1
|
Khalil IE, Das P, Thomas A. Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency. Acc Chem Res 2024. [PMID: 39435871 DOI: 10.1021/acs.accounts.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
ConspectusCovalent organic frameworks (COFs) are a rapidly emerging class of crystalline porous polymers, characterized by their highly defined, predictable, and tunable structure, porosity, and properties. COFs can form both two-dimensional (2D) and three-dimensional (3D) architectures, each with unique characteristics and potential applications. 2D COFs have attracted particular interest due to their favorable structural and optoelectronic properties. They can be equipped with a range of different functional moieties in their backbone, ranging from acidic to basic, from hydrophilic to hydrophobic, and from metal-coordinating to redox-active functions. In addition, their crystallinity, high specific surface area, and remarkable thermal and chemical stability make them attractive for a variety of applications, including gas separation, catalysis, energy storage, and optoelectronics.This Account provides a detailed overview of our recent efforts to synthesize and apply 2D COFs. First, various synthesis routes are discussed, focusing on methods that involve reversible and irreversible linkage reactions. Reversible reactions, such as imine or boronate ester formation, are advantageous for producing highly crystalline COFs because they allow for error correction during synthesis. In contrast, irreversible reactions, such as carbon-carbon or carbon-nitrogen bond formation, yield COFs with greater chemical stability, although controlling crystallinity can be more challenging. Our group has contributed significantly to refining these methods to balance crystallinity and stability, enhancing the performance of the resulting 2D COFs.In addition to different binding patterns, we have also developed strategies to control the micro- and macromorphologies of COFs, which is crucial for optimizing their properties for specific applications. For example, we have explored the synthesis of hierarchical porous COFs by using templating techniques or by forming composites with other functional materials. These strategies enable us to fine-tune the porosity and surface properties of COFs, thereby improving their performance in applications like catalysis. Hierarchical structures in particular enhance photocatalytic efficiency by providing a larger surface area for light absorption and facilitating the transport of photogenerated charge carriers.We further examine the practical applications of 2D COFs, with a primary focus on photocatalysis. Photocatalysis uses light to enable or accelerate chemical reactions, and 2D COFs are ideal for this purpose due to their tunable band gaps and large surface areas. Our research has shown that 2D COFs are highly versatile photocatalysts that can effectively catalyze reactions such as water splitting, carbon dioxide reduction, hydrogen peroxide formation, and cross-coupling reactions. By exploiting the unique properties of 2D COFs, we have achieved significant improvement in many photocatalytic reactions.With this comprehensive overview, we aim to contribute to the further development and understanding of 2D COFs and encourage further research and innovation in this promising field.
Collapse
Affiliation(s)
- Islam E Khalil
- Department of Chemistry, Functional Materials Technische Universität Berlin, 10623 Berlin, Germany
| | - Prasenjit Das
- Department of Chemistry, Functional Materials Technische Universität Berlin, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
2
|
Qiao H, Zhao K, Wang S, Xu X, Chen S, Kong X, Yang L, Jiao M, Zhai L. Construction of Covalent Triazine Frameworks with Electronic Donor-Acceptor System for Efficient Photocatalytic C-H Hydroxylation of Imidazole[1,2-α]Pyridine Derivatives. Chemistry 2024:e202402246. [PMID: 39143661 DOI: 10.1002/chem.202402246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Covalent triazine frameworks (CTFs) are promising heterogeneous photocatalyst candidates owing to their excellent stability, conjugacy, and tunability. In this study, a series of CTFs decorated with different substituents (H, MeO, and F) were synthesised and utilised as photocatalysts for C-H activation reactions. The corresponding optoelectronic properties could be precisely regulated by the electronic effects of different substituents in the nanopore channels of the CTFs; these CTFs were effective photocatalysts for C-H activation in organic synthesis due to their unique structures and optoelectronic properties. Methoxy-substituted CTF (MeO-CTF) exhibited extraordinary catalytic performance and reusability in C-H functionalization by constructing an electronic donor-acceptor system, achieving the highest yield in the photocatalytic C3-H hydroxylation of 2-phenylimidazole[1,2-α]pyridine. This strategy provides a new scaffold for the rational design of CTFs as efficient photocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Huijie Qiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Kun Zhao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Shixing Wang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiaoxu Xu
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Sicheng Chen
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China
| | - Liting Yang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Lipeng Zhai
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| |
Collapse
|
3
|
Hutsch S, Leonard A, Grätz S, Höfler MV, Gutmann T, Borchardt L. Mechanochemical Cyclotrimerization: A Versatile Tool to Covalent Organic Frameworks with Tunable Stacking Mode. Angew Chem Int Ed Engl 2024; 63:e202403649. [PMID: 38682640 DOI: 10.1002/anie.202403649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
We introduce the first mechanochemical cyclotrimerization of nitriles, a facile strategy for synthesizing triazine-containing molecules and materials, overcoming challenges related to carbonization and solubility. Conducting this solid-state approach in a mixer ball mill with 4-Methylbenzonitrile, we synthesize Tris(4-methylphenyl)-1,3,5-triazine quantitatively in as little as 90 minutes. Just as fast, this mechanochemical method facilitates the synthesis of the covalent triazine framework CTF-1 using 1,4 Dicyanobenzene. Material characterization confirms its porous (650 m2 g-1) and crystalline nature. Adjusting the induced mechanical energy allows control over the obtained stacking conformation of the resulting CTFs - from a staggered AB arrangement to an eclipsed AA stacking conformation. Finally, a substrate scope demonstrates the versatility of this approach, successfully yielding various CTFs.
Collapse
Affiliation(s)
- Stefanie Hutsch
- Department Inorganic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Allison Leonard
- Department Inorganic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Sven Grätz
- Department Inorganic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Mark Valentin Höfler
- Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg Strasse 8, 64287, Darmstadt, Germany
| | - Torsten Gutmann
- Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg Strasse 8, 64287, Darmstadt, Germany
| | - Lars Borchardt
- Department Inorganic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
4
|
Zheng LL, Li X, Wang D, Chen Y, Fu Q, Wu DS, Liu XZ, Zou JP. Selective anchoring of Pt NPs on covalent triazine-based frameworks via in situ derived bridging ligands for boosting photocatalytic hydrogen evolution. NANOSCALE 2024; 16:6010-6016. [PMID: 38404219 DOI: 10.1039/d4nr00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The efficient and stable production of hydrogen (H2) through Pt-containing photocatalysts remains a great challenge. Herein, we develop an effective strategy to selectively and uniformly anchor Pt NPs (∼1.2 nm) on a covalent triazine-based framework photocatalyst via in situ derived bridging ligands. Compared to Pt/CTF-1, the obtained Pt/AT-CTF-1 exhibits a considerable photocatalytic H2 evolution rate of 562.9 μmol g-1 h-1 under visible light irradiation. Additionally, the strong interaction between the Pt NPs and in situ derived bridging ligands provides remarkable stability to Pt/AT-CTF-1. Experimental investigations and photo/chemical characterization reveal the synergy of the in situ derived bridging ligands in Pt/AT-CTF-1, which can selectively anchor the Pt NPs with homogeneous sizes and efficiently improve the transmission of charge carriers. This work provides a new perspective toward stabilizing ultrasmall nanoclusters and facilitating electron transfer in photocatalytic H2 evolution materials.
