1
|
Chen J, Cao X, Liu W, Liu J, Qi L, Wei M, Zou X. Functionalized MXene (Ti 3C 2T X) Loaded with Ag Nanoparticles as a Raman Scattering Substrate for Rapid Furfural Detection in Baijiu. Foods 2024; 13:3064. [PMID: 39410099 PMCID: PMC11475072 DOI: 10.3390/foods13193064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Furfural is an essential compound that contributes to the distinctive flavor of sauce-flavored Baijiu. However, traditional detection methods are hindered by lengthy and complex sample preparation procedures, as well as the need for expensive equipment. Therefore, there is an urgent need for a new approach that allows rapid detection. In this study, we developed a novel surface-enhanced Raman spectroscopy (SERS) substrate by constructing MXene (Ti3C2TX) @Ag nanoparticles (Ag NPs) through an electrostatic attraction method. The MXene (Ti3C2TX) @Ag NPs were successfully fabricated, with adsorbed NaCl-treated Ag NPs uniformly absorbed on the surface of MXene (Ti3C2TX), creating high-density distributed SERS "hot spots". The prepared substrate demonstrated excellent sensitivity, uniformity, repeatability, and long-term stability, with a low detectable concentration of 10-9 M for R6G (Rhodamine 6G) and an enhancement factor of up to 7.08 × 105. When applied for the in situ SERS detection of furfural in Baijiu, the detection limit was as low as 0.5 mg/L. Overall, the proposed method offers rapid, low-cost, and sensitive quantitative analysis, which is significant not only for detecting furfural in Baijiu but also for identifying hazardous substances and distinguishing between authentic and counterfeit Baijiu products.
Collapse
Affiliation(s)
- Jian Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaoyu Cao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Wei Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Liang Qi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Minmin Wei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xuan Zou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
2
|
Huang J, Zhou T, Zhao W, Cui S, Guo R, Li D, Reddy Kadasala N, Han D, Jiang Y, Liu Y, Liu H. Multifunctional magnetic Fe 3O 4/Cu 2O-Ag nanocomposites with high sensitivity for SERS detection and efficient visible light-driven photocatalytic degradation of polycyclic aromatic hydrocarbons (PAHs). J Colloid Interface Sci 2022; 628:315-326. [PMID: 35998457 DOI: 10.1016/j.jcis.2022.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic, teratogenic and mutagenic properties are persistent organic pollutants in the environment. Herein, the novel multifunctional Fe3O4/Cu2O-Ag nanocomposites (NCs) have been established for ultra-sensitive surface-enhanced Raman scattering (SERS) detection and visible light-driven photocatalytic degradation of PAHs. Fe3O4/Cu2O-Ag NCs with different amounts of Ag nanocrystals were synthesized, and the effect of Ag contents on SERS performance was studied by finite-difference time-domain (FDTD) algorithm. The synergistic interplay of electromagnetic and chemical enhancement was responsible for excellent SERS sensitivity of Fe3O4/Cu2O-Ag NCs. The limit of detection (LOD) of optimal SERS substrates (FCA-2 NCs) for Nap, BaP, Pyr and Ant was as low as 10-9, 10-9, 10-9 and 10-10 M, respectively. The SERS detection of PAHs in actual soil environment was also studied. Moreover, a simple SERS method was used to monitor the photocatalytic process of PAHs. The recovery and reuse of Fe3O4/Cu2O-Ag NCs were achieved through magnetic field, and the outstanding SERS and photocatalytic performance were still maintained even after eight cycles. This magnetic multifunctional NCs provide a unique idea for the integration of ultra-sensitive SERS detection and efficient photocatalytic degradation of PAHs, and thus will have more hopeful prospects in the field of environmental protection.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Dan Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | | | - Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310012, PR China.
| | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
3
|
Wang C, Guo X, Fu Q. TiO2 Thickness-Dependent Charge Transfer in an Ordered Ag/TiO2/Ni Nanopillar Arrays Based on Surface-Enhanced Raman Scattering. MATERIALS 2022; 15:ma15103716. [PMID: 35629741 PMCID: PMC9146224 DOI: 10.3390/ma15103716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023]
Abstract
In this study, an ordered Ag/TiO2/Ni nanopillar arrays hybrid substrate was designed, and the charge transfer (CT) process at the metal–semiconductor and substrate–molecule interface was investigated based on the surface-enhanced Raman scattering (SERS) spectra of 4-Aminothiophenol (PATP) absorbed on the composite system. The surface plasmon resonance (SPR) absorption of Ag changes due to the regulation of TiO2 thickness, which leads to different degrees of CT enhancement in the system. The CT degree of SERS spectra obtained at different excitation wavelengths was calculated to study the contribution of CT enhancement to SERS, and a TiO2thickness-dependent CT enhancement mechanism was proposed. Furthermore, Ag/TiO2/Ni nanopillar arrays possessed favorable detection ability and uniformity, which has potential as a SERS-active substrate.
