1
|
Moi R, Bedi S, Biradha K. Amine Functionalization of Channels of Metal-Organic Frameworks for Effective Chemical Fixation of Carbon Dioxide: A Comparative Study with Three Newly Designed Porous Networks. ChemistryOpen 2024; 13:e202400110. [PMID: 38738745 DOI: 10.1002/open.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Catalytic transformation of CO2 into value-added chemical products can provide an appropriate solution for the raising environmental issues. To date, various metal-organic frameworks (MOFs) with transition metal ions have been explored for CO2 capture and conversion, but alkaline earth metal-based MOFs are comparatively less studied. Metal ions like Sr(II) having relatively large radius give rise to a high coordination number resulting in higher stability of the MOFs. Moreover, the introduction of N-rich functional group in organic linker like -NH2, -CONH- and triazole into MOF backbone enhance their CO2 capture and conversion efficiency. Herein, the effect of amine group on the catalytic efficiency of MOFs for CO2 cycloaddition with epoxides under solvent free and ambient conditions are presented. The di-carboxylates, such as 5-aminoisophthalate (AmIP) and 5-bromoisophthalate (BrIP) were utilized to synthesize Sr(II) based MOFs. The Zn(II) MOF was synthesized using tetra-carboxylate containing amide spacer (OAT) and 4-amino-4H-1,2,4-triazole (AMT). All three MOFs exhibited porous networks with guest available volume ranging from 15 to 58 %. The catalytic efficiency of the MOFs towards carbon dioxide fixation reaction was explored. The catalytic performances revealed that the presence of amine group in the channels enhances the catalytic efficiency of the MOFs.
Collapse
Affiliation(s)
- Rajib Moi
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, Kharagpur, India
| | - Swati Bedi
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, Kharagpur, India
| | - Kumar Biradha
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, Kharagpur, India
| |
Collapse
|
2
|
Mahdavi H, Robin A, Eden NT, Khosravanian A, Sadiq MM, Konstas K, Smith SJD, Mulet X, Hill MR. Engineering Insights into Tailored Metal-Organic Frameworks for CO 2 Capture in Industrial Processes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17387-17395. [PMID: 39115153 PMCID: PMC11340026 DOI: 10.1021/acs.langmuir.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Despite the known impacts on climate change of carbon dioxide emissions, the continued use of fossil fuels for energy generation leading to the emission of carbon dioxide (CO2) into the atmosphere is evident. Therefore, innovation to address and reduce CO2 emissions from industrial operations remains an urgent and crucial priority. A viable strategy in the area is postcombustion capture mainly through absorption by aqueous alkanolamines, which focuses on the separation of CO2 from flue gas, despite its limitations. Within this context, porous materials, particularly metal-organic frameworks (MOFs), have arisen as favorable alternatives owing to their significant adsorption capacity, selectivity, and reduced regeneration energy demands. This research evaluates the engineering insights into tailored MOFs for enhanced CO2 capture, focusing on three series of MOFs (ZIF, UiO-66, and BTC) to investigate the effects of organic ligands, functional groups, and metal ions. The evaluation encompassed a range of aspects including adsorption isotherms of pure gases [CO2 and nitrogen (N2)] and mixed gas mixture (CO2 and N2 with 15:85% ratio), along with utilization of the ideal adsorbed solution theory (IAST) to simulate multicomponent gas adsorption isotherms. Moreover, the reliability of IAST for mixed gas adsorption prediction has been investigated in detail. The research offers valuable insights into the correlation between the characteristics of MOFs and their effectiveness in gas separation and how these characteristics contribute to the differences between IAST predictions and experimental results. The findings enhance the understanding of how to enhance MOF characteristics in order to reduce CO2 emissions and also highlight the need for advanced models that consider thermodynamic nonidealities to accurately predict the behavior of mixed gas adsorption in MOFs. As a result, the incorporation of MOFs with enhanced predictability and reliability into CO2 capture industrial processes is facilitated.