Collapse
Affiliation(s)
- Ling-Ling Zheng
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Xiang Li
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Jiangxi Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-environmental Sciences and Planning, Nanchang 330063, P. R. China
| | - Dengke Wang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ying Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qian Fu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Dai-She Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
| | - Xiao-Zhen Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
| | - Jian-Ping Zou
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| |
Collapse
|
5
|
Wu Z, Chen Q, Wu S. Photocatalytic degradation of norfloxacin antibiotics on Zn xCd (1-x)S/g-C 3N 4 composites in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16473-16484. [PMID: 38321280 DOI: 10.1007/s11356-024-32238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
g-C3N4/ZnxCd(1-x)S composites were synthesized by a simple hydrothermal method. The composites were characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, infrared spectroscopy, and electron micro-projective microscopy. According to the performance of ZnxCd(1-x)S for the photocatalytic degradation of norfloxacin under visible light in water, the best stoichiometric number of x was 0.5. The best photolytic norfloxacin degradation rate of g-C3N4/ZnxCd(1-x)S composites was 89.8%, which was obtained when the dosage ratio of g-C3N4 to ZnxCd(1-x)S was 1:1. The experiment was conducted to investigate the effect of pH on the catalyst to obtain the optimal NORF degradation environment pH in the range of 7 ± 0.3; by simulating the anions that may be contained in the actual environmental water, the results showed that the catalyst has a certain effect on the degradation of NORF when the water contains NO3-, Cl- and HCO3-. In addition, this study also obtained that the main active substances produced by the catalyst during degradation were electron-hole pairs by adding different trapping agents in the NORF removal experiments; and the catalyst was able to achieve a degradation rate of 86.1% after four cycles of the experiments, which proved that it had good stability.
Collapse
Affiliation(s)
- Zanen Wu
- Anhui Jianzhu University, Hefei, 230601, Anhui, China
| | - Qinjun Chen
- Anhui Jianzhu University, Hefei, 230601, Anhui, China
| | - Shibiao Wu
- Anhui Jianzhu University, Hefei, 230601, Anhui, China.
| |
Collapse
|
6
|
Wang H, Shi L, Qu Z, Zhang L, Wang X, Wang Y, Liu S, Ma H, Guo Z. Increasing Donor-Acceptor Interactions and Particle Dispersibility of Covalent Triazine Frameworks for Higher Crystallinity and Enhanced Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2296-2308. [PMID: 38189244 DOI: 10.1021/acsami.3c15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent triazine frameworks (CTFs) have recently emerged as an efficient class of photocatalysts due to their structural diversity and excellent stability. Nevertheless, the synthetic reactions of CTFs have usually suffered from poor reversibility, resulting in a low crystallinity of the materials. Here, we report the introduction of methoxy groups on the monomer 2,5-diphenylthiazolo[5,4-d]thiazole to reinforce interlayer π-π interactions of the resulting donor-acceptor type CTFs, which improved crystallinity, further increasing the visible light absorption range and allowing for efficient separation and transport of carriers. The morphology is strongly correlated to the wettability, which has a significant impact on the mass transfer capacity and photocatalytic activity in the photocatalytic reaction. To further improve crystallinity and photocatalytic activity, CTF-NWU-T3 photocatalysts in a bowl shape were prepared using a SiO2 template. The energy band structure, photocatalytic hydrogen evolution, and pollutant degradation efficiency of involved materials were investigated. The donor-acceptor type CTF-NWU-T3 with a bowl-shaped morphology, synthesized using the template method and the introduction of methoxy groups, exhibited an excellent photocatalytic hydrogen production rate of 32064 μmol·h-1·g-1. This study highlights the significance of improving donor-acceptor interactions and increasing the dispersibility of catalyst particles in dispersion to enhance the photocatalytic activity of heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Lanting Shi
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Zhi Qu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Lingfeng Zhang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Xiao Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Yefeng Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Shuai Liu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Haixia Ma
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Zhaoqi Guo
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| |
Collapse
|
7
|
Rasheed T, Ahmad Hassan A, Ahmad T, Khan S, Sher F. Organic Covalent Interaction-based Frameworks as Emerging Catalysts for Environment and Energy Applications: Current Scenario and Opportunities. Chem Asian J 2023:e202300196. [PMID: 37171867 DOI: 10.1002/asia.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Indexed: 05/13/2023]
Abstract
The term "covalent organic framework" (COF) refers to a class of porous organic polymeric materials made from organic building blocks that have been covalently bonded. The preplanned and predetermined bonding of the monomer linkers allow them to demonstrate directional flexibility in two- or three-dimensional spaces. COFs are modern materials, and the discovery of new synthesis and linking techniques has made it possible to prepare them with a variety of favorable features and use them in a range of applications. Additionally, they can be post-synthetically altered or transformed into other materials of particular interest to produce compounds with enhanced chemical and physical properties. Because of its tunability in different chemical and physical states, post-synthetic modifications, high stability, functionality, high porosity and ordered geometry, COFs are regarded as one of the most promising materials for catalysis and environmental applications. This study highlights the basic advancements in establishing the stable COFs structures and various post-synthetic modification approaches. Further, the photocatalytic applications, such as organic transformations, degradation of emerging pollutants and removal of heavy metals, production of hydrogen and Conversion of carbon dioxide (CO2 ) to useful products have also been presented. Finally, the future research directions and probable outcomes have also been summarized, by focusing their promises for specialists in a variety of research fields.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Adv. Mater., King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Adeel Ahmad Hassan
- Department of Polymer Science and Engineering, Shanghai State Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tauqir Ahmad
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
8
|
Zhang S, Zhao F, Yasin G, Dong Y, Zhao J, Guo Y, Tsiakaras P, Zhao J. Efficient photocatalytic hydrogen evolution: Linkage units engineering in triazine-based conjugated porous polymers. J Colloid Interface Sci 2023; 637:41-54. [PMID: 36682117 DOI: 10.1016/j.jcis.2023.01.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Conjugated porous polymers (CPPs) have been widely reported as promising photocatalysts. However, the realization of powerful photocatalytic hydrogen production performance still benefits from the rational design of molecular frameworks and the appropriate choice of building monomers. Herein, we synthesized two novel conjugated porous polymers (CPPs) by copolymerizing pyrene and 1,3,5-triazine building blocks. It is found that minor structural changes in the peripheral groups of the triazine units can greatly affect the photocatalytic activity of the polymers. Compared with the phenyl-linkage unit, the thiophene-linkage unit can give CPP a wider absorption range of visible light, a narrower band gap, a higher transmission and separation efficiency of photo-generated carriers (electrons/holes), and a better interface contact with the photocatalytic reaction solution. The catalyst containing thiophene-triazine (ThPy-CPP) has an efficient photocatalytic hydrogen evolution rate of 21.65 and 16.69 mmol g-1h-1 under full-arc spectrum and visible light without the addition of a Pt co-catalyst, respectively, much better than the one containing phenyl-triazine (PhPy-CPP, only 5.73 and 3.48 mmol g-1h-1). This study provides a promising direction to design and construct highly efficient, cost-effective CPP-based photocatalysts, for exploring the application of noble metal-free catalysts in photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Shengling Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China
| | - Ghulam Yasin
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518060, China
| | - YunYun Dong
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems Department of Mechanical Engineering School of Engineering, University of Thessaly 1 Sekeri Str., Pedion Areos 38834 Greece.
| | - Jie Zhao
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Guo F, Zhang W, Yang S, Wang L, Yu G. 2D Covalent Organic Frameworks Based on Heteroacene Units. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207876. [PMID: 36703526 DOI: 10.1002/smll.202207876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a unique new class of porous materials that arrange building units into periodic ordered frameworks through strong covalent bonds. Accompanied with structural rigidity and well-defined geometry, heteroacene-based COFs have natural advantages in constructing COFs with high stability and crystallinity. Heteroacene-based COFs usually have high physical and chemical properties, and their extended π-conjugation also leads to relatively low energy gap, effectively promoting π-electron delocalization between network units. Owing to excellent electron-withdrawing or -donating ability, heteroacene units have incomparable advantages in the preparation of donor-acceptor type COFs. Therefore, the physicochemical robust and fully conjugated heteroacene-based COFs solve the problem of traditional COFs lacking π-π interaction and chemical stability. In recent years, significant breakthroughs are made in this field, the choice of various linking modes and building blocks has fundamentally ensured the final applications of COFs. It is of great significance to summarize the heteroacene-based COFs for improving its complexity and controllability. This review first introduces the linkages in heteroacene-based COFs, including reversible and irreversible linkages. Subsequently, some representative building blocks are summarized, and their related applications are especially emphasized. Finally, conclusion and perspectives for future research on heteroacene-based COFs are presented.
