry with cryogenic IR spectroscopy and mass spectrometry, and we apply it to the analysis of isomeric glycans. The ion mobility step, which is based on structures for lossless ion manipulations (SLIM), separates glycan isomers, and an IR fingerprint spectrum identifies them. An innovative cryogenic ion trap allows multiplexing the acquisition of analyte IR fingerprints following mobility separation, and using a turn-key IR laser, we can obtain spectra and identify isomeric species in less than a minute. This work demonstrates the potential of IR fingerprinting methods to impact the analysis of isomeric biomolecules and more specifically glycans.
Collapse
|
16
|
Peterson TL, Nagy G. Rapid cyclic ion mobility separations of monosaccharide building blocks as a first step toward a high-throughput reaction screening platform for carbohydrate syntheses. RSC Adv 2021; 11:39742-39747. [PMID: 35494126 PMCID: PMC9044565 DOI: 10.1039/d1ra08746k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Herein we present a new high-throughput screening method for carbohydrate syntheses based on cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS)-based separations. We rapidly resolved the α/β anomers for carbohydrates with varying protecting groups after only 5 m of cIMS-MS separation and also detected their respective unwanted anomeric impurities at levels lower than 2%. All experiments were performed in 1 minute of total acquisition time demonstrating our method's high-throughput nature. Our methodology was also extended to the separation of an isomeric mixtures of two protected disaccharides illustrating its utility beyond only monosaccharides. We envision our presented workflow as a first step toward the development of a high-throughput screening platform for the rapid and sensitive detection of α/β anomeric selectivities and for trace isomeric/isobaric impurities.
Collapse
Affiliation(s)
- Tyler L Peterson
- Department of Chemistry, University of Utah 315 South 1400 East, Room 2020 Salt Lake City Utah 84112 USA
| | - Gabe Nagy
- Department of Chemistry, University of Utah 315 South 1400 East, Room 2020 Salt Lake City Utah 84112 USA
| |
Collapse
|
17
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
18
|
Uhliariková I, Matulová M, Capek P. Optimizing acid hydrolysis for monosaccharide compositional analysis of Nostoc cf. linckia acidic exopolysaccharide. Carbohydr Res 2021; 508:108400. [PMID: 34280803 DOI: 10.1016/j.carres.2021.108400] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022]
Abstract
The exact estimation of monosaccharide composition is important in the primary structure elucidation of polysaccharides. An acid hydrolysis is usually performed for glycosidic bonds cleavage and releasing of monosaccharides. In this study, optimal conditions of total acid hydrolysis using trifluoroacetic acid (TFA) of acidic lactylated Nostoc cf. linckia exopolysaccharide (EPS) were investigated by NMR spectroscopy. Results of a series of experiments with modified acid concentration, temperature and time of hydrolysis, have shown 2 M TFA, 110 °C, 3 h as the most optimal. The stability of EPS monosaccharide components was also explored. Low stability was found at all tested conditions already during the first hour of hydrolysis; all neutral monosaccharides were degraded from 25% to 40% and glucuronic acid to 75%. NMR, contrary to standard techniques used in monosaccharide compositional analysis (HPLC, HPAEC), allowed simultaneous quantification of all GlcA forms; the free one, that one linked in oligosaccharides, as well as GlcA degradation product γ-lactone. NMR as detection method improves information about uronic acid content in EPS.
Collapse
Affiliation(s)
- Iveta Uhliariková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská Cesta, 9, 84538, Bratislava, Slovakia.
