1
|
Li K, Li Z, Yuan J, Chen M, Zhao H, Jiang Z, Wang J, Jiang Z, Li Y, Chan YT, Wang P, Liu D. High-order layered self-assembled multicavity metal--organic capsules and anti-cooperative host-multi-guest chemistry. Chem Sci 2024; 15:8913-8921. [PMID: 38873050 PMCID: PMC11168090 DOI: 10.1039/d4sc01204f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
The construction and application of metal-organic cages with accessible internal cavities have witnessed rapid development, however, the precise synthesis of complex metal-organic capsules with multiple cavities and achievement of multi-guest encapsulation, and further in-depth comprehension of host-multi-guest recognition remain a great challenge. Just like building LEGO blocks, herein, we have constructed a series of high-order layered metal-organic architectures of generation n (n = 1/2/3/4 is also the number of cavities) by multi-component coordination-driven self-assembly using porphyrin-containing tetrapodal ligands (like plates), multiple parallel-podal ligands (like clamps) and metal ions (like nodes). Importantly, these high-order assembled structures possessed different numbers of rigid and separate cavities formed by overlapped porphyrin planes with specific gaps. The host-guest experiments and convincing characterization proved that these capsules G2-G4 could serve as host structures to achieve multi-guest recognition and unprecedentedly encapsulate up to four C60 molecules. More interestingly, these capsules revealed negative cooperation behavior in the process of multi-guest recognition, which provides a new platform to further study complicated host-multi-guest interaction in the field of supramolecular chemistry.
Collapse
Affiliation(s)
- Kaixiu Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Zhengguang Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Mingzhao Chen
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Jun Wang
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Zhilong Jiang
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| |
Collapse
|
2
|
Neukirch L, Kulas MD, Holstein JJ, Clever GH. Non-Templated Assembly of D 5h-Symmetric Pd 5L 10 Rings by Precise Ligand Angle Adjustment. Chemistry 2024; 30:e202400132. [PMID: 38441728 DOI: 10.1002/chem.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/20/2024]
Abstract
We report a series of Pd(II)nL2n coordination rings for which nuclearity is controlled by the binding angle of the corresponding bis-monodentate bridging ligands. Judicious choice of the angle within a family of rather rigid ligands allowed for the first-time to synthesize a homoleptic five-membered Pd5L10 ring that does not require any template to form. We demonstrate that control over the ring size is maintained both in the solid-, solution-, and gas-phase. Two X-ray structures of five-membered rings from ligands with ideal angles (yielding a perfect pentagonal ring) vs. suboptimal angles (resulting in a highly distorted structure) illustrate the importance of the correct ligand geometry. A mathematical model for estimating the expected ring size based on the ligand angle was derived and DFT computations show that ring-strain is the major factor determining the assembly outcome.
Collapse
Affiliation(s)
- Laura Neukirch
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Milan D Kulas
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Gramüller J, Gschwind RM. An NMR Spectroscopy View on London Dispersion in Catalysis: Detection, Quantification, and Application in Ion Pair and Transition Metal Catalysis. Acc Chem Res 2023; 56:2968-2979. [PMID: 37889132 DOI: 10.1021/acs.accounts.3c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
ConspectusThe energetic contribution of London dispersion (LD) can cover a broad range from very few to hundreds of kJ mol-1 for extended interaction interfaces due to its pairwise additivity. However, for a designed and successful application of LD in chemical catalysis, there are still many obstacles and questions that remain. In principle, LD can be regarded as the attractive part of the van der Waals potential. Thus, considering the whole van der Waals potential, including the repulsive part (steric repulsion), the ideal solution to the problem in catalysis would be to design compatible interaction interfaces at exactly the correct distance. In the case of a self-assembled, flexible structure arrangement, entropic contributions and solvent interactions might be detrimental. In the case of a rigid catalyst pocket, steric hindrance might not allow for large substituents that are usually applied as dispersion energy donors (DEDs). For a working catalytic system, the following question arises: how is it possible to dissect the complex interaction interfaces in terms of energetic contributions? Usually, the energetic contribution of LD to catalysis is addressed by using calculations. However, adequately computing the correct energetic contributions can be extremely challenging for a vast conformational space with all kinds of intermolecular interactions. Thus, experimental data are essential for comparison or benchmarking.Therefore, in this Account, we describe our quest for detailed experimental data obtained via NMR spectroscopy to experimentally dissect and quantify LD in catalytic systems. In addition, we address the question of whether bulky substituents used as DEDs can be used in confined catalytic pockets. With the example of Pd phosphoramidite complexes, we show how it is possible to experimentally dissect and quantify the contribution of individual interaction areas in complicated transition metal complexes. Furthermore, a correlation between conformational rigidity and heterodimer preference clearly reveals that LD can only unfold its full potential in cases where entropic contributions are minimized. This finding can also explain the small contribution of LD in flexible and solvent-exposed molecular balances. In the field of Brønsted acid catalysis, we demonstrated that LD has a strong influence on the structures, stability, and populations of confined catalytic intermediates. LD is key for populating higher aggregates such as dimers. In addition, offsets between the experimental and computational results were observed and attributed to solvent-solute dispersion interactions. We studied the delicate interplay of attractive and repulsive interactions by adding bulky DED substituents onto a substrate, which can function as a molecular balance system. Intriguingly, the effect of LD on the free substrate was straightforwardly transferred onto the highly confined intermediates. Furthermore, this effect could even be read out in the enantioselectivities of the underlying reaction. This conceptualized a general approach regarding how LD can be used beneficially in catalysis to convert from moderate/good to excellent stereoselectivities. It showcased that bulky groups such as tert-butyl must not only be regarded as occupied volumes.