Collapse
Affiliation(s)
| | | | - Qun Fu
- Correspondence: (C.W.); (Q.F.)
| |
Collapse
|
4
|
Yang B, Wang Y, Guo S, Jin S, Park E, Chen L, Jung YM. Charge transfer study for semiconductor and semiconductor/ metal composites based on surface‐enhanced Raman scattering. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Yang
- School of Pharmaceutical Sciences Changchun University of Chinese Medicine Changchun China
| | - Ye Wang
- School of Pharmaceutical Sciences Changchun University of Chinese Medicine Changchun China
| | - Shuang Guo
- Department of Chemistry Institute for Molecular Science and Fusion Technology Chunchon South Korea
| | - Sila Jin
- Department of Chemistry Institute for Molecular Science and Fusion Technology Chunchon South Korea
| | - Eungyeong Park
- Department of Chemistry Institute for Molecular Science and Fusion Technology Chunchon South Korea
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education Changchun China
| | - Young Mee Jung
- Department of Chemistry Institute for Molecular Science and Fusion Technology Chunchon South Korea
| |
Collapse
|
5
|
Polydopamine-Mediated Ag and ZnO as an Active and Recyclable SERS Substrate for Rhodamine B with Significantly Improved Enhancement Factor and Efficient Photocatalytic Degradation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We demonstrate the development of an active multicomponent Ag/PDA/ZnO@GMF surface-enhanced Raman scattering (SERS) substrate via introducing bio-inspired polydopamine (PDA) in between a noble metal (AgNPs) and ZnO nanorods. The insertion of PDA enabled efficient charge redistribution between metal and semiconductor through their aromatic cores. The substrate exhibited a high enhancement factor (EF) of 1010 for the organic pollutant dye Rhodamine B (RhB). Subsequent exposure of a RhB-loaded substrate to an external UV light source developed an efficient pathway for RhB degradation and replenished the substrate for multiple usage cycles with remarkable photostability. Thus, enhanced performance of the substrate in terms of light-harvesting capability and high charge-separation efficiency was observed. In addition, the much larger surface area of the branched ZnO nanostructures served as a template for PDA assisted synthesis and controlled deposition of AgNPs, which further improved the SERS effect. Our work seeks to understand the contributions of the noble metal and semiconductor components and the synergistic effects of combining them with a facile charge transport medium to enable the fabrication of highly efficient SERS substrates for use in industrial and environmental applications.
Collapse
|
6
|
Large Area Few-Layer Hexagonal Boron Nitride as a Raman Enhancement Material. NANOMATERIALS 2021; 11:nano11030622. [PMID: 33801504 PMCID: PMC7998565 DOI: 10.3390/nano11030622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Increasingly, two-dimensional (2D) materials are being investigated for their potential use as surface-enhanced Raman spectroscopy (SERS) active substrates. Hexagonal Boron Nitride (hBN), a layered 2D material analogous to graphene, is mostly used as a passivation layer/dielectric substrate for nanoelectronics application. We have investigated the SERS activity of few-layer hBN film synthesized on copper foil using atmospheric pressure chemical vapor deposition. We have drop casted the probe molecules onto the hBN substrate and measured the enhancement effect due to the substrate using a 532 nm excitation laser. We observed an enhancement of ≈103 for malachite green and ≈104 for methylene blue and rhodamine 6G dyes, respectively. The observed enhancement factors are consistent with the theoretically calculated interaction energies of MB > R6G > MG with a single layer of hBN. We also observed that the enhancement is independent of the film thickness and surface morphology. We demonstrate that the hBN films are highly stable, and even for older hBN films prepared 7 months earlier, we were able to achieve similar enhancements when compared to freshly prepared films. Our detailed results and analyses demonstrate the versatility and durability of hBN films for SERS applications.