| | - Mária Matulová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská Cesta, 9, 84538, Bratislava, Slovakia
| | - Peter Capek
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská Cesta, 9, 84538, Bratislava, Slovakia
| |
Collapse
|
19
|
Liou SW, Fang JL, Lin HW, Tsai TW, Huang HH, Liang CY, Yang CR, Wei GT, Yu CC. Effective Separation of Human Milk Glycosides using Carbon Dioxide Supercritical Fluid Chromatography. Chem Asian J 2021; 16:492-497. [PMID: 33417290 DOI: 10.1002/asia.202001404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Indexed: 01/13/2023]
Abstract
Carbohydrate purification remains problematic due to the intrinsic diversity of structural isomers present in nature. Although liquid chromatography-based techniques are suitable for analyzing or preparing most glycan structures acquired either from natural sources or through chemical or enzymatic synthesis, the separation of regioisomers or linkage isomers with a clear resolution remains challenging. Herein, a carbon dioxide supercritical fluid chromatography (SFC) method was devised to resolve 18 human milk glycosides: oligomers (disaccharides to hexasaccharides), fucosylated regioisomers (lacto-N-fucopentaose I, III, and V; lacto-N-neofucopentaose V; lacto-N-difucohexaose III; blood group H1 antigen; and TF-LNnT), and connectivity isomers (lacto-N-tetraose/lacto-N-neotetraose and para-lacto-N-hexaose/para-lacto-N-neohexaose/type-1 hexasaccharide). The analysis of these glycosides represents a major limitation associated with conventional carbohydrate analysis. The unprecedented resolution achieved by the SFC method indicates the suitability of this key technology for revealing complex human milk glycomes.
Collapse
Affiliation(s)
- Shih-Wei Liou
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Jia-Lin Fang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Hung-Wei Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Hsin-Hui Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Chin-Yu Liang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Cheng-Ruel Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Guor-Tzo Wei
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi, 62102, Taiwan
| |
Collapse
|
20
|
Zhang X. Released N-Glycan Analysis for Biotherapeutic Development Using Liquid Chromatography and Mass Spectrometry. Methods Mol Biol 2021; 2261:35-53. [PMID: 33420983 DOI: 10.1007/978-1-0716-1186-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this chapter, we describe an LC-fluorescence (FLR)/MS-based method for released N-glycan analysis in the development of biotherapeutic proteins. The method includes enzymatic release and labeling of N-glycans with a signal-enhancing tag, LC-MS data collection, and data interpretation. Using the given protocol, up to 24 glycan samples can be prepared within 1 h, while the LC-FLR/MS data can be collected and analyzed using an established data processing method in a semi-automated manner.
Collapse
|
21
|
Ray B, Schütz M, Mukherjee S, Jana S, Ray S, Marschall M. Exploiting the Amazing Diversity of Natural Source-Derived Polysaccharides: Modern Procedures of Isolation, Engineering, and Optimization of Antiviral Activities. Polymers (Basel) 2020; 13:E136. [PMID: 33396933 PMCID: PMC7794815 DOI: 10.3390/polym13010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure-activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug-target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Manfred Marschall
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| |
Collapse
|
22
|
Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 2020; 43:107568. [DOI: 10.1016/j.biotechadv.2020.107568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
23
|
Pralow A, Cajic S, Alagesan K, Kolarich D, Rapp E. State-of-the-Art Glycomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:379-411. [PMID: 33112988 DOI: 10.1007/10_2020_143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycosylation affects the properties of biologics; thus regulatory bodies classified it as critical quality attribute and force biopharma industry to capture and control it throughout all phases, from R&D till end of product lifetime. The shift from originators to biosimilars further increases importance and extent of glycoanalysis, which thus increases the need for technology platforms enabling reliable high-throughput and in-depth glycan analysis. In this chapter, we will first summarize on established glycoanalytical methods based on liquid chromatography focusing on hydrophilic interaction chromatography, capillary electrophoresis focusing on multiplexed capillary gel electrophoresis, and mass spectrometry focusing on matrix-assisted laser desorption; we will then highlight two emerging technologies based on porous graphitized carbon liquid chromatography and on ion-mobility mass spectrometry as both are highly promising tools to deliver an additional level of information for in-depth glycan analysis; additionally we elaborate on the advantages and challenges of different glycoanalytical technologies and their complementarity; finally, we briefly review applications thereof to biopharmaceutical products. This chapter provides an overview of current state-of-the-art analytical approaches for glycan characterization of biopharmaceuticals that can be employed to capture glycoprotein heterogeneity in a biopharmaceutical context.