Collapse
Affiliation(s)
- Johannes Gramüller
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Sergeieva T, Demirer TI, Wuttke A, Mata RA, Schäfer A, Linker GJ, Andrada DM. Revisiting the origin of the bending in group 2 metallocenes AeCp 2 (Ae = Be-Ba). Phys Chem Chem Phys 2023. [PMID: 37482883 PMCID: PMC10395002 DOI: 10.1039/d2cp05020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Metallocenes are well-established compounds in organometallic chemistry, and can exhibit either a coplanar structure or a bent structure according to the nature of the metal center (E) and the cyclopentadienyl ligands (Cp). Herein, we re-examine the chemical bonding to underline the origins of the geometry and stability observed experimentally. To this end, we have analysed a series of group 2 metallocenes [Ae(C5R5)2] (Ae = Be-Ba and R = H, Me, F, Cl, Br, and I) with a combination of computational methods, namely energy decomposition analysis (EDA), polarizability model (PM), and dispersion interaction densities (DIDs). Although the metal-ligand bonding nature is mainly an electrostatic interaction (65-78%), the covalent character is not negligible (33-22%). Notably, the heavier the metal center, the stronger the d-orbital interaction with a 50% contribution to the total covalent interaction. The dispersion interaction between the Cp ligands counts only for 1% of the interaction. Despite that orbital contributions become stronger for heavier metals, they never represent the energy main term. Instead, given the electrostatic nature of the metallocene bonds, we propose a model based on polarizability, which faithfully predicts the bending angle. Although dispersion interactions have a fair contribution to strengthen the bending angle, the polarizability plays a major role.
Collapse
Affiliation(s)
- Tetiana Sergeieva
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - T Ilgin Demirer
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Axel Wuttke
- Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany.
| | - Ricardo A Mata
- Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany.
| | - André Schäfer
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Gerrit-Jan Linker
- MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Diego M Andrada
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Ghanbari B, Asadi Mofarrah L, Clegg JK. Selective Supramolecular Recognition of Nitroaromatics by a Fluorescent Metal-Organic Cage Based on a Pyridine-Decorated Dibenzodiaza-Crown Macrocyclic Co(II) Complex. Inorg Chem 2023; 62:7434-7445. [PMID: 37134276 DOI: 10.1021/acs.inorgchem.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two isomorphous fluorescent (FL) lantern-shaped metal-organic cages 1 and 2 were prepared by coordination-directed self-assembly of Co(II) centers with a new aza-crown macrocyclic ligand bearing pyridine pendant arms (Lpy). The cage structures were determined using single-crystal X-ray diffraction analysis, thermogravimetric, elemental microanalysis, FT-IR spectroscopy, and powder X-ray diffraction. The crystal structures of 1 and 2 show that anions (Cl- in 1 and Br- in 2) are encapsulated within the cage cavity. 1 and 2 bear two coordinated water molecules that are directed inside the cages, surrounded by the eight pyridine rings at the "bottom" and the "roof" of the cage. These hydrogen bond donors, π systems, and the cationic nature of the cages enable 1 and 2 to encapsulate the anions. FL experiments revealed that 1 could detect nitroaromatic compounds by exhibiting selective and sensitive fluorescence quenching toward p-nitroaniline (PNA), recommending a limit of detection of 4.24 ppm. Moreover, the addition of 50 μL of PNA and o-nitrophenol to the ethanolic suspension of 1 led to a significant large FL red shift, namely, 87 and 24 nm, respectively, which were significantly higher than the corresponding values observed in the presence of other nitroaromatic compounds. The titration of the ethanolic suspension of 1, with various concentrations of PNA (>12 μM) demonstrated a concentration-dependent emission red shift. Hence, the efficient FL quenching of 1 was capable of distinguishing the dinitrobenzene isomers. Meanwhile, the observed red shift (10 nm) and quenching of this emission band under the influence of a trace amount of o- and p-nitrophenol isomers also showed that 1 could discriminate between o- and p-nitrophenol. Replacement of the chlorido with a bromido ligand in 1 generated cage 2 which was a more electron-donating cage than 1. The FL experiments showed that 2 was partially more sensitive and less selective toward NACs than 1.
