1
|
Tian X, Risgaard NA, Löffler PMG, Vogel S. DNA-Programmed Lipid Nanoreactors for Synthesis of Carbohydrate Mimetics by Fusion of Aqueous Sub-attoliter Compartments. J Am Chem Soc 2023; 145:19633-19641. [PMID: 37619973 PMCID: PMC10510321 DOI: 10.1021/jacs.3c04093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 08/26/2023]
Abstract
Lipid nanoreactors are biomimetic reaction vessels (nanoreactors) that can host aqueous or membrane-associated chemical and enzymatic reactions. Nanoreactors provide ultra-miniaturization from atto- to zeptoliter volumes per reaction vessel with the major challenge of encoding and spatio-temporal control over reactions at the individual nanoreactor or population level, thereby controlling volumes several orders of magnitude below advanced microfluidic devices. We present DNA-programmed lipid nanoreactors (PLNs) functionalized with lipidated oligonucleotides (LiNAs) that allow programming and encoding of nanoreactor interactions by controlled membrane fusion, exemplified for a set of carbohydrate mimetics with mono- to hexasaccharide azide building blocks connected by click-chemistry. Programmed reactions are initiated by fusion of distinct populations of nanoreactors with individually encapsulated building blocks. A focused library of triazole-linked carbohydrate-Cy5 conjugates formed by strain-promoted azide-alkyne cycloadditions demonstrated LiNA-programmed chemistry, including two-step reaction schemes. The PLN method is developed toward a robust platform for synthesis in confined space employing fully programmable nanoreactors, applicable to multistep synthesis for the generation of combinatorial libraries with subsequent analysis of the molecules formed, based on the addressability of the lipid nanoreactors.
Collapse
Affiliation(s)
- Xinwei Tian
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nikolaj Alexander Risgaard
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Philipp M. G. Löffler
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
2
|
Gubu A, Zhang X, Lu A, Zhang B, Ma Y, Zhang G. Nucleic acid amphiphiles: Synthesis, properties, and applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:144-163. [PMID: 37456777 PMCID: PMC10345231 DOI: 10.1016/j.omtn.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nucleic acid amphiphiles, referring to nucleic acids modified with large hydrophobic groups, have been widely used in programmable bioengineering. Since nucleic acids are intrinsically hydrophilic, the hydrophobic groups endow nucleic acid amphiphiles with unique properties, such as self-assembling, interactions with artificial or biological membranes, and transmembrane transport. Importantly, the hybridization or target binding capability of oligonucleotide itself supplies nucleic acid amphiphiles with excellent programmability. As a result, this type of molecule has attracted considerable attention in academic studies and has enormous potential for further applications. For a comprehensive understanding of nucleic acid amphiphiles, we review the reported research on nucleic acid amphiphiles from their molecular design to final applications, in which we summarize the synthetic strategies for nucleic acid amphiphiles and draw much attention to their unique properties in different contexts. Finally, a summary of the applications of nucleic acid amphiphiles in drug development, bioengineering, and bioanalysis are critically discussed.
Collapse
Affiliation(s)
- Amu Gubu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Aptacure Therapeutics Limited, Kowloon, Hong Kong SAR, China
| | - Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| |
Collapse
|
3
|
Li Z, Wang J, O’Hagan MP, Huang F, Xia F, Willner I. Dynamic Fusion of Nucleic Acid Functionalized Nano-/Micro-Cell-Like Containments: From Basic Concepts to Applications. ACS NANO 2023; 17:15308-15327. [PMID: 37549398 PMCID: PMC10448756 DOI: 10.1021/acsnano.3c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Membrane fusion processes play key roles in biological transformations, such as endocytosis/exocytosis, signal transduction, neurotransmission, or viral infections, and substantial research efforts have been directed to emulate these functions by artificial means. The recognition and dynamic reconfiguration properties of nucleic acids provide a versatile means to induce membrane fusion. Here we address recent advances in the functionalization of liposomes or membranes with structurally engineered lipidated nucleic acids guiding the fusion of cell-like containments, and the biophysical and chemical parameters controlling the fusion of the liposomes will be discussed. Intermembrane bridging by duplex or triplex nucleic acids and light-induced activation of membrane-associated nucleic acid constituents provide the means for spatiotemporal fusion of liposomes or nucleic acid modified liposome fusion with native cell membranes. The membrane fusion processes lead to exchange of loads in the fused containments and are a means to integrate functional assemblies. This is exemplified with the operation of biocatalytic cascades and dynamic DNA polymerization/nicking or transcription machineries in fused protocell systems. Membrane fusion processes of protocell assemblies are found to have important drug-delivery, therapeutic, sensing, and biocatalytic applications. The future challenges and perspectives of DNA-guided fused containments and membranes are addressed.