Collapse
Affiliation(s)
- Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- ARC Centre of Excellence in Nanoscale Biophotonics, Griffith University, Gold Coast, QLD, Australia
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| |
Collapse
|
24
|
Nidetzky B, Zhong C. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv 2020; 51:107633. [PMID: 32966861 DOI: 10.1016/j.biotechadv.2020.107633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Cellulose-based materials are produced industrially in countless varieties via top-down processing of natural lignocellulose substrates. By contrast, cellulosic materials are only rarely prepared via bottom up synthesis and oligomerization-induced self-assembly of cellulose chains. Building up a cellulose chain via precision polymerization is promising, however, for it offers tunability and control of the final chemical structure. Synthetic cellulose derivatives with programmable material properties might thus be obtained. Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes iterative β-1,4-glycosylation from α-d-glucose 1-phosphate, with the ability to elongate a diversity of acceptor substrates, including cellobiose, d-glucose and a range of synthetic glycosides having non-sugar aglycons. Depending on the reaction conditions leading to different degrees of polymerization (DP), short-chain soluble cello-oligosaccharides (COS) or insoluble cellulosic materials are formed. Here, we review the characteristics of CdP as bio-catalyst for synthetic applications and show advances in the enzymatic production of COS and reducing end-modified, tailored cellulose materials. Recent studies reveal COS as interesting dietary fibers that could provide a selective prebiotic effect. The bottom-up synthesized celluloses involve chains of DP ≥ 9, as precipitated in solution, and they form ~5 nm thick sheet-like crystalline structures of cellulose allomorph II. Solvent conditions and aglycon structures can direct the cellulose chain self-assembly towards a range of material architectures, including hierarchically organized networks of nanoribbons, or nanorods as well as distorted nanosheets. Composite materials are also formed. The resulting materials can be useful as property-tunable hydrogels and feature site-specific introduction of functional and chemically reactive groups. Therefore, COS and cellulose obtained via bottom-up synthesis can expand cellulose applications towards product classes that are difficult to access via top-down processing of natural materials.
Collapse
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria; Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz 8010, Austria.
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
25
|
Living with Breakthrough: Two-Dimensional Liquid-Chromatography Separations of a Water-Soluble Synthetically Grafted Bio-Polymer. SEPARATIONS 2020. [DOI: 10.3390/separations7030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this study, we evaluate the use of various two-dimensional liquid chromatographic methods to characterize water-soluble, synthetically grafted bio-polymers, consisting of long poly(acrylic acid) chains and short maltodextrin grafts. The confirmation of the presence of grafting and the estimation of its extent is challenging. It is complicated by the limited solubility of polymers, their structural dispersity and chemical heterogeneity. Moreover, the starting materials (and other reagents, reaction products and additives) may be present in the product. Reversed-phase liquid chromatography (RPLC), hydrophilic-interaction liquid chromatography (HILIC) and size-exclusion chromatography (SEC) were used to characterize the product, as well as the starting materials. Additionally, fractions were collected for off-line characterization by infrared spectroscopy and mass spectrometry. The one-dimensional separation methods were found to be inconclusive regarding the grafting question. Breakthrough (the early elution of polymer fractions due to strong injection solvents) is shown to be a perpetual problem. This issue is not solved by comprehensive two-dimensional liquid chromatography (LC × LC), but information demonstrating the success of the grafting reaction could be obtained. SEC × RPLC and HILIC × RPLC separations are presented and discussed.
Collapse
|
26
|
Zhang Q, Li Z, Song X. Preparation of Complex Glycans From Natural Sources for Functional Study. Front Chem 2020; 8:508. [PMID: 32719769 PMCID: PMC7348041 DOI: 10.3389/fchem.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
One major barrier in glycoscience is the lack of diverse and biomedically relevant complex glycans in sufficient quantities for functional study. Complex glycans from natural sources serve as an important source of these glycans and an alternative to challenging chemoenzymatic synthesis. This review discusses preparation of complex glycans from several classes of glycoconjugates using both enzymatic and chemical release approaches. Novel technologies have been developed to advance the large-scale preparation of complex glycans from natural sources. We also highlight recent approaches and methods developed in functional and fluorescent tagging and high-performance liquid chromatography (HPLC) isolation of released glycans.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhonghua Li
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
27
|
Zhang X, Reed CE, Birdsall RE, Yu YQ, Chen W. High-Throughput Analysis of Fluorescently Labeled N-Glycans Derived from Biotherapeutics Using an Automated LC-MS-Based Solution. SLAS Technol 2020; 25:380-387. [PMID: 32458729 PMCID: PMC7372583 DOI: 10.1177/2472630320922803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein glycosylation can impact the efficacy and safety of biotherapeutics and therefore
needs to be well characterized and monitored throughout the drug product life cycle.