Collapse
|
7
|
Shin Y, Chang J, Lee Y, Kang T. Direct Optical and Ultrasensitive Probing of Nonequilibrium Dynamics of Carbon Monoxide in an Aqueous Phase during Biochemical Reactions. ACS Sens 2020; 5:2221-2229. [PMID: 32608234 DOI: 10.1021/acssensors.0c00858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of trace carbon monoxide (CO) dissolved in an aqueous phase is key for monitoring and optimizing biological and chemical gas conversions. So far, irrespective of the nonequilibrium nature of these conversion processes, because of low water solubility of CO, such detection has been performed indirectly, under the assumption of thermodynamic equilibrium, by the combination of chromatographic measurement of relatively abundant CO in a gas phase and Henry's law. Direct and sensitive detection of dissolved CO under nonequilibrium has not been explored yet. Here, we report the direct, ultrasensitive, and real-time monitoring of nonequilibrium dynamics of CO in an aqueous phase during biochemical conversions by devising miniaturized fluidic reactors with built-in CO-specific optical probes via surface-enhanced Raman spectroscopy. As the sensitive and selective probes, we fabricate ligand-free Au@Pd core-shell nanoparticle monolayers to maximize the Raman signal of single CO in the aqueous phase. We confirm that under equilibrium conditions, aqueous and gaseous CO concentrations estimated by our method are in good agreement with those measured directly and indirectly by gas chromatography (GC). We show that our probe can detect the aqueous CO concentrations as low as ca. 0.01% with high signal reproducibility, which is 200-fold more sensitive than that achieved by infrared spectroscopy. Finally, we successfully observe the nonequilibrium dynamics of the aqueous CO during biochemical reactions, which cannot be sensed by other detection methods including even indirect measurement by GC. We anticipate that our method can be widely applied not only for monitoring of biochemical gas reactions on multiple scales from a large reactor to a single-molecule level but also for molecular imaging of biological systems.
Collapse
Affiliation(s)
- Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Jeehan Chang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Youngjae Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
8
|
Lee DJ, Kim DY. UV Irradiation-Induced SERS Enhancement in Randomly Distributed Au Nanostructures. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3842. [PMID: 32660155 PMCID: PMC7411748 DOI: 10.3390/s20143842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Currently used platforms for surface-enhanced Raman scattering (SERS) sensors generally employ metallic nanostructures for enrichment of the plasmonic hotspots in order to provide higher Raman signals, but this procedure is still considered challenging for analyte-surface affinity. This study reports a UV irradiation-induced SERS enhancement that amplifies the interactions between the analytes and metallic surfaces. The UV light can play critical roles in the surface cleaning to improve the SERS signal by removing the impurities from the surfaces and the formation of the negatively charged adsorbed oxygen species on the Au surfaces to enhance the analyte-surface affinity. To evaluate this scenario, we prepared randomly distributed Au nanostructures via thermal annealing with a sputtered Au thin film. The UV light of central wavelength 254 nm was then irradiated on the Au nanostructures for 60 min. The SERS efficiency of the Au nanostructures was subsequently evaluated using rhodamine 6G molecules as the representative Raman probe material. The Raman signal of the Au nanostructures after UV treatment was enhanced by up to approximately 68.7% compared to that of those that did not receive the UV treatment. We expect that the proposed method has the potential to be applied to SERS enhancement with various plasmonic platforms.
Collapse
Affiliation(s)
- Dong-Jin Lee
- Inha Research Institute for Aerospace Medicine, Inha University, Incheon 22212, Korea;
| | - Dae Yu Kim
- Inha Research Institute for Aerospace Medicine, Inha University, Incheon 22212, Korea;
- Department of Electrical Engineering, College of Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
9
|
Gushiken N, Paganoto GT, Temperini MLA, Teixeira FS, Salvadori MC. Substrate for Surface-Enhanced Raman Spectroscopy Formed by Gold Nanoparticles Buried in Poly(methyl methacrylate). ACS OMEGA 2020; 5:10366-10373. [PMID: 32426593 PMCID: PMC7226853 DOI: 10.1021/acsomega.0c00133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
In this work, we present some properties and use of a nanocomposite formed by gold nanoparticles (NPs) into poly(methyl methacrylate) (PMMA) and its application as substrates for surface-enhanced Raman spectroscopy (SERS). The nanocomposite was formed using low-energy (49 eV) ion implantation of gold in PMMA using a cathodic arc plasma gun. The gold NPs are formed spontaneously from the implanted ions and they remain isolated from each other by the polymer medium surrounding them, ensuring a spacing between the NPs of less than 10 nm (hot spot places). The NPs form below the surface, protected from the environment, guaranteeing the stability of the composite layer. Moreover, here, we present an interesting approach to concentrate analyte molecules closer to the metal surface using the swelling effect in PMMA. Using absorption of the analyte, the molecules stay in the gaps between NPs, which is a good solution for one of the biggest challenges in SERS, that is, to guide molecules to the hot spot places.