Collapse
Affiliation(s)
- Zhenzhen Li
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael P. O’Hagan
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Itamar Willner
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Jakobsen U, Rosholm KR, Vogel S. Design, synthesis and membrane anchoring strength of lipidated polyaza crown ether DNA-conjugates (LiNAs) studied by DNA-controlled assembly of liposomes. Org Biomol Chem 2022; 20:9460-9468. [PMID: 36408737 DOI: 10.1039/d2ob01517j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hybridization-controlled assays for assembly or fusion of liposomes are versatile for detection of both DNA and RNA targets and useful for the evaluation of membrane anchoring strength of LiNAs with applications in the context of liposome assembly, liposome fusion and lipid nanoparticle formulation of therapeutic LiNAs. Herein, we report the synthesis of lipid phosphoramidite building blocks for automated LiNA synthesis and a study on design requirements for efficient lipid membrane anchoring and liposome assembly dependent on lipid membrane anchor length (C10-C20) and structure, the effect of internal linkers and locked nucleic acids (LNA) building blocks on the lipid membrane anchoring strength of LiNAs.
Collapse
Affiliation(s)
- Ulla Jakobsen
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense M, Denmark.
| | - Kadla Røskva Rosholm
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense M, Denmark.
| | - Stefan Vogel
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
5
|
Guo M, Nei R, Wang J, Ai J, Dong Y, Zhao H, Gao Q. Sensitive detection of folate receptor-positive circulating tumor cells based on intracellular uptake of the PbS nanoparticle cluster-loaded phospholipid micelles decorated with folic acid in combination with E-DNA sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Takamori S, Cicuta P, Takeuchi S, Di Michele L. DNA-assisted selective electrofusion (DASE) of Escherichia coli and giant lipid vesicles. NANOSCALE 2022; 14:14255-14267. [PMID: 36129323 PMCID: PMC9536516 DOI: 10.1039/d2nr03105a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Synthetic biology and cellular engineering require chemical and physical alterations, which are typically achieved by fusing target cells with each other or with payload-carrying vectors. On one hand, electrofusion can efficiently induce the merging of biological cells and/or synthetic analogues via the application of intense DC pulses, but it lacks selectivity and often leads to uncontrolled fusion. On the other hand, synthetic DNA-based constructs, inspired by natural fusogenic proteins, have been shown to induce a selective fusion between membranes, albeit with low efficiency. Here we introduce DNA-assisted selective electrofusion (DASE) which relies on membrane-anchored DNA constructs to bring together the objects one seeks to merge, and applying an electric impulse to trigger their fusion. The DASE process combines the efficiency of standard electrofusion and the selectivity of fusogenic nanostructures, as we demonstrate by inducing and characterizing the fusion of spheroplasts derived from Escherichia coli bacteria with cargo-carrying giant lipid vesicles.
Collapse
Affiliation(s)
- Sho Takamori
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Pietro Cicuta
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
- International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
| | - Lorenzo Di Michele
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- Department of Chemistry, Imperial College London, London W12 0BZ, UK.