Glycosylation is commonly assessed by fluorescent labeling of released glycans, which
provides comprehensive information of the glycoprofile but can be resource-intensive
regarding sample preparation, data acquisition, and data analysis. In this work, we
evaluate a comprehensive solution from sample preparation to data reporting using a liquid
chromatography–mass spectrometry (LC-MS)-based analytical platform for increased
productivity in released glycan analysis. To minimize user intervention and improve assay
robustness, a robotic liquid handling platform was used to automate the release and
labeling of N-glycans within 2 h. To further increase the throughput, a 5 min method was
developed on a liquid chromatography–fluorescence–mass spectrometry (LC-FLR-MS) system
using an integrated glycan library based on retention time and accurate mass. The
optimized method was then applied to 48 released glycan samples derived from six batches
of infliximab to mimic comparability testing encountered in the development of
biopharmaceuticals. Consistent relative abundance of critical species such as high mannose
and sialylated glycans was obtained for samples within the same batch (mean percent
relative standard deviation [RSD] = 5.3%) with data being acquired, processed, and
reported in an automated manner. The data acquisition and analysis of the 48 samples were
completed within 6 h, which represents a 90% improvement in throughput compared with
conventional LC-FLR-based methods. Together, this workflow facilitates the rapid screening
of glycans, which can be deployed at various stages of drug development such as process
optimization, bioreactor monitoring, and clone selections, where high-throughput and
improved productivity are particularly desired.
Collapse
Affiliation(s)
- Ximo Zhang
- Scientific Operations, Waters Corporation, Milford, MA, USA
| | - Corey E Reed
- Scientific Operations, Waters Corporation, Milford, MA, USA
| | | | - Ying Qing Yu
- Scientific Operations, Waters Corporation, Milford, MA, USA
| | - Weibin Chen
- Scientific Operations, Waters Corporation, Milford, MA, USA
| |
Collapse
|
28
|
Liu Z, Zhou X, Wu F, Liu Z. Microwave-Assisted Preparation of Activated Carbon Modified by Zinc Chloride as a Packing Material for Column Separation of Saccharides. ACS OMEGA 2020; 5:10106-10114. [PMID: 32391498 PMCID: PMC7203912 DOI: 10.1021/acsomega.0c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 05/02/2023]
Abstract
Activated carbon, an amorphous carbon material with a high specific surface area and void fraction, is widely used as an economical adsorbent in many fields. In this work, a kind of new activated carbon composite for saccharide column separation was prepared by zinc chloride impregnating and microwave heating. The structural characterizations validate the increase in porosity and the specific surface area of the activated carbon as well as the change of the activated carbon crystallite lattice. The chemical characterizations validate the increase in the number of oxygen-containing functional groups and structural bonding of zinc with the activated carbon surface. Compared with the blank control, the surface Zn element improves the adsorption selectivity of the activated carbon to the target saccharides. Under the special mechanism of microwaves, the pores created by expansion from the inside to the outside facilitate the free flow of the mobile phase. The eight saccharides can be separated by the columns packed with the activated carbon impregnated with 40% and 70% zinc chloride.