Collapse
Affiliation(s)
- Fu Guo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Sun R, Tan B. Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Chemistry 2023; 29:e202203077. [PMID: 36504463 DOI: 10.1002/chem.202203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Covalent Triazine Frameworks (CTFs) have received great attention from academia owing to their unique structure characteristics such as nitrogen-rich structure, chemical stability, fully conjugated skeleton and high surface area; all these unique properties make CTFs attractive for widespread applications, especially for photocatalytic applications. In this review, we aim to provide recent advances in the CTFs preparation, and mainly focus on their photocatalytic applications. This review provides a comprehensive and systematic overview of the CTFs' synthetic methods, crystallinity lifting strategies, and their applications for photocatalytic water splitting. Firstly, a brief background including the photocatalytic water splitting and crystallinity are provided. Then, synthetic methods related to CTFs and the strategies for enhancing the crystallinity are summarized and compared. After that, the general photocatalytic mechanism and the strategies to improve the photocatalytic performance of CTFs are discussed. Finally, the perspectives and challenges of fabricating high crystalline CTFs and designing CTFs with excellent photocatalytic performance are discussed, inspiring the development of CTF materials in photocatalytic applications.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
12
|
Saputra E, Prawiranegara BA, Nugraha MW, Sambudi NS, Sugesti H, Awaluddin A, Utama PS, Manawan M. Fabrication of hybrid covalent triazine framework-zinc ferrite spinel to uplift visible light-driven photocatalytic organic pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39961-39977. [PMID: 36602743 DOI: 10.1007/s11356-022-25021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The tunability of porous covalent triazine frameworks (CTFs) can mitigate poor photostability and rapid hole-electron recombination. Herein, an excellent improvement of visible light-driven photocatalytic pollutant degradation was achieved using a hybrid semiconductor of covalent triazine framework-zinc ferrite spinel catalysts (CTF-ZnFe2O4). The as-prepared CTF-ZnFe2O4 composites were fabricated using a facile one-pot ionothermal method. The hybrid photocatalysts were identified using X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX), X-ray photoelectron spectrometer (XPS), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), and UV-visible diffuse reflection spectroscopy (UV-vis DRS) characterizations. The analysis reveals that hybridization successfully ensued and altered the crystallinity structure, morphology, surface area, and bandgap energy of hybrid material. It was found that CTF-ZnFe2O4 90:10 is very effective for the degradation of MB in a UV-vis light photocatalytic process with the efficiency of 95.4% and kobs of 0.421 min-1 for degradation of 50 mg/L MB with 0.5 g/L dosages for 120 min. Additionally, the scavenger study, effect of additional oxidants, and stability were performed for the practical application of a hybrid photocatalyst. CTF-ZnFe2O4 90:10 shows outstanding pollutant degradation in sunlight irradiation and high stability with only a 5.2% reduction after a five-times sequential recycling process. Moreover, the photocatalytic mechanism of as-prepared CTF-ZnFe2O4 was mainly influenced by [Formula: see text] radical compared to [Formula: see text] and [Formula: see text] radicals. Overall, The as-prepared CTF-ZnFe2O4 shows significant potential to be utilized for photocatalytic wastewater treatment.
Collapse
Affiliation(s)
- Edy Saputra
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia.
| | - Barata Aditya Prawiranegara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Muhammad Wahyu Nugraha
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Nonni Soraya Sambudi
- Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta, 12220, Indonesia
| | - Heni Sugesti
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Amir Awaluddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Panca Setia Utama
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Maykel Manawan
- Teknologi Daya Gerak, Universitas Pertahan Indonesia, Bogor, 16810, Indonesia
| |
Collapse
|
13
|
Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat Commun 2023; 14:1106. [PMID: 36849444 PMCID: PMC9970987 DOI: 10.1038/s41467-023-36710-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Covalent organic frameworks (COFs) represent an emerging class of organic photocatalysts. However, their complicated structures lead to indeterminacy about photocatalytic active sites and reaction mechanisms. Herein, we use reticular chemistry to construct a family of isoreticular crystalline hydrazide-based COF photocatalysts, with the optoelectronic properties and local pore characteristics of the COFs modulated using different linkers. The excited state electronic distribution and transport pathways in the COFs are probed using a host of experimental methods and theoretical calculations at a molecular level. One of our developed COFs (denoted as COF-4) exhibits a remarkable excited state electron utilization efficiency and charge transfer properties, achieving a record-high photocatalytic uranium extraction performance of ~6.84 mg/g/day in natural seawater among all techniques reported so far. This study brings a new understanding about the operation of COF-based photocatalysts, guiding the design of improved COF photocatalysts for many applications.
Collapse
|
14
|
Chen Z, Wang J, Hao M, Xie Y, Liu X, Yang H, Waterhouse GIN, Wang X, Ma S. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat Commun 2023; 14:1106. [DOI: doi.org/10.1038/s41467-023-36710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/14/2023] [Indexed: 06/25/2023] Open
Abstract
AbstractCovalent organic frameworks (COFs) represent an emerging class of organic photocatalysts. However, their complicated structures lead to indeterminacy about photocatalytic active sites and reaction mechanisms. Herein, we use reticular chemistry to construct a family of isoreticular crystalline hydrazide-based COF photocatalysts, with the optoelectronic properties and local pore characteristics of the COFs modulated using different linkers. The excited state electronic distribution and transport pathways in the COFs are probed using a host of experimental methods and theoretical calculations at a molecular level. One of our developed COFs (denoted as COF-4) exhibits a remarkable excited state electron utilization efficiency and charge transfer properties, achieving a record-high photocatalytic uranium extraction performance of ~6.84 mg/g/day in natural seawater among all techniques reported so far. This study brings a new understanding about the operation of COF-based photocatalysts, guiding the design of improved COF photocatalysts for many applications.
Collapse
|
15
|
Ayed C, Yin J, Landfester K, Zhang KAI. Visible-Light-Promoted Switchable Selective Oxidations of Styrene Over Covalent Triazine Frameworks in Water. Angew Chem Int Ed Engl 2023; 62:e202216159. [PMID: 36708519 DOI: 10.1002/anie.202216159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/05/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Using photocatalytic oxidation to convert basic chemicals into high value compounds in environmentally benign reaction media is a current focus in catalytic research. The challenge lies in gaining controllability over product formation selectivity. We design covalent triazine frameworks as heterogeneous, metal-free, and recyclable photocatalysts for visible-light-driven switchable selective oxidation of styrene in pure water. Selectivity in product formation was achieved by activation or deactivation of the specific photogenerated oxygen species. Using the same photocatalyst, by deactivation of photogenerated H2 O2 , benzaldehyde was obtained with over 99 % conversion and over 99 % selectivity as a single product. The highly challenging and sensitive epoxidation of styrene was carried out by creating peroxymonocarbonate as an initial epoxidation agent in the presence of bicarbonate, which led to formation of styrene oxide with a selectivity up to 76 % with near quantitative conversion. This study demonstrates a preliminary yet interesting example for simple control over switchable product formation selectivity for challenging oxidation reactions of organic compounds in pure water.