Collapse
Affiliation(s)
- Bahram Ghanbari
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Leila Asadi Mofarrah
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Tremlett WDJ, Söhnel T, Crowley JD, Wright LJ, Hartinger CG. Ferrocene-Derived Palladium(II)-Based Metallosupramolecular Structures: Synthesis, Guest Interaction, and Stimulus-Responsiveness Studies. Inorg Chem 2023; 62:3616-3628. [PMID: 36791401 DOI: 10.1021/acs.inorgchem.2c04399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Using ferrocene-based ligand systems, a series of heterobimetallic architectures of the general formula [PdmLn]x+ were designed with the aim of installing an opening and closing mechanism that would allow the release and binding of guest molecules. Palladium complex formation was achieved through coordination to pyridyl groups, and using 2-, 3-, and 4-pyridyl derivatives provided access to defined PdL, PdL2, and Pd2L4 structures, respectively. The supramolecular complexes were characterized using nuclear magnetic resonance (NMR) and infrared spectroscopy, mass spectrometry, and elemental analysis, and for some examples density functional theory calculations and single-crystal X-ray diffraction analysis. 1H NMR spectroscopy was used to investigate disassembly and reassembly of the metallosupramolecular structures. The former was induced by cleavage of the relatively labile Pd-Npyridyl bonds with the introduction of the competing ligands N,N'-dimethylaminopyridine (DMAP) and Cl- (using tetrabutylammonium chloride) to yield [Pd(DMAP)4]2+ and [PdCl4]2-, respectively. The process was found to be reversible for several of the heterodimetallic compounds, with the addition of H+ or Ag+ triggering complex reassembly. Guest binding studies with several architectures revealed interactions with the anionic guests p-toluenesulfonate and octyl sulfate, but not with neutral molecules. Furthermore, the release of guests was reversibly induced with Cl- ions as a stimulus.
Collapse
Affiliation(s)
- William D J Tremlett
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
7
|
Bloch WM, Horiuchi S, Holstein JJ, Drechsler C, Wuttke A, Hiller W, Mata RA, Clever GH. Maximized axial helicity in a Pd 2L 4 cage: inverse guest size-dependent compression and mesocate isomerism. Chem Sci 2023; 14:1524-1531. [PMID: 36794203 PMCID: PMC9906678 DOI: 10.1039/d2sc06629g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Helicity is an archetypal structural motif of many biological systems and provides a basis for molecular recognition in DNA. Whilst artificial supramolecular hosts are often helical, the relationship between helicity and guest encapsulation is not well understood. We report a detailed study on a significantly coiled-up Pd2L4 metallohelicate with an unusually wide azimuthal angle (∼176°). Through a combination of NMR spectroscopy, single-crystal X-ray diffraction, trapped ion mobility mass spectrometry and isothermal titration calorimetry we show that the coiled-up cage exhibits extremely tight anion binding (K of up to 106 M-1) by virtue of a pronounced oblate/prolate cavity expansion, whereby the Pd-Pd separation decreases for mono-anionic guests of increasing size. Electronic structure calculations point toward strong dispersion forces contributing to these host-guest interactions. In the absence of a suitable guest, the helical cage exists in equilibrium with a well-defined mesocate isomer that possesses a distinct cavity environment afforded by a doubled Pd-Pd separation distance.