Collapse
Affiliation(s)
- Hamidreza Mahdavi
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- CSIRO
Manufacturing, Private
Bag 10, Clayton South, VIC, 3169, Australia
| | - Alice Robin
- CSIRO
Manufacturing, Private
Bag 10, Clayton South, VIC, 3169, Australia
| | - Nathan T. Eden
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Abdollah Khosravanian
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | | | - Kristina Konstas
- CSIRO
Manufacturing, Private
Bag 10, Clayton South, VIC, 3169, Australia
| | - Stefan J. D. Smith
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- CSIRO
Manufacturing, Private
Bag 10, Clayton South, VIC, 3169, Australia
| | - Xavier Mulet
- CSIRO
Manufacturing, Private
Bag 10, Clayton South, VIC, 3169, Australia
- Applied
Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Matthew R. Hill
- CSIRO
Manufacturing, Private
Bag 10, Clayton South, VIC, 3169, Australia
- Department
of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
3
|
Liu H, Zheng ZW, Zhang XY, Li Q, Zhou JJ, Huang K, Qin DB. Metal Hydrogen-Bonded Organic Frameworks as Open Lewis Acid Catalysts for Two Types of CO 2 Transformations. Inorg Chem 2024; 63:11554-11565. [PMID: 38815997 DOI: 10.1021/acs.inorgchem.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Efficient and multiple CO2 utilization into high-value-added chemicals holds significant importance in carbon neutrality and industry production. However, most catalysis systems generally exhibit only one type of CO2 transformation with the efficiency to be improved. The restricted abundance of active catalytic sites or an inefficient utilization rate of these sites results in the constraint. Consequently, we designed and constructed two metal hydrogen-bonded organic frameworks (M-HOFs) {[M3(L3-)2(H2O)10]·2H2O}n (M = Co (1), Ni (2); L = 1-(4-carboxyphenyl)-1H-pyrazole-3,5-dicarboxylic acid) in this research. 1 and 2 are well-characterized, and both show excellent stability. The networks connected by multiple hydrogen bonds enhance the structural flexibility and create accessible Lewis acidic sites, promoting interactions between the substrates and catalytic centers. This enhancement facilitates efficient catalysis for two types of CO2 transformations, encompassing both cycloaddition reactions with epoxides and aziridines to afford cyclic carbonates and oxazolidinones. The catalytic activities (TON/TOF) are superior compared with those of most other catalysts. These heterogeneous catalysts still exhibited high performance after being reused several times. Mechanistic studies indicated intense interactions between the metal sites and substrates, demonstrating the reason for efficient catalysis. This marks the first instance on M-HOFs efficiently catalyzing two types of CO2 conversions, finding important significance for catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| |
Collapse
|
4
|
Vodyashkin A, Sergorodceva A, Kezimana P, Morozova M, Nikolskaya E, Mollaeva M, Yabbarov N, Sokol M, Chirkina M, Butusov L, Timofeev A. Synthesis and activation of pH-sensitive metal-organic framework Sr(BDC) ∞ for oral drug delivery. Dalton Trans 2024; 53:1048-1057. [PMID: 38099594 DOI: 10.1039/d3dt02822d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are widely used in the biomedical industry. In this study, we developed a new method for obtaining a metal-organic structure of strontium and terephthalic acid, Sr(BDC), and an alternative activation method for removing DMF from the pores. Sr(BDC) MOFs were successfully prepared and characterized by XRD, FTIR, TGA, and SEM. The importance of the activation steps was confirmed by TGA, which showed that the Sr(BDC)(DMF) sample can contain up to a quarter of the solvent (DMF) before activation. In our study, IR spectroscopy confirmed the possibility of removing DMF by ethanol treatment from the Sr-BDC crystals. A comparative analysis of the effect of the activation method on the specific surface and pore size of Sr-BDC and its sorption properties using the model drug doxorubicin showed that due to the undeveloped surface of the Sr-(BDC)(DMF) sample, it is not possible to obtain an adsorption isotherm and determine the pore size distribution, thus showing the importance of the activation step. Cytotoxicity and apoptosis assays were carried out to study the biological activity of MOFs, and we observed relatively low toxicity in the tested concentration range after 48 h, with over 92% cell survival for Sr(BDC)(DMF) and Sr(BDC)(260 °C), with a decrease only in the highest concentration (800 mg L-1). Similar results were observed in our apoptosis assays, as they revealed low apoptotic population generation of 2.52%, 3.23%, and 2.77% for Sr(BDC)(DMF), Sr(BDC) and Sr(BDC)(260 °C), respectively. Overall, the findings indicate that ethanol-activated Sr(BDC) shows potential as a safe and effective material for drug delivery.