Collapse
Affiliation(s)
- Cyrine Ayed
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jie Yin
- Department of Materials Science and and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kai A I Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Materials Science and and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
16
|
McQueen E, Bai Y, Sprick RS. Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4299. [PMID: 36500922 PMCID: PMC9739915 DOI: 10.3390/nano12234299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The direct conversion of sunlight into hydrogen through water splitting, and by converting carbon dioxide into useful chemical building blocks and fuels, has been an active area of research since early reports in the 1970s. Most of the semiconductors that drive these photocatalytic processes have been inorganic semiconductors, but since the first report of carbon nitride organic semiconductors have also been considered. Conjugated materials have been relatively extensively studied as photocatalysts for solar fuels generation over the last 5 years due to the synthetic control over composition and properties. The understanding of materials' properties, its impact on performance and underlying factors is still in its infancy. Here, we focus on the impact of interfaces, and nanostructure on fundamental processes which significantly contribute to performance in these organic photocatalysts. In particular, we focus on presenting explicit examples in understanding the interface of polymer photocatalysts with water and how it affects performance. Wetting has been shown to be a clear factor and we present strategies for increased wettability in conjugated polymer photocatalysts through modifications of the material. Furthermore, the limited exciton diffusion length in organic polymers has also been identified to affect the performance of these materials. Addressing this, we also discuss how increased internal and external surface areas increase the activity of organic polymer photocatalysts for hydrogen production from water.
Collapse
Affiliation(s)
- Ewan McQueen
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Yang Bai
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
17
|
Zhang J, Chen X, Chen Q, He Y, Pan M, Huang G, Bi J. Insights into Photocatalytic Degradation Pathways and Mechanism of Tetracycline by an Efficient Z-Scheme NiFe-LDH/CTF-1 Heterojunction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4111. [PMID: 36500734 PMCID: PMC9738193 DOI: 10.3390/nano12234111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Photocatalysis offers a sustainable approach for recalcitrant organic pollutants degradation, yet it is still challenging to seek robust photocatalysts for application purposes. Herein, a novel NiFe layered double hydroxide (LDH)/covalent triazine framework (CTF-1) Z-scheme heterojunction photocatalyst was rationally designed for antibiotics degradation under visible light irradiation. The NiFe-LDH/CTF-1 nanocomposites were readily obtained via in situ loading of NiFe-LDH on CTF-1 through covalent linking. The abundant coupling interfaces between two semiconductor counterparts lay the foundation for the formation of Z-scheme heterostructure, thereby effectively promoting the transfer of photogenerated electrons, inhibiting the recombination of carriers, as well as conferring the nanocomposites with stronger redox ability. Consequently, the optimal photocatalytic activity of the LDH/CTF heterojunction was significantly boosted for the degradation of a typical antibiotic, tetracycline (TC). Additionally, the photodegradation process and the mineralization of TC were further elucidated. These results envision that the LDH/CTF-1 can be a viable photocatalyst for long-term and sustainable wastewater treatment.
Collapse
Affiliation(s)
- Jinpeng Zhang
- School of Environmental Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoping Chen
- School of Environmental Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qiaoshan Chen
- School of Environmental Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yunhui He
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou 350108, China
| | - Min Pan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Guocheng Huang
- School of Environmental Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinhong Bi
- School of Environmental Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
18
|
Zhang Z, Jiang Y, Dong Z, Chu Y, Xu J. 2D/2D Inorganic/Organic Hybrid of Lead-Free Cs 2AgBiBr 6 Double Perovskite/Covalent Triazine Frameworks with Boosted Charge Separation and Efficient CO 2 Photoreduction. Inorg Chem 2022; 61:16028-16037. [PMID: 36170039 DOI: 10.1021/acs.inorgchem.2c02440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterojunction construction, especially the inorganic/organic hybrids, is regarded as a universal and effective strategy to achieve high-performance photocatalysts. Herein, a 2D/2D inorganic/organic hybrid photocatalyst was constructed by the electrostatic self-assembly of the lead-free double-perovskite of Cs2AgBiBr6 nanosheets (NSs) and covalent triazine framework (CTF) NSs. The resultant Cs2AgBiBr6/CTF-1 (CABB/CTF-1) hybrid possessed a large surface-to-surface contact area, ensuring intimate interfacial interaction and efficient charge transfer/separation. Meanwhile, the periodical pore structure of CTF-1 endowed the CABB/CTF-1 hybrid with enhanced CO2 adsorption/activation capacity. Consequently, the 2D/2D CABB/CTF-1 hybrid exhibited a remarkable photocatalytic performance toward CO2 reduction. Based on the band structure analysis and various characterization techniques, for example, X-ray photoelectron spectra and electron spin resonance, an S-scheme charge transfer mechanism was proposed. This study presents a new protocol for designing 2D/2D inorganic/organic hybrid photocatalytic systems, which hold great potentials in solar fuel applications.
Collapse
Affiliation(s)
- Zhijie Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Ying Jiang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhongliang Dong
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Yaoqing Chu
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Jiayue Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
19
|
Li Y, Song X, Zhang G, Wang L, Liu Y, Chen W, Chen L. 2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2022; 15:e202200901. [PMID: 35652127 DOI: 10.1002/cssc.202200901] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Efficiently producing clean energy is of great importance for sustainable development of the environment. Solar-driven water splitting for H2 evolution has an important role among the renewable energy technologies. Developing high-performance and cost-effective photocatalysts is still a critical task before practical application. 2D Covalent organic frameworks (COFs) as photocatalysts have recently attracted widespread interest thanks to their tunable optical bandgaps, tailor-made functionality, excellent crystallinity, high specific surface area, and good photo- and chemical stability. This Review focuses on the representative progress and remaining challenges in 2D COF-based photocatalysts for hydrogen evolution.