Collapse
Affiliation(s)
- Natalia
K. Gushiken
- Polytechnic
School, University of São Paulo, Avenida Professor Luciano Gualberto,
Travessa R-158, CEP 05508-900 São Paulo, São Paulo, Brazil
| | - Giordano T. Paganoto
- Institute
of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes,
748, CEP 05508-000 São Paulo, São Paulo, Brazil
| | - Marcia L. A. Temperini
- Institute
of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes,
748, CEP 05508-000 São Paulo, São Paulo, Brazil
| | - Fernanda S. Teixeira
- Institute
of Physics, University of São Paulo, C.P. 66318, CEP 05315-970 São Paulo, São Paulo, Brazil
| | - Maria Cecilia Salvadori
- Polytechnic
School, University of São Paulo, Avenida Professor Luciano Gualberto,
Travessa R-158, CEP 05508-900 São Paulo, São Paulo, Brazil
- Institute
of Physics, University of São Paulo, C.P. 66318, CEP 05315-970 São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Chen HC, Chen CH, Hsu CS, Chen TL, Liao MY, Wang CC, Tsai CF, Chen HM. In Situ Creation of Surface-Enhanced Raman Scattering Active Au-AuO x Nanostructures through Electrochemical Process for Pigment Detection. ACS OMEGA 2018; 3:16576-16584. [PMID: 31458290 PMCID: PMC6643664 DOI: 10.1021/acsomega.8b02677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/19/2018] [Indexed: 05/04/2023]
Abstract
Roughing the metallic surface via oxidation-reduction cycles (ORC) to integrate the surface plasmon resonance and surface-enhanced Raman scattering (SERS) is predominant in developing sensor systems because of the facile preparation and uniform distribution of nanostructures. Herein, we proposed a distinctive ORC process: the forward potential passed through the oxidation of Au and reached the oxygen evolution reaction, and once the potential briefly remained at the vertex, the various reverse rates were employed to control the reduction state. The created hybrid Au-AuO x possessed electromagnetic and chemical enhancements concurrently, wherein the rough surface provided the strong local electromagnetic fields and significant interaction between AuO x and molecule to improve the charge transfer. The synergistic effects significantly amplified the intensity of Raman signal with an enhancement factor of 5.5 × 106 under the optimal conditions. Furthermore, the prepared SERS substrate can simultaneously identify and quantify the mixed edible pigments, Brilliant Blue FCF and Indigo Carmine, individually. This result suggested that the development of SERS sensor based on the proposed SERS-activated methodology is feasible and reliable.
Collapse
Affiliation(s)
- Hsiao-Chien Chen
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- Center of Applied Nanomedicine, National
Cheng Kung University, 35, Xiaodong Road, North District, Tainan 704, Taiwan
| | - Ching-Hsiang Chen
- Sustainable
Energy Development Center, National Taiwan
University of Science and Technology, 43, Section 4, Keelung Road, Taipei 106, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Tai-Lung Chen
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National
Pingtung University, 1, Linsen Road, Pingtung 900, Taiwan
- E-mail: (M.-Y.L.)
| | - Chia-Ching Wang
- Sustainable
Energy Development Center, National Taiwan
University of Science and Technology, 43, Section 4, Keelung Road, Taipei 106, Taiwan
| | - Chia-Fen Tsai
- Taiwan Food
and Drug Administration, 161-2, Kunyang Street, Nangang District, Taipei 115, Taiwan
- E-mail: (C.-F.T.)
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- E-mail: (H.M.C.)
| |
Collapse
|