Collapse
Affiliation(s)
- Ziwei Liu
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, Xiongchu Avenue, No.693, Wuhan 430205, China
| | - Xiaoshun Zhou
- Conform
Pharm Engineering Center, Humanwell Healthcare
(group) Co. Ltd., Gaoxing Avenue, Biolake Park, Wuhan 430075, China
| | - Fengshou Wu
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, Xiongchu Avenue, No.693, Wuhan 430205, China
- . Phone: 86-02787198662
| | - Zhimei Liu
- Conform
Pharm Engineering Center, Humanwell Healthcare
(group) Co. Ltd., Gaoxing Avenue, Biolake Park, Wuhan 430075, China
- . Phone: 86-02787570695
| |
Collapse
|
29
|
Abrahams JL, Taherzadeh G, Jarvas G, Guttman A, Zhou Y, Campbell MP. Recent advances in glycoinformatic platforms for glycomics and glycoproteomics. Curr Opin Struct Biol 2019; 62:56-69. [PMID: 31874386 DOI: 10.1016/j.sbi.2019.11.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is the most complex and prevalent post-translation modification in terms of the number of proteins modified and the diversity generated. To understand the functional roles of glycoproteins it is important to gain an insight into the repertoire of oligosaccharides present. The comparison and relative quantitation of glycoforms combined with site-specific identification and occupancy are necessary steps in this direction. Computational platforms have continued to mature assisting researchers with the interpretation of such glycomics and glycoproteomics data sets, but frequently support dedicated workflows and users rely on the manual interpretation of data to gain insights into the glycoproteome. The growth of site-specific knowledge has also led to the implementation of machine-learning algorithms to predict glycosylation which is now being integrated into glycoproteomics pipelines. This short review describes commercial and open-access databases and software with an emphasis on those that are actively maintained and designed to support current analytical workflows.
Collapse
Affiliation(s)
- Jodie L Abrahams
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ghazaleh Taherzadeh
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Gabor Jarvas
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary; Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andras Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary; Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; SCIEX, Brea, CA, USA
| | - Yaoqi Zhou
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Matthew P Campbell
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
30
|
Gray CJ, Migas LG, Barran PE, Pagel K, Seeberger PH, Eyers CE, Boons GJ, Pohl NLB, Compagnon I, Widmalm G, Flitsch SL. Advancing Solutions to the Carbohydrate Sequencing Challenge. J Am Chem Soc 2019; 141:14463-14479. [PMID: 31403778 DOI: 10.1021/jacs.9b06406] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrates possess a variety of distinct features with stereochemistry playing a particularly important role in distinguishing their structure and function. Monosaccharide building blocks are defined by a high density of chiral centers. Additionally, the anomericity and regiochemistry of the glycosidic linkages carry important biological information. Any carbohydrate-sequencing method needs to be precise in determining all aspects of this stereodiversity. Recently, several advances have been made in developing fast and precise analytical techniques that have the potential to address the stereochemical complexity of carbohydrates. This perspective seeks to provide an overview of some of these emerging techniques, focusing on those that are based on NMR and MS-hybridized technologies including ion mobility spectrometry and IR spectroscopy.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Lukasz G Migas
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Perdita E Barran
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Kevin Pagel
- Institute for Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Peter H Seeberger
- Biomolecular Systems Department , Max Planck Institute for Colloids and Interfaces , Am Muehlenberg 1 , 14476 Potsdam , Germany
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology , University of Liverpool , Crown Street , Liverpool L69 7ZB , U.K
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Nicola L B Pohl
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Isabelle Compagnon
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS , Université de Lyon , 69622 Villeurbanne Cedex , France.,Institut Universitaire de France IUF , 103 Blvd St Michel , 75005 Paris , France
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , S-106 91 Stockholm , Sweden
| | - Sabine L Flitsch
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
31
|
A review on native and denaturing purification methods for non-coding RNA (ncRNA). J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:71-79. [PMID: 31071581 DOI: 10.1016/j.jchromb.2019.04.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
Recently, non-coding RNA (ncRNA) became the centerpiece of human genome research. Modern ncRNA-based research has revolutionized disease diagnosis and therapeutics. However, decoding structural/functional information of ncRNA requires large amount of pure RNA, and hence effective RNA preparation and purification protocols. This review focuses on purification schemes of synthetic oligonucleotides, particularly liquid chromatographic (LC) techniques as improved alternatives to urea-polyacrylamide gel electrophoresis (urea-PAGE) purification. Moreover, the review summarizes the shortcomings of urea-PAGE purification method and details the chromatographic purification such as affinity, ion-exchange (IE) or size-exclusion (SE) chromatography. Specifically, we discuss denaturing and native RNA purification schemes with newest developments. In short, the review evaluates nucleic acid purification schemes required for various structural analyses.