Collapse
Affiliation(s)
- Andrey Vodyashkin
- RUDN University, 117198, Moscow, Russia
- Bauman Moscow State Technical University, 105005, Moscow, Russia.
| | | | | | | | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Mariia Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | | | - Alexey Timofeev
- RUDN University, 117198, Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
| |
Collapse
|
5
|
Li L, Zou JY, You SY, Zhang L. Ratiometric Fluorescence Thermometry, Quantitative Gossypol Detection, and CO 2 Chemical Fixation by a Multipurpose Europium (III) Metal-Organic Framework. Inorg Chem 2023; 62:14168-14179. [PMID: 37606309 DOI: 10.1021/acs.inorgchem.3c00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A lanthanide-based molecular crystalline material endows metal-organic frameworks (MOFs) with many fascinating applications such as fluorescence detection and CO2 chemical fixation. Herein, we describe and study a multipurpose europium(III) MOF with the formula of {[Eu2(TATAB)2]·2.5H2O·2DMF}n (Eu-MOF) (where H3TATAB is 4,4',4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid ligand) for photoluminescence sensor matrix and CO2 chemical fixation. This Eu-MOF features 1D square channels along the c direction with a pore size of ca.14.07 Å × 14.07 Å, occupied by lattice water and DMF molecules. The obtained Eu-MOF can achieve simultaneous luminescence of the H3TATAB ligand and Eu3+ ions, which can be developed as the sensor matrix for ratiometric fluorescence thermometry. The luminescence of the Eu-MOF demonstrates an obvious color change from red to yellow as temperature rises from 303 to 373 K and the Eu-MOF has a satisfying relative sensitivity of 3.21% K-1 and a small temperature uncertainty of 0.0093 K at 333 K. Moreover, sensitive detection of gossypol was achieved with a quenching constant Ksv of 1.18 × 105 M-1 and a detection limit of 4.61 μM. A combination of the competitive absorption and photoinduced electron transfer caused by host-guest interactions and strengthened π-π packing effect synergistically between gossypol molecules and the Eu-MOF skeleton realizes the "turn-off" sensing of gossypol. Importantly, the nature of the Eu-MOF allows showing CO2 chemical fixation under mild conditions. Thus, the Eu-MOF can be utilized as a multipurpose material for ratiometric fluorescence thermometry, quantitative gossypol detection, and CO2 chemical fixation.
Collapse
Affiliation(s)
- Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Ji-Yong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Sheng-Yong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
6
|
Pan X, Si X, Zhang X, Yao Q, Li Y, Duan W, Qiu Y, Su J, Huang X. A robust and porous titanium metal-organic framework for gas adsorption, CO 2 capture and conversion. Dalton Trans 2023; 52:3896-3906. [PMID: 36877532 DOI: 10.1039/d2dt03158b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A robust and porous titanium metal-organic framework (Ti-MOF; LCU-402) has been hydrothermally synthesized through combining a tetranuclear Ti2Ca2(μ3-O)2(μ2-H2O)1.3(H2O)4(O2C-)8 cluster and a tritopic 1,3,5-benzene(tris)benzoic (BTB) ligand. LCU-402 shows remarkable stability and permanent porosity for CO2, CH4, C2H2, C2H4, and C2H6 gas adsorption. Moreover, LCU-402 as a heterogeneous catalyst can smoothly convert CO2 under a simulated flue atmosphere into organic carbonate molecules by cycloaddition reactions of CO2 and epoxides, indicating that LCU-402 might be a promising catalyst candidate in practical applications. We are confident that the identification of a persistent titanium-oxo building unit would accelerate the development of new porous Ti-MOF materials.