Collapse
Affiliation(s)
- Witold M Bloch
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide South Australia 5042 Australia
| | - Shinnosuke Horiuchi
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University Bunkyo-machi Nagasaki 852-8521 Japan
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Christoph Drechsler
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Axel Wuttke
- Institute of Physical Chemistry, Georg-August University Göttingen Tammannstraße 6 37077 Göttingen Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Ricardo A Mata
- Institute of Physical Chemistry, Georg-August University Göttingen Tammannstraße 6 37077 Göttingen Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
8
|
Luo M, Zhang JC, Yin H, Wang CM, Xie L, Li KP, Goto M, Morris-Natschke SL, Lee KH, Zhang JH, Zhang YM, Zhang XR. Palladium (II), platinum (II) and silver (I) complexes with oxazolines: Their synthesis, characterization, DFT calculation, molecular docking and antitumour effects. J Inorg Biochem 2023; 239:112048. [PMID: 36496289 DOI: 10.1016/j.jinorgbio.2022.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Six new Pd(II), Pt(II) and Ag(I) complexes, (1);{Pd (L1)]2C6H4}2Cl4} (2); Pt(L2)(DMSO)Cl; 3; {PtL5]2C6H4}2·PhCOO-⋅11NO3-; 4; {[Pt(L4)]2C6H4}; the binuclear cyclometalated complex the polymer chain (5); {[PtL5]C6H4}·NO3-}; and the polymeric silver species (6); Zn(L6)2·AgNO3·CHCl3 were synthesized and thoroughly characterized using X-ray diffraction and spectroscopic techniques (L1=(S,S)-1,4-i-PrOx]2C6H4}2Cl4, L2=Di(2,2-bis(4R-isopropyl-4,5-dihydro-oxazol-2-yl)acetonitrile) zinc (II) (BR1);L3= 1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)benzene (AR2); L4= 1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)benzene,L5=1,4-bis(4R-benzyl-4,5-dihydro-oxazol-2-yl)-benzene,L6=Di(2,2-bis(4S-isopropyl-4,5-dihydrooxazol-2-yl)acetonitrile) zinc (II). Complexes 1-6 showed cytotoxic effects against human tumour cell lines, including a multidrug-resistant subline. Oxazoline and Pd complex 1 induced apoptosis in A549 cells. DFT calculations were also performed to exhibit the excellent bioactivity of complex 1 against A549, MDA-MB-231, and KB cells. Complex 1, with the best docking score and a stable interaction network within the binding site of the G-quadruplex, could stably interact with the G-quadruplex. Additionally, complex 1 was further used in the animal experiment of human lung adenocarcinoma cells in nude mice. By comparing with the model control group, the tumour volume, relative tumour volume and relative tumour proliferation rate T/C decreased significantly in the cisplatin group and compound 1 (complex 1) group.
Collapse
Affiliation(s)
- Mei Luo
- College of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Intelligent Manufacturing Institute of HFUT, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jing-Cheng Zhang
- College of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Hao Yin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, China
| | - Cheng-Ming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, China
| | - Lan Xie
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Kang-Po Li
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40447, Taiwan.
| | - Jia-Hai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yan-Min Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xue-Ru Zhang
- College of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| |
Collapse
|
9
|
Gramüller J, Franta M, Gschwind RM. Tilting the Balance: London Dispersion Systematically Enhances Enantioselectivities in Brønsted Acid Catalyzed Transfer Hydrogenation of Imines. J Am Chem Soc 2022; 144:19861-19871. [PMID: 36260790 DOI: 10.1021/jacs.2c07563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
London dispersion (LD) is attracting more and more attention in catalysis since LD is ubiquitously present and cumulative. Since dispersion is hard to grasp, recent research has concentrated mainly on the effect of LD in individual catalytic complexes or on the impact of dispersion energy donors (DEDs) on balance systems. The systematic transfer of LD effects onto confined and more complex systems in catalysis is still in its infancy, and no general approach for using DED residues in catalysis has emerged so far. Thus, on the example of asymmetric Brønsted acid catalyzed transfer hydrogenation of imines, we translated the findings of previously isolated balance systems onto confined catalytic intermediates, resulting in a systematic enhancement of stereoselectivity when employing DED-substituted substrates. As the imine substrate is present as Z- and E-isomers, which can, respectively, be converted to R- and S-product enantiomers, implementing tert-butyl groups as DED residues led to an additional stabilization of the Z-imine by up to 4.5 kJ/mol. NMR studies revealed that this effect is transferred onto catalyst/imine and catalyst/imine/nucleophile intermediates and that the underlying reaction mechanism is not affected. A clear correlation between ee and LD stabilization was demonstrated for 3 substrates and 10 catalysts, allowing to convert moderate-good to good-excellent enantioselectivities. Our findings conceptualize a general approach on how to beneficially employ DED residues in catalysis: they clearly showcase that bulky alkyl residues such as tert-butyl groups must be considered regarding not only their repulsive steric bulk but also their attractive properties even in catalytic complexes.
Collapse
Affiliation(s)
- Johannes Gramüller
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Maximilian Franta
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
10
|
Modifying electron injection kinetics for selective photoreduction of nitroarenes into cyclic and asymmetric azo compounds. Nat Commun 2022; 13:1940. [PMID: 35410425 PMCID: PMC9001638 DOI: 10.1038/s41467-022-29559-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractModifying the reactivity of substrates by encapsulation is essential for microenvironment catalysts. Herein, we report an alternative strategy that modifies the entry behaviour of reactants into the microenvironment and substrate inclusion thermodynamics related to the capsule to control the electron injection kinetics and the selectivity of products from the nitroarenes photoreduction. The strategy includes the orchestration of capsule openings to control the electron injection kinetics of electron donors, and the capsule’s pocket to encapsulate more than one nitroarene molecules, facilitating a condensation reaction between the in situ formed azanol and nitroso species to produce azo product. The conceptual microenvironment catalyst endows selective conversion of asymmetric azo products from different nitroarenes, wherein, the estimated diameter and inclusion Gibbs free energy of substrates are used to control and predict the selectivity of products. Inhibition experiments confirm a typical enzymatic conversion, paving a new avenue for rational design of photocatalysts toward green chemistry.