- fabriCELL, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
7
|
Rahman MM, Abosheasha MA, Ito Y, Ueda M. DNA-induced fusion between lipid domains of peptide-lipid hybrid vesicles. Chem Commun (Camb) 2022; 58:11799-11802. [PMID: 36172842 DOI: 10.1039/d2cc03997d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide-lipid hybrid vesicles were prepared with complementary DNA strands in their lipid domains. Hybridization of the complementary DNA strands induced the controlled fusion of the vesicles during repeated heating and cooling cycles. Vesicle fusion was indicated by a decrease in the efficiency of Förster resonance energy transfer between lipid-localized probes (from 72 to 42%) and transmission electron microscopy analysis. We suggest that this approach is a general strategy for the creation of polymersomes with membrane-fusion functionality.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan. .,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Ashulia, Dhaka 1341, Bangladesh.,Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Mohammed A Abosheasha
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan. .,Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yoshihiro Ito
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan. .,Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.,RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan. .,RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Paez-Perez M, Russell IA, Cicuta P, Di Michele L. Modulating membrane fusion through the design of fusogenic DNA circuits and bilayer composition. SOFT MATTER 2022; 18:7035-7044. [PMID: 36000473 PMCID: PMC9516350 DOI: 10.1039/d2sm00863g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Membrane fusion is a ubiquitous phenomenon linked to many biological processes, and represents a crucial step in liposome-based drug delivery strategies. The ability to control, ever more precisely, membrane fusion pathways would thus be highly valuable for next generation nano-medical solutions and, more generally, the design of advanced biomimetic systems such as synthetic cells. In this article, we present fusogenic nanostructures constructed from synthetic DNA which, different from previous solutions, unlock routes for modulating the rate of fusion and making it conditional to the presence of soluble DNA molecules, thus demonstrating how membrane fusion can be controlled through simple DNA-based molecular circuits. We then systematically explore the relationship between lipid-membrane composition, its biophysical properties, and measured fusion efficiency, linking our observations to the stability of transition states in the fusion pathway. Finally, we observe that specific lipid compositions lead to the emergence of complex bilayer architectures in the fusion products, such as nested morphologies, which are accompanied by alterations in biophysical behaviour. Our findings provide multiple, orthogonal strategies to program lipid-membrane fusion, which leverage the design of either the fusogenic DNA constructs or the physico/chemical properties of the membranes, and could thus be valuable in applications where some design parameters are constrained by other factors such as material cost and biocompatibility, as it is often the case in biotechnological applications.
Collapse
Affiliation(s)
- Miguel Paez-Perez
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, Wood Lane, London, W12 0BZ, UK.
- fabriCELL, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - I Alasdair Russell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.
| | - Lorenzo Di Michele
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, Wood Lane, London, W12 0BZ, UK.
- fabriCELL, Imperial College London, Wood Lane, London, W12 0BZ, UK
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.
| |
Collapse
|
9
|
Bakowski K, Vogel S. Evolution of complexity in non-viral oligonucleotide delivery systems: from gymnotic delivery through bioconjugates to biomimetic nanoparticles. RNA Biol 2022; 19:1256-1275. [PMID: 36411594 PMCID: PMC9683052 DOI: 10.1080/15476286.2022.2147278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
From the early days of research on RNA biology and biochemistry, there was an interest to utilize this knowledge and RNA itself for therapeutic applications. Today, we have a series of oligonucleotide therapeutics on the market and many more in clinical trials. These drugs - exploit different chemistries of oligonucleotides, such as modified DNAs and RNAs, peptide nucleic acids (PNAs) or phosphorodiamidate morpholino oligomers (PMOs), and different mechanisms of action, such as RNA interference (RNAi), targeted RNA degradation, splicing modulation, gene expression and modification. Despite major successes e.g. mRNA vaccines developed against SARS-CoV-2 to control COVID-19 pandemic, development of therapies for other diseases is still limited by inefficient delivery of oligonucleotides to specific tissues and organs and often prohibitive costs for the final drug. This is even more critical when targeting multifactorial disorders and patient-specific biological variations. In this review, we will present the evolution of complexity of oligonucleotide delivery methods with focus on increasing complexity of formulations from gymnotic delivery to bioconjugates and to lipid nanoparticles in respect to developments that will enable application of therapeutic oligonucleotides as drugs in personalized therapies.