Collapse
Affiliation(s)
- Yang Li
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaoyu Song
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yi Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan, 450001, P. R. China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
20
|
Jing Y, Zhu X, Maier S, Heine T. 2D conjugated polymers: exploiting topological properties for the rational design of metal-free photocatalysts. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Lan ZA, Wu M, Fang Z, Zhang Y, Chen X, Zhang G, Wang X. Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl 2 Eutectic Salt for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202201482. [PMID: 35218273 DOI: 10.1002/anie.202201482] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Covalent triazine-based frameworks (CTFs) are typically produced by the salt-melt polycondensation of aromatic nitriles in the presence of ZnCl2 . In this reaction, molten ZnCl2 salt acts as both a solvent and Lewis acid catalyst. However, when cyclotrimerization takes place at temperatures above 300 °C, undesired carbonization occurs. In this study, an ionothermal synthesis method for CTF-based photocatalysts was developed using a ternary NaCl-KCl-ZnCl2 eutectic salt (ES) mixture with a melting point of approximately 200 °C. This temperature is lower than the melting point of pure ZnCl2 (318 °C), thus providing milder salt-melt conditions. These conditions facilitated the polycondensation process, while avoiding carbonization of the polymeric backbone. The resulting CTF-ES200 exhibited enhanced optical and electronic properties, and displayed remarkable photocatalytic performance in the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China.,College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|
22
|
Chen R, Hu P, Xian Y, Hu X, Zhang G. Incorporation of Sequence Aza-Substitution and Thiophene Bridge in Linear Conjugated Polymers Toward Highly Efficient Photo-Catalytic Hydrogen Evolution. Macromol Rapid Commun 2022; 43:e2100872. [PMID: 35413143 DOI: 10.1002/marc.202100872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/18/2022] [Indexed: 11/10/2022]
Abstract
The hydrogen evolution performance of organic photo-catalysts is lagged by numerous factors, such as the narrow photon absorption window, low charge transport, and so on. In this paper, four linear conjugated polymers were designed and synthesized based on dibenzothiophene-S,S-dioxide as acceptor, and aza-substituted thiophene-phenyl-thiophene with different substituted numbers as co-units. The polymers with thiophene bridge and aza-substitution exhibited broad visible-absorption because of the extended conjugated length and improved planar structures resulting from the intramolecular non-covalent interactions (S···N or CH···N). The mono-substitution polymer without addition of any co-catalysts showed the highest photo-catalytic performances with the hydrogen evolution rates of 8950 and 7388 μmol g-1 h-1 under the UV-vis (>295 nm) and visible (>420 nm) irradiation, respectively. The corresponding apparent quantum yields were as high as 8.34, 5.37, and 1.96% for the 420, 500, and 550 nm monochromatic light irradiation, respectively, which were much higher than those of the classic polymer (P7) without thiophene bridge and aza-substitution. This work indicated that the incorporation of thiophene bridge enhanced visible absorption and aza-substitution optimized co-planarity and activate reactive sites, which should be an effective strategy to improve the photo-catalytic performance of linear conjugated polymer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruikun Chen
- Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Lab of Special Technology, Academy of Opto-Electronic Technology, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei, 230009, China
| | - Pengwei Hu
- Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Yuxi Xian
- CAS Key Laboratory for Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Xianhai Hu
- Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Guobing Zhang
- Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Lab of Special Technology, Academy of Opto-Electronic Technology, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
23
|
Feng J, Zhang YJ, Ma SH, Yang C, Wang ZP, Ding SY, Li Y, Wang W. Fused-Ring-Linked Covalent Organic Frameworks. J Am Chem Soc 2022; 144:6594-6603. [PMID: 35380432 DOI: 10.1021/jacs.2c02173] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of linkage chemistry in the research area of covalent organic frameworks (COFs) is fundamentally important for creating robust structures with high crystallinity and diversified functionality. We reach herein a new level of complexity and controllability in linkage chemistry by achieving the first synthesis of fused-ring-linked COFs. A series of bicyclic pyrano[4,3-b]pyridine COFs have been constructed via a cascade protocol involving Schiff-base condensation, intramolecular [4 + 2] cycloaddition, and dehydroaromatization. With a broad scope of Brønsted or Lewis acids as the catalyst, the designed monomers, that is, O-propargylic salicylaldehydes and multitopic anilines, were converted into the fused-ring-linked frameworks in a one-pot fashion. The obtained COFs exhibited excellence in terms of purity, stability, and crystallinity, as comprehensively characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, and so on. Specifically, the highly selective formation (>94%) of pyrano[4,3-b]pyridine linkage was verified by quantitative NMR measurements combined with 13C-labeling synthesis. Moreover, the fused-ring linkage possesses fully locked conformation, which benefits to the high crystallinity observed for these COFs. Advancing the linkage chemistry from the formation of solo bonds or single rings to that of fused rings, this study has opened up new possibilities for the concise construction of sophisticated COF structures with high controllability.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Jie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sheng-Hua Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chen Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhi-Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
24
|
Cheng Z, He Y, Yang C, Meng N, Liao Y. Metal-free synthesis of pyridyl conjugated microporous polymers with tunable bandgaps for efficient visible-light-driven hydrogen evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Zheng LL, Zhang LS, Chen Y, Tian L, Jiang XH, Chen LS, Xing QJ, Liu XZ, Wu DS, Zou JP. A new strategy for the fabrication of covalent organic framework-metal-organic framework hybrids via in-situ functionalization of ligands for improved hydrogen evolution reaction activity. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63892-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
|
27
|
Lan ZA, Wu M, Fang Z, Zhang Y, Chen X, Zhang G, Wang X. Ionothermal Synthesis of Covalent Triazine Frameworks in NaCl‐KCl‐ZnCl2 Eutectic Salt for Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-An Lan
- Fuzhou University college of chemistry CHINA
| | - Meng Wu
- Fuzhou University college of chemistry CHINA
| | | | | | - Xiong Chen
- Fuzhou University college of chemistry CHINA
| | | | - Xinchen Wang
- Fuzhou University Chemistry 523 Gongye Rd, Gulou 350000 Fuzhou CHINA
| |
Collapse
|
28
|
Zhang Y, Zhang B, Chen L, Wang T, Di M, Jiang F, Xu X, Qiao S. Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors. J Colloid Interface Sci 2022; 606:1534-1542. [PMID: 34500156 DOI: 10.1016/j.jcis.2021.08.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 02/03/2023]
Abstract
A series of covalent triazine frameworks (CTFs) are prepared via ionothermal synthesis for supercapacitors. Due to the feature of adjustable pore structure and rich nitrogen, CTFs with regular structure can be used as a group of model compounds to further investigate the influence of pore size and heteroatom on supercapacitors. By comparing the performance of CTFs with different pore structures and nitrogen contents, the experimental results show that BPY-CTF with high specific surface area of 2278 m2 g-1, mesopores structure, and suitable nitrogen content displays a specific capacitance of 393.6 F g-1 at 0.5 A g-1. According to the results and analysis, the existence of mesopores largely enhance the contact area between the electrode material and electrolyte, and then boost the charge transfer. On the other hand, N-doping has a prominent effect on improving the Faradaic pseudo-capacitance and conductivity for CTF electrode materials. This work will inspire further research on the development of highly efficient electrode materials for energy storage devices.
Collapse
Affiliation(s)
- Yunrui Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Boying Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China; Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein 2028, South Africa
| | - Lifang Chen
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ting Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Mengyu Di
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Fei Jiang
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
| | - Xiaoyang Xu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
29
|
Chakrabortty P, Ghosh S, Das A, Khan A, Islam SM. Visible-light-driven sustainable conversion of carbon dioxide to methanol using a metal-free covalent organic framework as a recyclable photocatalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00088a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A 2D covalent organic framework (COF) was synthesized by copolymerization between 4,4′-biphenyldicarbaldehyde and 1,3,5-tris-(4-aminophenyl) triazine (TAPT). This COF exhibited excellent photocatalytic performance for the CO2 reduction to methanol.