Collapse
|
11
|
Tarzia A, Jelfs KE. Unlocking the computational design of metal-organic cages. Chem Commun (Camb) 2022; 58:3717-3730. [PMID: 35229861 PMCID: PMC8932387 DOI: 10.1039/d2cc00532h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic cages are macrocyclic structures that can possess an intrinsic void that can hold molecules for encapsulation, adsorption, sensing, and catalysis applications. As metal-organic cages may be comprised from nearly any combination of organic and metal-containing components, cages can form with diverse shapes and sizes, allowing for tuning toward targeted properties. Therefore, their near-infinite design space is almost impossible to explore through experimentation alone and computational design can play a crucial role in exploring new systems. Although high-throughput computational design and screening workflows have long been known as powerful tools in drug and materials discovery, their application in exploring metal-organic cages is more recent. We show examples of structure prediction and host-guest/catalytic property evaluation of metal-organic cages. These examples are facilitated by advances in methods that handle metal-containing systems with improved accuracy and are the beginning of the development of automated cage design workflows. We finally outline a scope for how high-throughput computational methods can assist and drive experimental decisions as the field pushes toward functional and complex metal-organic cages. In particular, we highlight the importance of considering realistic, flexible systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
12
|
Lee H, Tessarolo J, Langbehn D, Baksi A, Herges R, Clever GH. Light-Powered Dissipative Assembly of Diazocine Coordination Cages. J Am Chem Soc 2022; 144:3099-3105. [PMID: 35081312 PMCID: PMC8874908 DOI: 10.1021/jacs.1c12011] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Stimuli-responsive
coordination cages allow reversible control
over guest binding and release, relevant for adaptive receptors, carriers,
catalysts, and complex systems. Light serves as an advantageous stimulus,
as it can be applied with precise spatial and temporal resolution
without producing chemical waste products. We report the first Pd-mediated
coordination cage based on ligands embedding a diazocine photoswitch.
While the thermodynamically more stable cis-photoisomer
sloppily assembles to a mixture of species with general formula [Pdncis-L2n], the less stable trans-isomer yields a defined [Pd2trans-L4] cage that reversibly converts
back to the cis-system by irradiation at 530 nm or
thermal relaxation. The [Pdncis-L2n]
species do not bind a given guest; however, [Pd2trans-L4] is able to
encapsulate a bis-sulfonate as long as it is kept assembled, requiring
continuous irradiation at 385 nm. In the absence of UV light, thermal
relaxation results in back-switching and guest release. Assembly and
properties of the system were characterized by a combination of NMR,
ion mobility ESI-MS, single-crystal X-ray diffraction, and UV–vis
absorption studies.
Collapse
Affiliation(s)
- Haeri Lee
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany.,Department of Chemistry, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Daniel Langbehn
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts University, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - Ananya Baksi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts University, Otto Hahn Platz 4, 24118 Kiel, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
13
|
Pullen S, Tessarolo J, Clever GH. Increasing structural and functional complexity in self-assembled coordination cages. Chem Sci 2021; 12:7269-7293. [PMID: 34163819 PMCID: PMC8171321 DOI: 10.1039/d1sc01226f] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Progress in metallo-supramolecular chemistry creates potential to synthesize functional nano systems and intelligent materials of increasing complexity. In the past four decades, metal-mediated self-assembly has produced a wide range of structural motifs such as helicates, grids, links, knots, spheres and cages, with particularly the latter ones catching growing attention, owing to their nano-scale cavities. Assemblies serving as hosts allow application as selective receptors, confined reaction environments and more. Recently, the field has made big steps forward by implementing dedicated functionality, e.g. catalytic centres or photoswitches to allow stimuli control. Besides incorporation in homoleptic systems, composed of one type of ligand, desire arose to include more than one function within the same assembly. Inspiration comes from natural enzymes that congregate, for example, a substrate recognition site, an allosteric regulator element and a reaction centre. Combining several functionalities without creating statistical mixtures, however, requires a toolbox of sophisticated assembly strategies. This review showcases the implementation of function into self-assembled cages and devises strategies to selectively form heteroleptic structures. We discuss first examples resulting from a combination of both principles, namely multicomponent multifunctional host-guest complexes, and their potential in application in areas such as sensing, catalysis, and photo-redox systems.