Collapse
|
32
|
Zhao X, Ma G, Wu D, Cai P, Pan Y. A novel strategy to utilize ethylene glycol-ionic liquids for the selective precipitation of polysaccharides. J Sep Sci 2019; 42:1757-1767. [PMID: 30811846 DOI: 10.1002/jssc.201801297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
In the present work, three hydrophilic ionic liquids based on the combination between imidazolium cations attached with ethylene glycol polymers of various lengths and hexafluorophosphate anion were designed and synthesized for the separation of polysaccharides. By employing dextran 100 kDa as model compound, the effects of ionic liquid content, solvent/anti-solvent volume, and temperature on its recovery efficiency were investigated systematically. The ability of these ionic liquids to precipitate dextran 100 kDa, increases with the elongation of ethylene glycol polymer chain. The established ionic liquid-based precipitation system was successfully applied to selectively precipitate polysaccharides from water extracts of three traditional Chinese medicines and the precipitation could be achieved in about 15 min. In addition, the different precipitation responses of acidic, neutral, and basic polysaccharides in the ionic liquid-based precipitation system and theoretical calculations both suggested that the selective precipitation of polysaccharides was probably mediated by interaction between ionic liquids and polysaccharides. The proposed strategy facilitated the isolation and purification of polysaccharides and may trigger a novel application of ionic liquids in carbohydrate research.
Collapse
Affiliation(s)
- Xiaoyong Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Ge Ma
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Datong Wu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, P. R. China
| | - Pengfei Cai
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
33
|
Pardo-Vargas A, Delbianco M, Seeberger PH. Automated glycan assembly as an enabling technology. Curr Opin Chem Biol 2018; 46:48-55. [DOI: 10.1016/j.cbpa.2018.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
|
34
|
Peng T, Wooke Z, Pohl NLB. Scope and limitations of carbohydrate hydrolysis for de novo glycan sequencing using a hydrogen peroxide/metallopeptide-based glycosidase mimetic. Carbohydr Res 2018; 458-459:85-88. [PMID: 29475194 DOI: 10.1016/j.carres.2018.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022]
Abstract
Acidic hydrolysis is commonly used as a first step to break down oligo- and polysaccharides into monosaccharide units for structural analysis. While easy to set up and amenable to mass spectrometry detection, acid hydrolysis is not without its drawbacks. For example, ring-destruction side reactions and degradation products, along with difficulties in optimizing conditions from analyte to analyte, greatly limits its broad utility. Herein we report studies on a hydrogen peroxide/CuGGH metallopeptide-based glycosidase mimetic design for a more efficient and controllable carbohydrate hydrolysis. A library of methyl glycosides consisting of ten common monosaccharide substrates, along with oligosaccharide substrates, was screened with the artificial glycosidase for hydrolytic activity in a high-throughput format with a robotic liquid handling system. The artificial glycosidase was found to be active towards most screened linkages, including alpha- and beta-anomers, thus serving as a potential alternative method for traditional acidic hydrolysis approaches of oligosaccharides.
Collapse
Affiliation(s)
- Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Zachary Wooke
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN, USA; Radcliffe Institute of Advanced Study, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
35
|
Saliba RC, Wooke ZJ, Nieves GA, Chu AHA, Bennett CS, Pohl NLB. Challenges in the Conversion of Manual Processes to Machine-Assisted Syntheses: Activation of Thioglycoside Donors with Aryl(trifluoroethyl)iodonium Triflimide. Org Lett 2018; 20:800-803. [PMID: 29336575 DOI: 10.1021/acs.orglett.7b03940] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The steps needed to adapt a stable iodonium promoter for use in automated fluorous-assisted solution-phase oligosaccharide synthesis are described. Direct adaptation of the originally reported batch procedure resulted in the formation of an orthoester or protecting group transfer to the glycosyl acceptor. Fortunately, the addition of inexpensive β-pinene as an acid scavenger avoided both of these side reactions. The utility of this newly developed protocol was applied to the automated solution-phase synthesis of a β-glucan fragment.
Collapse
Affiliation(s)
- Regis C Saliba
- Department of Chemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Zachary J Wooke
- Department of Chemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Gabriel A Nieves
- Department of Chemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - An-Hsiang Adam Chu
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University , 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States.,Radcliffe Institute of Advanced Study, Harvard University , 8 Garden Street, Cambridge, Massachusetts 02318, United States
| |
Collapse
|