Collapse
Affiliation(s)
- Pekham Chakrabortty
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India
| | - Swarbhanu Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India
| | - Anjan Das
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India
| |
Collapse
|
30
|
Zhang L, Zhang Y, Huang X, Bi Y. Reversing electron transfer in a covalent triazine framework for efficient photocatalytic hydrogen evolution. Chem Sci 2022; 13:8074-8079. [PMID: 35919433 PMCID: PMC9278156 DOI: 10.1039/d2sc02638d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Covalent triazine-based frameworks (CTFs) have emerged as some of the most important materials for photocatalytic water splitting. However, development of CTF-based photocatalytic systems with non-platinum cocatalysts for highly efficient hydrogen evolution still remains a challenge. Herein, we demonstrated, for the first time, a one-step phosphidation strategy for simultaneously achieving phosphorus atom bonding with the benzene rings of CTFs and the anchoring of well-defined dicobalt phosphide (Co2P) nanocrystals (∼7 nm). The hydrogen evolution activities of CTFs were significantly enhanced under simulated solar-light (7.6 mmol h−1 g−1), more than 20 times higher than that of the CTF/Co2P composite. Both comparative experiments and in situ X-ray photoelectron spectroscopy reveal that the strong interfacial P–C bonding and the anchoring of the Co2P cocatalyst reverse the charge transfer direction from triazine to benzene rings, promote charge separation, and accelerate hydrogen evolution. Thus, the rational anchoring of transition-metal phosphides on conjugated polymers should be a promising approach for developing highly efficient photocatalysts for hydrogen evolution. Reversing the electron transfer in a covalent triazine-based framework by Co2P anchoring achieved highly efficient photocatalytic hydrogen evolution from water splitting.![]()
Collapse
Affiliation(s)
- Linwen Zhang
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, Gansu 730000, China
- Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS, Qingdao 266101, China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, P. R. China
| | - Xiaojuan Huang
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, Gansu 730000, China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, Gansu 730000, China
- Dalian National Laboratory for Clean Energy, CAS, Dalian 116023, China
| |
Collapse
|
31
|
Han X, Zhang Y, Dong Y, Zhao J, Ming S, Zhang J. Effect of the cross-linker length of thiophene units on photocatalytic hydrogen production of triazine-based conjugated microporous polymers. RSC Adv 2021; 12:708-718. [PMID: 35425110 PMCID: PMC8978623 DOI: 10.1039/d1ra07916f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Conjugated microporous polymers (CMPs) have been investigated in the field of photocatalytic hydrogen production because of their extended π-conjugation, tunable chemical structure and excellent thermal stability. Herein, we construct three CMPs based on thiophenes and triazine, and prove the effect of cross-linker length on photocatalytic activity of CMPs. BTPT-CMP1 exhibits blue-shifted optical absorption compared to BTPT-CMP2 and BTPT-CMP3 with long cross-linkers, however, possesses higher photocurrent because of the large specific surface area and small interface charge transfer resistance of BTPT-CMP1. It was found that BTPT-CMP1 (5561.87 μmol g-1 h-1) with short cross-linkers exhibits better photocatalytic performance compared to BTPT-CMP2 (1840.86 μmol g-1 h-1) and BTPT-CMP3 (1600.48 μmol g-1 h-1). Also, BTPT-CMP1 possesses a higher hydrogen evolution rate than most reported 1,3,5-triazine based conjugated polymers. These results demonstrate that the cross-linker length has great influence on the photocatalytic properties of conjugated microporous polymers, which offers theoretical direction for designing high-performance CMPs.
Collapse
Affiliation(s)
- Xiao Han
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| | - YunYun Dong
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University Liaocheng 252059 PR China
| | - Shouli Ming
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| | - Junhong Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| |
Collapse
|
32
|
Liu M, Yang K, Li Z, Fan E, Fu H, Zhang L, Zhang Y, Zheng Z. The O/S heteroatom effects of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem Commun (Camb) 2021; 58:92-95. [PMID: 34874023 DOI: 10.1039/d1cc05619k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
S/O heterocyclic covalent triazine frameworks (CTFs i.e., CTF-7 and CTF-8) were synthesized using thiophene and furan as building blocks, respectively. The hydrogen evolution rate of CTF-7 is 7430 μmol g-1 h-1, which is about 5.6 times that of CTF-8. Due to their low electronegativity, sulfur heteroatoms are more favorable for charge separation than oxygen heteroatoms in CTFs. This work provides a guiding principle for the design of high efficiency photocatalyst structures.
Collapse
Affiliation(s)
- Manying Liu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Kangni Yang
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Zhenyang Li
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Erchuang Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Huafeng Fu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Like Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Yange Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Zhi Zheng
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| |
Collapse
|
33
|
Lu R, Liu C, Chen Y, Tan L, Yuan G, Wang P, Wang C, Yan H. Effect of linkages on photocatalytic H2 evolution over covalent organic frameworks. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Ruidas S, Mohanty B, Bhanja P, Erakulan ES, Thapa R, Das P, Chowdhury A, Mandal SK, Jena BK, Bhaumik A. Metal-Free Triazine-Based 2D Covalent Organic Framework for Efficient H 2 Evolution by Electrochemical Water Splitting. CHEMSUSCHEM 2021; 14:5057-5064. [PMID: 34532998 DOI: 10.1002/cssc.202101663] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Indexed: 05/27/2023]
Abstract
Hydrogen evolution reaction (HER) by electrochemical water splitting is one of the most active areas of energy research, yet the benchmark electrocatalysts used for this reaction are based on expensive noble metals. This is a major bottleneck for their large-scale operation. Thus, development of efficient metal-free electrocatalysts is of paramount importance for sustainable and economical production of the renewable fuel hydrogen by water splitting. Covalent organic frameworks (COFs) show much promise for this application by virtue of their architectural stability, nanoporosity, abundant active sites located periodically throughout the framework, and high electronic conductivity due to extended π-delocalization. This study concerns a new COF material, C6 -TRZ-TFP, which is synthesized by solvothermal polycondensation of 2-hydroxybenzene-1,3,5-tricarbaldehyde (TFP) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tris[(1,1'-biphenyl)-4-amine]. C6 -TRZ-TFP displayed excellent HER activity in electrochemical water splitting, with a very low overpotential of 200 mV and specific activity of 0.2831 mA cm-2 together with high retention of catalytic activity after a long duration of electrocatalysis in 0.5 m aqueous H2 SO4 . Density functional theory calculations suggest that the electron-deficient carbon sites near the π electron-donating nitrogen atoms are more active towards HER than those near the electron-withdrawing nitrogen and oxygen atoms.
Collapse
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Bishnupad Mohanty
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Piyali Bhanja
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - E S Erakulan
- Department of Physics, SRM University, Amaravati, 522 502, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University, Amaravati, 522 502, Andhra Pradesh, India
| | - Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manuali PO, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manuali PO, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Bikash Kumar Jena
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
35
|
Li Y, Zhang R, Li C, Li H, Fang Q, Xie T. Fabrication of electron-acceptor staggered AB Covalent triazine-based frameworks for enhanced visible-light-driven H 2 evolution. J Colloid Interface Sci 2021; 608:1449-1456. [PMID: 34742064 DOI: 10.1016/j.jcis.2021.10.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023]
Abstract
Covalent triazine-based frameworks (CTFs) have been emerged as a promising organic material for photocatalytic water splitting. However, all of the CTFs only are in the form of AA stacking model to participate in water splitting. Herein, two CTF-1 isomers with different stacking models (eclipsed AA, staggered AB) were obtained by modulating the reaction temperature. Interestingly, experimental and theoretical calculations showed that the crystalline AB stacking CTF-1 possessed a much higher activity for photochemical hydrogen evolution (362 μmol g-1 h-1) than AA stacking CTF-1 (70 µmol h-1 g-1) for the first time. The outstanding photochemical performance could be attributed to its distinct structural feature that allows more N atoms with higher electron-withdrawing property to be involved in the water reduction reaction. Notably, as a cathode material for PEC water reduction, AB stacking CTF-1 also demonstrated an excellent saturated photocurrent density up to 77 µA cm-2 at 0 V vs. RHE, which was superior to the AA stacking CTF-1 (47 µA cm-2). Furthermore, the correlation between stacking models and photocatalytic H2 evolution of CTF-1 were investigated. This study thus paves the path for designing optimal photocatalyst and extending the novel applications of CTF-based materials.