Collapse
Affiliation(s)
- Kamil Bakowski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark,CONTACT Stefan Vogel Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230Odense, Denmark
| |
Collapse
|
10
|
Daudey GA, Shen M, Singhal A, van der Est P, Sevink GJA, Boyle AL, Kros A. Liposome fusion with orthogonal coiled coil peptides as fusogens: the efficacy of roleplaying peptides. Chem Sci 2021; 12:13782-13792. [PMID: 34760163 PMCID: PMC8549789 DOI: 10.1039/d0sc06635d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Biological membrane fusion is a highly specific and coordinated process as a multitude of vesicular fusion events proceed simultaneously in a complex environment with minimal off-target delivery. In this study, we develop a liposomal fusion model system with specific recognition using lipidated derivatives of a set of four de novo designed heterodimeric coiled coil (CC) peptide pairs. Content mixing was only obtained between liposomes functionalized with complementary peptides, demonstrating both fusogenic activity of CC peptides and the specificity of this model system. The diverse peptide fusogens revealed important relationships between the fusogenic efficacy and the peptide characteristics. The fusion efficiency increased from 20% to 70% as affinity between complementary peptides decreased, (from KF ≈ 108 to 104 M−1), and fusion efficiency also increased due to more pronounced asymmetric role-playing of membrane interacting ‘K’ peptides and homodimer-forming ‘E’ peptides. Furthermore, a new and highly fusogenic CC pair (E3/P1K) was discovered, providing an orthogonal peptide triad with the fusogenic CC pairs P2E/P2K and P3E/P3K. This E3/P1k pair was revealed, via molecular dynamics simulations, to have a shifted heptad repeat that can accommodate mismatched asparagine residues. These results will have broad implications not only for the fundamental understanding of CC design and how asparagine residues can be accommodated within the hydrophobic core, but also for drug delivery systems by revealing the necessary interplay of efficient peptide fusogens and enabling the targeted delivery of different carrier vesicles at various peptide-functionalized locations. We developed a liposomal fusion model system with specific recognition using a set of heterodimeric coiled coil peptide pairs. This study unravels important structure–fusogenic efficacy relationships of peptide fusogens.![]()
Collapse
Affiliation(s)
- Geert A Daudey
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Mengjie Shen
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Ankush Singhal
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Patrick van der Est
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - G J Agur Sevink
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
11
|
He Q, Liu Y, Li K, Wu Y, Wang T, Tan Y, Jiang T, Liu X, Liu Z. Deoxyribonucleic acid anchored on cell membranes for biomedical application. Biomater Sci 2021; 9:6691-6717. [PMID: 34494042 DOI: 10.1039/d1bm01057c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineering cellular membranes with functional molecules provides an attractive strategy to manipulate cellular behaviors and functionalities. Currently, synthetic deoxyribonucleic acid (DNA) has emerged as a promising molecular tool to engineer cellular membranes for biomedical applications due to its molecular recognition and programmable properties. In this review, we summarized the recent advances in anchoring DNA on the cellular membranes and their applications. The strategies for anchoring DNA on cell membranes were summarized. Then their applications, such as immune response activation, receptor oligomerization regulation, membrane structure mimicking, cell-surface biosensing, and construction of cell clusters, were listed. The DNA-enabled intelligent systems which were able to sense stimuli such as DNA strands, light, and metal ions were highlighted. Finally, insights regarding the remaining challenges and possible future directions were provided.
Collapse
Affiliation(s)
- Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China. .,Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
12
|
Hubrich BE, Menzel PM, Kugler B, Diederichsen U. Synthesis of PNA-Peptide Conjugates as Functional SNARE Protein Mimetics. Methods Mol Biol 2021; 2105:61-74. [PMID: 32088864 DOI: 10.1007/978-1-0716-0243-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PNA-peptide conjugates are versatile tools in chemical biology, which are employed in a variety of applications. Here, we present the synthesis of PNA-peptide conjugates that serve as SNARE protein-mimicking biooligomers. They resemble the structure of native SNARE proteins but exhibit a much simpler architecture. Incorporated into liposomes, they induce lipid mixing, so that they can be used to study the SNARE-mediated membrane fusion in a simplified setting in vitro. They consist of artificial SNARE recognition units made out of PNA oligomers, which are attached to the native linker and transmembrane domains of two neuronal SNAREs. The PNA-peptide conjugates are synthesized via solid-phase peptide synthesis in a continuous fashion starting with the peptide part, followed by assembly of the PNA recognition unit. On top, we describe a strategy to synthesize PNA-peptide conjugates in a fully automated fashion by using a peptide synthesizer.
Collapse
Affiliation(s)
- Barbara E Hubrich
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Patrick M Menzel
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Benedikt Kugler
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Löffler PMG, Rabe A, Vogel S. Lipid-Modified Peptide Nucleic Acids: Synthesis and Application to Programmable Liposome Fusion. Methods Mol Biol 2021; 2105:75-96. [PMID: 32088865 DOI: 10.1007/978-1-0716-0243-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Peptide nucleic acids (PNAs) can be modified with aliphatic lipid chains and designed to be water soluble and able to spontaneously insert into phospholipid bilayers. Liposomes with 1.5% negatively charged POPG can be driven to fuse and mix their inner content volumes via functionalization with such lipidated peptide nucleic acids (LiPNAs). During fusion, only low amounts of leakage occur (<5%). We describe here the synthesis and purification of such LiPNAs using an automated peptide synthesizer and the preparation of LiPNA functionalized liposomes. Further, we describe the measurement of LiPNA-induced fusion using a fluorescence-based assay for the content mixing between a liposome population with an encapsulated self-quenching fluorescent dye (SRB) and a buffer-filled liposome population.