Collapse
Affiliation(s)
- Sonja Pullen
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
14
|
Tessarolo J, Lee H, Sakuda E, Umakoshi K, Clever GH. Integrative Assembly of Heteroleptic Tetrahedra Controlled by Backbone Steric Bulk. J Am Chem Soc 2021; 143:6339-6344. [PMID: 33900773 PMCID: PMC8154538 DOI: 10.1021/jacs.1c01931] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/20/2022]
Abstract
A bent fluorenone-based dipyridyl ligand LA reacts with PdII cations to a solvent-dependent dynamic library of [PdnL2n] assemblies, constituted by a [Pd3LA6] ring and a [Pd4LA8] tetrahedron as major components, and a [Pd6LA12] octahedron as minor component. Introduction of backbone steric hindrance in ligand LB allows exclusive formation of the [Pd6LB12] octahedron. Combining equimolar amounts of both ligands results in integrative self-sorting to give an unprecedented [Pd4LA4LB4] heteroleptic tetrahedron. Key to the non-statistical assembly outcome is exploiting the structural peculiarity of the [Pd4L8] tetrahedral topology, where the four lean ligands occupy two doubly bridged edges and the bulky ligands span the four remaining, singly bridged edges. Hence, the system finds a compromise between the entropic drive to form an assembly smaller than the octahedron and the enthalpic prohibition of pairing two bulky ligands on the same edge of the triangular ring. The emission of luminescent LA is maintained in both homoleptic [Pd3LA6] and heteroleptic [Pd4LA4LB4].
Collapse
Affiliation(s)
- Jacopo Tessarolo
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Haeri Lee
- Department
of Chemistry, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Eri Sakuda
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
- Division
of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Keisuke Umakoshi
- Division
of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
15
|
Pullen S, Löffler S, Platzek A, Holstein JJ, Clever GH. Substrate and product binding inside a stimuli-responsive coordination cage acting as a singlet oxygen photosensitizer. Dalton Trans 2020; 49:9404-9410. [PMID: 32589176 DOI: 10.1039/d0dt01674h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An acridone-based, interpenetrated double cage [3BF4Pd4L8] acts as a photosensitizer for generating singlet oxygen which adds to 1,3-cyclohexadiene in a [2+4] hetero-Diels-Alder reaction to form 2,3-dioxabicyclo[2.2.2]oct-5-ene. Photocatalytic activity was exclusively observed for the assembled cage, whereas the free organic ligand L decomposes upon irradiation. While cage [3BF4Pd4L8] does not accept any organic guests, NMR, MS and single crystal X-ray results reveal that both substrate and product are readily encapsulated in the central pocket of its chloride-activated form [2Cl@Pd4L8]. The system combines multiple functions (photosensitization, allosteric activation and guest uptake) within a structurally complex, mechanically-bound self-assembly built up from a simple and readily accessible ligand.
Collapse
Affiliation(s)
- Sonja Pullen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
16
|
Ronson TK, Wang Y, Baldridge K, Siegel JS, Nitschke JR. An S10-Symmetric 5-Fold Interlocked [2]Catenane. J Am Chem Soc 2020; 142:10267-10272. [PMID: 32453562 PMCID: PMC7291353 DOI: 10.1021/jacs.0c03349] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The reaction of sym-pentakis(4-aminothiophenyl)corannulene with 2-formyl-6-methylpyridine and CuI or 2-formyl-1,10-phenanthroline and MII (M = Co, Zn) yields an S10-symmetric 5-fold interlocked [2]catenane of two interpenetrating [CuI5L2]5+ cages or D5-symmetric [MII5L2]10+ cages, respectively. The new structures were characterized by X-ray crystallography, NMR spectroscopy, and mass spectrometry. Density functional theory computations point to dispersive energies on par with traditional covalent bond energies. Subcomponent exchange reactions favored formation of the [CoII5L2]10+ cage over the [CuI10L4]10+ catenane. The single cage and catenane each cocrystallized with a corannulene guest to form a bowl-in-bowl substructure.
Collapse
Affiliation(s)
- Tanya K Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yujia Wang
- Health Sciences Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Kim Baldridge
- Health Sciences Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jay S Siegel
- Health Sciences Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Yadav S, Kannan P, Qiu G. Cavity-based applications of metallo-supramolecular coordination cages (MSCCs). Org Chem Front 2020. [DOI: 10.1039/d0qo00681e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review describes cavity-based applications of cage-like SCCs such as molecular recognition and separation, stabilization of reactive species by encapsulation, as drug delivery systems and as molecular flasks.