Collapse
Affiliation(s)
- Yinyin Li
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Rui Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Cuiyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Tengfeng Xie
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
36
|
Liu C, Wang YC, Yang Q, Li XY, Yi F, Liu KW, Cao HM, Wang CJ, Yan HJ. Graphene Oxide-Assisted Covalent Triazine Framework for Boosting Photocatalytic H 2 Evolution. Chemistry 2021; 27:13059-13066. [PMID: 34190368 DOI: 10.1002/chem.202101956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Covalent triazine frameworks (CTFs) with two-dimensional structures have exhibited promising visible-light-induced H2 evolution performance. However, it is still a challenge to improve their activity. Herein, we report π-conjugation-linked CTF-1/GO for boosting photocatalytic H2 evolution. The CTF-1/GO hybrid material was obtained by a facile low-temperature condensation of 1,4-dicyanobenzene in the presence of GO. The results of photocatalytic H2 evolution indicate that the optimum hybrid, CTF-1/GO-3.0, exhibited an H2 evolution rate of 2262.4 μmol ⋅ g-1 ⋅ h-1 under visible light irradiation, which was 9 times that of pure CTF-1. The enhanced photocatalytic performance could be attributed to the fact that GO in CTF-1/GO hybrids not only acts as an electron collector and transporter like a "bridge" to facilitate the separation and transfer of photogenerated charges but also shortens the electron migration path due to its thin sheet layer uniformly distribution over CTF-1. This work could help future development of novel conjugated CTF-based composite materials as high-efficiency photocatalyst for photocatalysis.
Collapse
Affiliation(s)
- Cheng Liu
- College of Chemistry, Sichuan University, 610064, Chengdu, China.,Department Chemistry and Chemical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yongchao C Wang
- Department Chemistry and Chemical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Qing Yang
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Xinyu Y Li
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Fangli Yi
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Kewei W Liu
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Hongmei M Cao
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Cuijuan J Wang
- Department Chemistry and Chemical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Hongjian J Yan
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
37
|
Ru C, Zhou T, Zhang J, Wu X, Sun P, Chen P, Zhou L, Zhao H, Wu J, Pan X. Introducing Secondary Acceptors into Conjugated Polymers to Improve Photocatalytic Hydrogen Evolution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chenglong Ru
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Tong Zhou
- School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xuan Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Pengyao Sun
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Lian Zhou
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810006, People’s Republic of China
| | - Hao Zhao
- School of Science & Technology for Opto-Electronic Information, Yantai University, 30 Qingquan Road, Yantai 264005, People’s Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810006, People’s Republic of China
| |
Collapse
|
38
|
Liu Y, Li B, Xiang Z. Pathways towards Boosting Solar-Driven Hydrogen Evolution of Conjugated Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007576. [PMID: 34160904 DOI: 10.1002/smll.202007576] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic H2 evolution under solar illumination has been considered to be a promising technology for green energy resources. Developing highly efficient photocatalysts for photocatalytic water splitting is long-term desired but still challenging. Conjugated polymers (CPs) have attracted ongoing attention and have been considered to be promising alternatives for solar-driven H2 production due to the excellent merits of the large π-conjugated system, versatile structures, tunable photoelectric properties, and well-defined chemical composites. The excellent merits have offered numerous methods for boosting photocatalytic hydrogen evolution (PHE) of initial CP-based photocatalysts, whose apparent quantum yield is dramatically increased from <1 to >20% in recent five years. According to the photocatalytic mechanism, this review herein systematically summarizes three major strategies for boosting photocatalytic H2 production of CPs: 1) enhancing visible light absorption, 2) suppressing recombination of electron-hole pairs, and 3) boosting surface catalytic reaction, mainly involving eleven methods, that is, copolymerization, modifying cross-linker, constructing a donor-acceptor structure, functionalization, fabricating organic heterojunction, loading cocatalyst, and surface modification. Finally, the perspectives towards the future development of PHE are proposed.
Collapse
Affiliation(s)
- Yaoyao Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingjie Li
- The First Affiliated Hospital Zhengzhou University, 1 Jianshe Street, Zhengzhou, Henan, 450052, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
39
|
Xu Y, Ju CW, Li B, Ma QS, Chen Z, Zhang L, Chen J. Hydrogen Evolution Prediction for Alternating Conjugated Copolymers Enabled by Machine Learning with Multidimension Fragmentation Descriptors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34033-34042. [PMID: 34269560 DOI: 10.1021/acsami.1c05536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen evolution by alternating conjugated copolymers has attracted much attention in recent years. To study alternating copolymers with data-driven strategies, two types of multidimension fragmentation descriptors (MDFD), structure-based MDFD (SMDFD), and electronic property-based MDFD (EPMDFD), have been developed with machine learning (ML) algorithms for the first time. The superiority of SMDFD-based models has been demonstrated by the highly accurate and universal predictions of electronic properties. Moreover, EPMDFD-based, experimental-parameter-free ML models were developed for the prediction of the hydrogen evolution reaction, displaying excellent accuracy (real-test accuracy = 0.91). The combination of explainable ML approaches and first-principles calculations was employed to explore photocatalytic dynamics, revealing the importance of electron delocalization in the excited state. Virtual designing of high-performance candidates can also be achieved. Our work illustrates the huge potential of ML-based material design in the field of polymeric photocatalysts toward high-performance photocatalysis.
Collapse
Affiliation(s)
- Yuzhi Xu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cheng-Wei Ju
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Qiu-Shi Ma
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhenyu Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
40
|
Verma P, Le Brocq JJ, Raja R. Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production. Molecules 2021; 26:4181. [PMID: 34299457 PMCID: PMC8304392 DOI: 10.3390/molecules26144181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.
Collapse
Affiliation(s)
- Priyanka Verma
- School of Chemistry, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK;
| | | | - Robert Raja
- School of Chemistry, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK;
| |
Collapse
|
41
|
Sheng ZQ, Xing YQ, Chen Y, Zhang G, Liu SY, Chen L. Nanoporous and nonporous conjugated donor-acceptor polymer semiconductors for photocatalytic hydrogen production. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:607-623. [PMID: 34285864 PMCID: PMC8261276 DOI: 10.3762/bjnano.12.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polymers (CPs) as photocatalysts have evoked substantial interest. Their geometries and physical (e.g., chemical and thermal stability and solubility), optical (e.g., light absorption range), and electronic properties (e.g., charge carrier mobility, redox potential, and exciton binding energy) can be easily tuned via structural design. In addition, they are of light weight (i.e., mainly composed of C, N, O, and S). To improve the photocatalytic performance of CPs and better understand the catalytic mechanisms, many strategies with respect to material design have been proposed. These include tuning the bandgap, enlarging the surface area, enabling more efficient separation of electron-hole pairs, and enhancing the charge carrier mobility. In particular, donor-acceptor (D-A) polymers were demonstrated as a promising platform to develop high-performance photocatalysts due to their easily tunable bandgaps, high charge carrier mobility, and efficient intramolecular charge transfer. In this minireview, recent advances of D-A polymers in photocatalytic hydrogen evolution are summarized with a particular focus on modulating the optical and electronic properties of CPs by varying the acceptor units. The challenges and prospects associated with D-A polymer-based photocatalysts are described as well.
Collapse
Affiliation(s)
- Zhao-Qi Sheng
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yu-Qin Xing
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yan Chen
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Guang Zhang
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Shi-Yong Liu
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Long Chen
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
42
|
Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO 2/CH 4 Gas Separation. Molecules 2021; 26:molecules26123670. [PMID: 34208570 PMCID: PMC8235060 DOI: 10.3390/molecules26123670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
C2/C1 hydrocarbon separation is an important industrial process that relies on energy-intensive cryogenic distillation methods. The use of porous adsorbents to selectively separate these gases is a viable alternative. Highly stable covalent triazine frameworks (urea-CTFs) have been synthesized using 1,3-bis(4-cyanophenyl)urea. Urea-CTFs exhibited gas uptakes of C2H2 (3.86 mmol/g) and C2H4 (2.92 mmol/g) at 273 K and 1 bar and is selective over CH4. Breakthrough simulations show the potential of urea-CTFs for C2/C1 separation.