Collapse
Affiliation(s)
- Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Alexander Rabe
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
14
|
Li X, Feng K, Li L, Yang L, Pan X, Yazd HS, Cui C, Li J, Moroz L, Sun Y, Wang B, Li X, Huang T, Tan W. Lipid-oligonucleotide conjugates for bioapplications. Natl Sci Rev 2020; 7:1933-1953. [PMID: 34691533 PMCID: PMC8290939 DOI: 10.1093/nsr/nwaa161] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/28/2019] [Accepted: 07/08/2020] [Indexed: 11/12/2022] Open
Abstract
Lipid-oligonucleotide conjugates (LONs) are powerful molecular-engineering materials for various applications ranging from biosensors to biomedicine. Their unique amphiphilic structures enable the self-assembly and the conveyance of information with high fidelity. In particular, LONs present remarkable potential in measuring cellular mechanical forces and monitoring cell behaviors. LONs are also essential sensing tools for intracellular imaging and have been employed in developing cell-surface-anchored DNA nanostructures for biomimetic-engineering studies. When incorporating therapeutic oligonucleotides or small-molecule drugs, LONs hold promise for targeted therapy. Moreover, LONs mediate the controllable assembly and fusion of vesicles based on DNA-strand displacements, contributing to nanoreactor construction and macromolecule delivery. In this review, we will summarize the general synthesis strategies of LONs, provide some characterization analysis and emphasize recent advances in bioanalytical and biomedical applications. We will also consider the relevant challenges and suggest future directions for building better functional LONs in nanotechnology and materials-science applications.
Collapse
Affiliation(s)
- Xiaowei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Kejun Feng
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Long Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Lu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiaoshu Pan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Hoda Safari Yazd
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Leonid Moroz
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Yujia Sun
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Bang Wang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiang Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Tong Huang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
15
|
Controlled Peptide-Mediated Vesicle Fusion Assessed by Simultaneous Dual-Colour Time-Lapsed Fluorescence Microscopy. Sci Rep 2020; 10:3087. [PMID: 32080270 PMCID: PMC7033240 DOI: 10.1038/s41598-020-59926-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/31/2020] [Indexed: 12/03/2022] Open
Abstract
We have employed a model system, inspired by SNARE proteins, to facilitate membrane fusion between Giant Unilamellar Vesicles (GUVs) and Large Unilamellar Vesicles (LUVs) under physiological conditions. In this system, two synthetic lipopeptide constructs comprising the coiled-coil heterodimer-forming peptides K4, (KIAALKE)4, or E4, (EIAALEK)4, a PEG spacer of variable length, and a cholesterol moiety to anchor the peptides into the liposome membrane replace the natural SNARE proteins. GUVs are functionalized with one of the lipopeptide constructs and the fusion process is triggered by adding LUVs bearing the complementary lipopeptide. Dual-colour time lapse fluorescence microscopy was used to visualize lipid- and content-mixing. Using conventional confocal microscopy, lipid mixing was observed on the lipid bilayer of individual GUVs. In addition to lipid-mixing, content-mixing assays showed a low efficiency due to clustering of K4-functionalized LUVs on the GUVs target membranes. We showed that, through the use of the non-ionic surfactant Tween 20, content-mixing between GUVs and LUVs could be improved, meaning this system has the potential to be employed for drug delivery in biological systems.
Collapse
|
16
|
Löffler PMG, Ries O, Vogel S. DNA-Mediated Liposome Fusion Observed by Fluorescence Spectrometry. Methods Mol Biol 2019; 2063:101-118. [PMID: 31667766 DOI: 10.1007/978-1-0716-0138-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
DNA-programmed and controlled fusion of lipid membranes have recently been optimized to reliably mix the contents between two populations of liposomes, each functionalized with complementary lipidated DNA (LiNA) oligomer. In this chapter we describe a procedure for DNA-controlled fusion of liposomes mediated by LiNAs that are designed to force bilayers into close proximity. Using a self-quenching fluorescent dye (Sulforhodamine B) to monitor both the mixing of the internal volumes and leakage of the dye into the outer volume we measure the efficiency of content mixing in the bulk population, allowing for direct comparison between different LiNA designs. By generating samples for calibration corresponding to different amounts of content mixing, the average number of fusion events per labeled liposome can be estimated.