Collapse
Affiliation(s)
- Sarita Yadav
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Palanisamy Kannan
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| |
Collapse
|
18
|
Barrow SJ, Assaf KI, Palma A, Nau WM, Scherman OA. Preferential binding of unsaturated hydrocarbons in aryl-bisimidazolium·cucurbit[8]uril complexes furbishes evidence for small-molecule π-π interactions. Chem Sci 2019; 10:10240-10246. [PMID: 32110310 PMCID: PMC7006508 DOI: 10.1039/c9sc03282g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/07/2019] [Indexed: 01/26/2023] Open
Abstract
Whilst cucurbit[n]urils (CBn) have been utilized in gas encapsulation, only the smaller CBn (n = 5 and 6) have utility given their small cavity size. In this work, we demonstrate that the large cavity of CB8 can be tailored for gaseous and volatile hydrocarbon encapsulation by restricting its internal cavity size with auxiliary aryl-bisimidazolium (Bis, aryl = phenyl, naphthyl, and biphenyl) guests. The binding constants for light hydrocarbons (C ≤ 4) are similar to those measured with CB6, while larger values are obtained with Bis·CB8 for larger guests. A clear propensity for higher affinities of alkenes relative to alkanes is observed, most pronounced with the largest delocalized naphthalene residue in the auxiliary Bis guest, which provides unique evidence for sizable small-molecule π-π interactions.
Collapse
Affiliation(s)
- Steven J Barrow
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Khaleel I Assaf
- Department of Life Sciences and Chemistry , Jacobs University Bremen , Campus Ring 1 , D-28759 Bremen , Germany .
| | - Aniello Palma
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Werner M Nau
- Department of Life Sciences and Chemistry , Jacobs University Bremen , Campus Ring 1 , D-28759 Bremen , Germany .
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
19
|
Zhu R, Ding J, Jin L, Pang H. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Plajer AJ, Percástegui EG, Santella M, Rizzuto FJ, Gan Q, Laursen BW, Nitschke JR. Fluorometric Recognition of Nucleotides within a Water‐Soluble Tetrahedral Capsule. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alex J. Plajer
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Marco Santella
- Department of Chemistry & Nano-Science CenterUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Felix J. Rizzuto
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Quan Gan
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Bo W. Laursen
- Department of Chemistry & Nano-Science CenterUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
21
|
|
22
|
Plajer AJ, Percástegui EG, Santella M, Rizzuto FJ, Gan Q, Laursen BW, Nitschke JR. Fluorometric Recognition of Nucleotides within a Water-Soluble Tetrahedral Capsule. Angew Chem Int Ed Engl 2019; 58:4200-4204. [PMID: 30666756 DOI: 10.1002/anie.201814149] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 12/11/2022]
Abstract
The design of aqueous probes and binders for complex, biologically relevant anions presents a key challenge in supramolecular chemistry. Herein, a tetrahedral assembly with cationic faces and corners is reported that is capable of discriminating between anionic and neutral guests in water. Electrostatic repulsion between subcomponents can be overcome by the addition of an anionic template, or generating a robust covalent framework by incorporating tris(2-aminoethyl)amine (TREN). The resultant TREN-capped, water-soluble, fluorescent cage binds mono- and poly-phosphoric esters, including nucleotides. Its covalent skeleton renders it stable at micromolar concentrations in water, enabling the fluorometric detection of biologically relevant guests in an aqueous environment. Selective supramolecular encapsulants, such as 1, could enable new sensing applications, such as recognition of toxins and drugs, under biological conditions.
Collapse
Affiliation(s)
- Alex J Plajer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Edmundo G Percástegui
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Marco Santella
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Felix J Rizzuto
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Quan Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Bo W Laursen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
23
|
Li L, Craze AR, Mustonen O, Zenno H, Whittaker JJ, Hayami S, Lindoy LF, Marjo CE, Clegg JK, Aldrich-Wright JR, Li F. A mixed-spin spin-crossover thiozolylimine [Fe4L6]8+ cage. Dalton Trans 2019; 48:9935-9938. [DOI: 10.1039/c9dt01947b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mixed-spin spin-crossover thiozolylimine [Fe4L6]8+ tetrahedral cage is reported.