Collapse
|
43
|
Guan L, Cheng G, Tan B, Jin S. Covalent triazine frameworks constructed via benzyl halide monomers showing high photocatalytic activity in biomass reforming. Chem Commun (Camb) 2021; 57:5147-5150. [PMID: 33899846 DOI: 10.1039/d1cc01102b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we report the synthesis of covalent triazine frameworks (CTFs) using benzyl halide monomers which are more cost-effective and with higher availability than previous ones. The resulting CTFs were successfully applied for efficient photocatalytic reforming of glucose for the first time, with a high hydrogen evolution rate up to 330 μmol g-1 h-1 under pH = 12. This work presented a new way to synthesize CTFs and further exhibited their potential applications in photocatalytic biomass reforming.
Collapse
Affiliation(s)
- Lijiang Guan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China. and School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|
44
|
Kumar S, Battula VR, Sharma N, Samanta S, Kailasam K. Understanding the role of soft linkers in designing hepatzine-based polymeric frameworks as heterogeneous (photo)catalyst. J Colloid Interface Sci 2021; 588:138-146. [PMID: 33388579 DOI: 10.1016/j.jcis.2020.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
The emerging class of heptazine-based polymeric materials has shown potential candidature as photocatalyst materials for hydrogen evolution. At the same time, they have shown promising application as solid base materials to catalyse various organic transformations. Thus, the material design rationale needs to be developed around the heptazine-based polymeric frameworks in order to specifically design task specific materials. Herein, we utilised controlled reaction conditions to synthesize the desired polymeric networks with trichloroheptazine as precursor. Material design strategy employed nitrogen rich [tris(2-aminoethylamine) and hydrazine] as soft linkers to understand the effect on band structure of developed heptazine-based polymeric networks. The developed polymeric networks were explored as platform to study systematically the effect on their respective photophysical properties and understand their surface basicity. The framework having aminoalkyl linker showed superior activity in photocatalysis as well as heterogeneous base catalysis. Further, model catalysts revealed the importance of N-atoms as active basic sites in these systems.
Collapse
Affiliation(s)
- Sunil Kumar
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India.
| | - Venugopala Rao Battula
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Neha Sharma
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Soumadri Samanta
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Kamalakannan Kailasam
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India.
| |
Collapse
|
45
|
Huang X, Zhang YB. Covalent Organic Frameworks for Sunlight-driven Hydrogen Evolution. CHEM LETT 2021. [DOI: 10.1246/cl.200834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xiaofeng Huang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, P. R. China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, P. R. China
| |
Collapse
|
46
|
Zeng Z, Sun L, Liu H, Ma B, Jing D, Guo L. Should the Tubular Photocatalytic Reactors Work Continuously or in an Intermittent Manner Instead? Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zilong Zeng
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Lijun Sun
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Heng Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Benchi Ma
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Dengwei Jing
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Liejin Guo
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| |
Collapse
|
47
|
Machado TF, Serra MES, Murtinho D, Valente AJM, Naushad M. Covalent Organic Frameworks: Synthesis, Properties and Applications-An Overview. Polymers (Basel) 2021; 13:970. [PMID: 33809960 PMCID: PMC8004293 DOI: 10.3390/polym13060970] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Covalent Organic Frameworks (COFs) are an exciting new class of microporous polymers with unprecedented properties in organic material chemistry. They are generally built from rigid, geometrically defined organic building blocks resulting in robust, covalently bonded crystalline networks that extend in two or three dimensions. By strategically combining monomers with specific structures and properties, synthesized COF materials can be fine-tuned and controlled at the atomic level, with unparalleled precision on intrapore chemical environment; moreover, the unusually high pore accessibility allows for easy post-synthetic pore wall modification after the COF is synthesized. Overall, COFs combine high, permanent porosity and surface area with high thermal and chemical stability, crystallinity and customizability, making them ideal candidates for a myriad of promising new solutions in a vast number of scientific fields, with widely varying applications such as gas adsorption and storage, pollutant removal, degradation and separation, advanced filtration, heterogeneous catalysis, chemical sensing, biomedical applications, energy storage and production and a vast array of optoelectronic solutions. This review attempts to give a brief insight on COF history, the overall strategies and techniques for rational COF synthesis and post-synthetic functionalization, as well as a glance at the exponentially growing field of COF research, summarizing their main properties and introducing the numerous technological and industrial state of the art applications, with noteworthy examples found in the literature.
Collapse
Affiliation(s)
- Tiago F. Machado
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - M. Elisa Silva Serra
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Dina Murtinho
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Artur J. M. Valente
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Mu. Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
48
|
Wang Q, Wang J, Wang JC, Hu X, Bai Y, Zhong X, Li Z. Coupling CsPbBr 3 Quantum Dots with Covalent Triazine Frameworks for Visible-Light-Driven CO 2 Reduction. CHEMSUSCHEM 2021; 14:1131-1139. [PMID: 33411408 DOI: 10.1002/cssc.202002847] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Photocatalytic reduction of CO2 into value-added chemical fuels is an appealing approach to address energy crisis and global warming. CsPbBr3 quantum dots (QDs) are good candidates for CO2 reduction because of their excellent photoelectric properties, including high molar extinction coefficient, low exciton binding energy, and defect tolerance. However, the pristine CsPbBr3 QDs generally have low photocatalytic performance mainly due to dominant charge recombination and lack of efficient catalytic sites for CO2 adsorption/activation. Herein, we report a new photocatalytic system, in which CsPbBr3 QDs are coupled with covalent triazine frameworks (CTFs) for visible-light-driven CO2 reduction. In this hybrid photocatalytic system, the robust triazine rings and periodical pore structures of CTFs promote the charge separation in CsPbBr3 and endow them with strong CO2 adsorption/activation capacity. The resulting photocatalytic system exhibits excellent photocatalytic activity towards CO2 reduction. This work presents a new photocatalytic system based on CTFs and perovskite QDs for visible-light-driven CO2 reduction, which highlights the potential of perovskite-based photocatalysts for solar fuel applications.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Ji-Chong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yu Bai
- Experimental Center of Engineering and Material Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinhua Zhong
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
49
|
He Y, Chen X, Huang C, Li L, Yang C, Yu Y. Encapsulation of Co single sites in covalent triazine frameworks for photocatalytic production of syngas. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63603-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Tan Z, Zhang P, Chen Q, Fang S, Huang G, Bi J, Wu L. Visible-light-driven photocatalyst based upon metal-free covalent triazine-based frameworks for enhanced hydrogen production. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02094j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An environment-friendly photocatalyst was constructed by loading reduced graphene oxide (rGO) onto a covalent triazine framework CTF-1 in this work for efficient utilization of solar energy to produce H2.
Collapse
Affiliation(s)
- Zunkun Tan
- Department of Environmental Science and Engineering
- Fuzhou University
- Minhou
- P. R. China
| | - Peng Zhang
- Department of Environmental Science and Engineering
- Fuzhou University
- Minhou
- P. R. China
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering
- Fuzhou University
- Minhou
- P. R. China
| | - Shengqiong Fang
- Department of Environmental Science and Engineering
- Fuzhou University
- Minhou
- P. R. China
| | - Guocheng Huang
- Department of Environmental Science and Engineering
- Fuzhou University
- Minhou
- P. R. China
| | - Jinhong Bi
- Department of Environmental Science and Engineering
- Fuzhou University
- Minhou
- P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Minhou
- P. R. China
| |
Collapse
|