Collapse
Affiliation(s)
- Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Oliver Ries
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
17
|
Löffler PMG, Hansen AH, Ries O, Jakobsen U, Rabe A, Sørensen KT, Glud K, Vogel S. Lipidated Polyaza Crown Ethers as Membrane Anchors for DNA-Controlled Content Mixing between Liposomes. Sci Rep 2019; 9:13856. [PMID: 31554826 PMCID: PMC6761097 DOI: 10.1038/s41598-019-49862-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/23/2019] [Indexed: 01/21/2023] Open
Abstract
The ability to manipulate and fuse nano-compartmentalized volumes addresses a demand for spatiotemporal control in the field of synthetic biology, for example in the bottom-up construction of (bio)chemical nanoreactors and for the interrogation of enzymatic reactions in confined space. Herein, we mix entrapped sub-attoliter volumes of liposomes (~135 nm diameter) via lipid bilayer fusion, facilitated by the hybridization of membrane-anchored lipidated oligonucleotides. We report on an improved synthesis of the membrane-anchor phosphoramidites that allows for a flexible choice of lipophilic moiety. Lipid-nucleic acid conjugates (LiNAs) with and without triethylene glycol spacers between anchor and the 17 nt binding sequence were synthesized and their fusogenic potential evaluated. A fluorescence-based content mixing assay was employed for kinetic monitoring of fusion of the bulk liposome populations at different temperatures. Data obtained at 50 °C indicated a quantitative conversion of the limiting liposome population into fused liposomes and an unprecedently high initial fusion rate was observed. For most conditions and designs only low leakage during fusion was observed. These results consolidate LiNA-mediated membrane fusion as a robust platform for programming compartmentalized chemical and enzymatic reactions.
Collapse
Affiliation(s)
- Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Anders Højgaard Hansen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Oliver Ries
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Ulla Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark.,PET & Cyclotron Unit, Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Alexander Rabe
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Kristian T Sørensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Kasper Glud
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
18
|
Lopez A, Liu J. DNA Oligonucleotide-Functionalized Liposomes: Bioconjugate Chemistry, Biointerfaces, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15000-15013. [PMID: 29936848 DOI: 10.1021/acs.langmuir.8b01368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Interfacing DNA with liposomes has produced a diverse range of programmable soft materials, devices, and drug delivery vehicles. By simply controlling liposomal composition, bilayer fluidity, lipid domain formation, and surface charge can be systematically varied. Recent development in DNA research has produced not only sophisticated nanostructures but also new functions including ligand binding and catalysis. For noncationic liposomes, a DNA is typically covalently linked to a hydrophobic or lipid moiety that can be inserted into lipid membranes. In this article, we discuss fundamental biointerfaces formed between DNA and noncationic liposomes. The methods to prepare such conjugates and the interactions at the membrane interfaces are also discussed. The effect of DNA lateral diffusion on fluid bilayer membranes and the effect of membrane on DNA assembly are emphasized. DNA hybridization can be programmed to promote fusion of lipid membranes. Representative applications of this conjugate for drug delivery, biosensor development, and directed assembly of materials are briefly described toward the end. Some future research directions are also proposed to further understand this biointerface.