Collapse
Affiliation(s)
- Li Li
- School of Science and Health
- Western Sydney University
- Penrith
- Australia
| | | | - Outi Mustonen
- Mark Wainwright Analytical Centre
- University of New South Wales
- Kensington
- Australia
| | - Hikaru Zenno
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Chuo-ku
- Japan
| | - Jacob J. Whittaker
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane St Lucia
- Australia
| | - Shinya Hayami
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Chuo-ku
- Japan
| | | | - Christopher E. Marjo
- Mark Wainwright Analytical Centre
- University of New South Wales
- Kensington
- Australia
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane St Lucia
- Australia
| | | | - Feng Li
- School of Science and Health
- Western Sydney University
- Penrith
- Australia
| |
Collapse
|
24
|
Wuttke A, Feldt M, Mata RA. All That Binds Is Not Gold—The Relative Weight of Aurophilic Interactions in Complex Formation. J Phys Chem A 2018; 122:6918-6925. [DOI: 10.1021/acs.jpca.8b06546] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Axel Wuttke
- Institut für Physikalische Chemie, Georg-August-Universität, Tammannstraße 6, Göttingen, 37077, Germany
| | - Milica Feldt
- Institut für Physikalische Chemie, Georg-August-Universität, Tammannstraße 6, Göttingen, 37077, Germany
| | - Ricardo A. Mata
- Institut für Physikalische Chemie, Georg-August-Universität, Tammannstraße 6, Göttingen, 37077, Germany
| |
Collapse
|
25
|
Bernhard D, Dietrich F, Fatima M, Pérez C, Gottschalk HC, Wuttke A, Mata RA, Suhm MA, Schnell M, Gerhards M. The phenyl vinyl ether-methanol complex: a model system for quantum chemistry benchmarking. Beilstein J Org Chem 2018; 14:1642-1654. [PMID: 30013690 PMCID: PMC6036964 DOI: 10.3762/bjoc.14.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/02/2018] [Indexed: 11/23/2022] Open
Abstract
The structure of the isolated aggregate of phenyl vinyl ether and methanol is studied by combining a multi-spectroscopic approach and quantum-chemical calculations in order to investigate the delicate interplay of noncovalent interactions. The complementary results of vibrational and rotational spectroscopy applied in molecular beam experiments reveal the preference of a hydrogen bond of the methanol towards the ether oxygen (OH∙∙∙O) over the π-docking motifs via the phenyl and vinyl moieties, with an additional less populated OH∙∙∙P(phenyl)-bound isomer detected only by microwave spectroscopy. The correct prediction of the energetic order of the isomers using quantum-chemical calculations turns out to be challenging and succeeds with a sophisticated local coupled cluster method. The latter also yields a quantification as well as a visualization of London dispersion, which prove to be valuable tools for understanding the role of dispersion on the docking preferences. Beyond the structural analysis of the electronic ground state (S0), the electronically excited (S1) state is analyzed, in which a destabilization of the OH∙∙∙O structure compared to the S0 state is observed experimentally and theoretically.
Collapse
Affiliation(s)
- Dominic Bernhard
- Fachbereich Chemie & Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Fabian Dietrich
- Fachbereich Chemie & Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Mariyam Fatima
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Cristóbal Pérez
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Hannes C Gottschalk
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Axel Wuttke
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Martin A Suhm
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Melanie Schnell
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 1, D-24118 Kiel, Germany
| | - Markus Gerhards
- Fachbereich Chemie & Research Center Optimas, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
26
|
Han WK, Zhang HX, Wang Y, Liu W, Yan X, Li T, Gu ZG. Tetrahedral metal–organic cages with cube-like cavities for selective encapsulation of fullerene guests and their spin-crossover properties. Chem Commun (Camb) 2018; 54:12646-12649. [DOI: 10.1039/c8cc06652c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selective encapsulation of fullerene guests and solid state spin-crossover behaviors were observed in iron(ii) tetrahedral metal–organic cages with cube-like cavities.
Collapse
Affiliation(s)
- Wang-Kang Han
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Hai-Xia Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University
- Su Zhou 215123
- P. R. China
| | - Wei Liu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University
- Su Zhou 215123
- P. R. China
| | - Xiaodong Yan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Tao Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
| | - Zhi-Guo Gu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
- P. R. China
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University
- Wuxi 214122
| |
Collapse
|
27
|
Chakraborty S, Newkome GR. Terpyridine-based metallosupramolecular constructs: tailored monomers to precise 2D-motifs and 3D-metallocages. Chem Soc Rev 2018; 47:3991-4016. [DOI: 10.1039/c8cs00030a] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Comprehensive summary of the recent developments in the growing field of terpyridine-based, discrete metallosupramolecular architectures.
Collapse
Affiliation(s)
| | - George R. Newkome
- Department of Polymer Science
- University of Akron
- Akron
- USA
- Departments of Chemistry
| |
Collapse
|
28
|
Wang H, Xu X, Jiang Y, Yao P, Li B, Zou H, Zhou J, Chen Z. Synthesis, structure and magnetic properties of two mixed-valence icosanuclear nanocages. Dalton Trans 2018; 47:15141-15147. [DOI: 10.1039/c8dt03444c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a new type of mixed-valence icosanuclear nanocages featuring cubic cage cores with sulphate anions over the cage windows.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Xiaoling Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yimin Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Pengfei Yao
- College of Chemistry and Environmental Engineering
- Baise University
- Baise
- P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- P. R. China
| | - Huahong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Jinglin Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zilu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|