Collapse
Affiliation(s)
- Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
19
|
Hubrich BE, Kumar P, Neitz H, Grunwald M, Grothe T, Walla PJ, Jahn R, Diederichsen U. PNA-Hybridsequenzen als Erkennungseinheiten in SNARE-Protein-analogen Peptiden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Barbara E. Hubrich
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| | - Pawan Kumar
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| | - Hermann Neitz
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| | - Matthias Grunwald
- Abteilung für Neurobiologie; Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Tobias Grothe
- Abteilung für Neurobiologie; Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Peter Jomo Walla
- Abteilung für Neurobiologie; Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
- Institut für Physikalische und Theoretische Chemie; Technische Universität Braunschweig; Gaußstraße 17 38106 Braunschweig Deutschland
| | - Reinhard Jahn
- Abteilung für Neurobiologie; Max-Planck-Institut für Biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
20
|
Hubrich BE, Kumar P, Neitz H, Grunwald M, Grothe T, Walla PJ, Jahn R, Diederichsen U. PNA Hybrid Sequences as Recognition Units in SNARE-Protein-Mimicking Peptides. Angew Chem Int Ed Engl 2018; 57:14932-14936. [PMID: 30129689 DOI: 10.1002/anie.201805752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/11/2018] [Indexed: 01/01/2023]
Abstract
Membrane fusion is an essential process in nature and is often accomplished by the specific interaction of SNARE proteins. SNARE model systems, in which SNARE domains are replaced by small artificial units, represent valuable tools to study membrane fusion in vitro. The synthesis and analysis is presented of SNARE model peptides that exhibit a recognition motif composed of two different types of peptide nucleic acid (PNA) sequences. This novel recognition unit is designed to mimic the SNARE zippering mechanism that initiates SNARE-mediated fusion. It contains N-(2-aminoethyl)glycine-PNA (aeg-PNA) and alanyl-PNA, which both recognize the respective complementary strand but differ in duplex topology and duplex formation kinetics. The duplex formation of PNA hybrid oligomers as well as the fusogenicity of the model peptides in lipid-mixing assays were characterized and the peptides were found to induce liposome fusion. As an unexpected discovery, peptides with a recognition unit containing only five aeg-PNA nucleo amino acids were sufficient and most efficient to induce liposome fusion.
Collapse
Affiliation(s)
- Barbara E Hubrich
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Pawan Kumar
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Hermann Neitz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Matthias Grunwald
- Abteilung für Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Tobias Grothe
- Abteilung für Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Peter Jomo Walla
- Abteilung für Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany.,Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany
| | - Reinhard Jahn
- Abteilung für Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
21
|
Jumeaux C, Wahlsten O, Block S, Kim E, Chandrawati R, Howes PD, Höök F, Stevens MM. MicroRNA Detection by DNA-Mediated Liposome Fusion. Chembiochem 2018; 19:434-438. [PMID: 29333674 PMCID: PMC5861668 DOI: 10.1002/cbic.201700592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Membrane fusion is a process of fundamental importance in biological systems that involves highly selective recognition mechanisms for the trafficking of molecular and ionic cargos. Mimicking natural membrane fusion mechanisms for the purpose of biosensor development holds great potential for amplified detection because relatively few highly discriminating targets lead to fusion and an accompanied engagement of a large payload of signal-generating molecules. In this work, sequence-specific DNA-mediated liposome fusion is used for the highly selective detection of microRNA. The detection of miR-29a, a known flu biomarker, is demonstrated down to 18 nm within 30 min with high specificity by using a standard laboratory microplate reader. Furthermore, one order of magnitude improvement in the limit of detection is demonstrated by using a novel imaging technique combined with an intensity fluctuation analysis, which is coined two-color fluorescence correlation microscopy.
Collapse
Affiliation(s)
- Coline Jumeaux
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Olov Wahlsten
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Stephan Block
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
- Present address: Department of Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Eunjung Kim
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Rona Chandrawati
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Present address: School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Philip D. Howes
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Fredrik Höök
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| |
Collapse
|
22
|
Peptide-Mediated Liposome Fusion: The Effect of Anchor Positioning. Int J Mol Sci 2018; 19:ijms19010211. [PMID: 29320427 PMCID: PMC5796160 DOI: 10.3390/ijms19010211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 11/17/2022] Open
Abstract
A minimal model system for membrane fusion, comprising two complementary peptides dubbed "E" and "K" joined to a cholesterol anchor via a polyethyleneglycol spacer, has previously been developed in our group. This system promotes the fusion of large unilamellar vesicles and facilitates liposome-cell fusion both in vitro and in vivo. Whilst several aspects of the system have previously been investigated to provide an insight as to how fusion is facilitated, anchor positioning has not yet been considered. In this study, the effects of placing the anchor at either the N-terminus or in the center of the peptide are investigated using a combination of circular dichroism spectroscopy, dynamic light scattering, and fluorescence assays. It was discovered that anchoring the "K" peptide in the center of the sequence had no effect on its structure, its ability to interact with membranes, or its ability to promote fusion, whereas anchoring the 'E' peptide in the middle of the sequence dramatically decreases fusion efficiency. We postulate that anchoring the 'E' peptide in the middle of the sequence disrupts its ability to form homodimers with peptides on the same membrane, leading to aggregation and content leakage.
Collapse
|