Collapse
Affiliation(s)
- Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yunwu Li
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| | - Yi Qiu
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Jie Su
- College of Chemistry and molecular engineering, Peking University, Beijing, 100871, PR China.
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
7
|
Gogia A, Bhambri H, Mandal SK. Exploiting a Multi-Responsive Oxadiazole Moiety in One Three-Dimensional Metal-Organic Framework for Remedies to Three Environmental Issues. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8241-8252. [PMID: 36738476 DOI: 10.1021/acsami.2c22889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multifunctional metal-organic frameworks (MOFs) rely on the properties of metal centers (nodes) and/or linkers (struts) for their diverse applications in the emerging field of research. Currently, there is a huge demand for MOF materials in the field of capture/fixation/sensing of air pollutants, harmful chemical effluents, and nuclear waste. However, it is a challenging task to utilize one MOF for providing remedies to all these issues. On the basis of our current research activities, we have identified that an oxadiazole moiety-a five-membered ring with two different heteroatoms (O and N)-in a carboxylate linker can be the key to generating such MOF materials for its (a) inherent polarizable nature and molecular docking ability and (b) photoluminescence properties. In this work, we report a 3D MOF {[Co2(oxdz)2(tpbn)(H2O)2]·4H2O}n (1), self-assembled at room temperature from a three-component reaction, with an oxadiazole moiety (where H2oxdz = 4,4'-(1,3,4-oxadiazole-2,5-diyl)dibenzoic acid and tpbn = N,N',N,"N″'-tetrakis(2-pyridylmethyl)-1,4-diaminobutane). The inherent polarizable nature of the oxadiazole moiety in 1 has been efficiently exploited for (i) multimedia iodine capture and (ii) fixation of CO2 under solvent-free and ambient conditions. On the other hand, the luminescent nature of the framework is found to be an efficient, highly preferred turn-on sensor for the ultra-fast detection of ketones with a limit as low as parts-per-trillion (mesitylene oxide: 447 ppt; cycloheptanone: 4.7 ppb; cyclohexanone: 17.2 ppb; acetylacetone: 18 ppb).
Collapse
Affiliation(s)
- Alisha Gogia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Himanshi Bhambri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
8
|
Meng XW, Ding T, Liu B, Gong XS, Liu B, Zheng LN. Highly selective C 2H 2 and CO 2 capture based on two new Zn II-MOFs and fluorescence sensing of two doped MOFs with Eu III. CrystEngComm 2023. [DOI: 10.1039/d3ce00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Two Zn(ii)-based MOFs have been constructed. The activated Zn-MOF1 and Zn-MOF2 show selective separation of C2H2 and CO2 over CH4. Eu@Zn-MOF1 and Eu@Zn-MOF2 were obtained by adding EuIII ions and showed selectivity to Fe3+ ions in aqueous solution.
Collapse
|
9
|
Wen Q, Yuan X, Zhou Q, Yang HJ, Jiang Q, Hu J, Guo CY. Functionalized β-Cyclodextrins Catalyzed Environment-Friendly Cycloaddition of Carbon Dioxide and Epoxides. MATERIALS (BASEL, SWITZERLAND) 2022; 16:53. [PMID: 36614390 PMCID: PMC9821656 DOI: 10.3390/ma16010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Ammonium, imidazole, or pyridinium functionalized β-cyclodextrins (β-CDs) were used as efficient one-component bifunctional catalysts for the coupling reaction of carbon dioxide (CO2) and epoxide without the addition of solvent and metal. The influence of different catalysts and reaction parameters on the catalytic performance were examined in detail. Under optimal conditions, Im-CD1-I catalysts functionalized with imidazole groups were able to convert various epoxides into target products with high selectivity and good conversion rates. The one-component bifunctional catalysts can also be recovered easily by filtration and reused at least for five times with only slight decrease in catalytic performance. Finally, a possible process for hydroxyl group-assisted ring-opening of epoxide and functionalized group- induced activation of CO2 was presented.
Collapse
Affiliation(s)
- Qin Wen
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xuexin Yuan
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Qiqi Zhou
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hai-Jian Yang
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Qingqing Jiang
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Juncheng Hu
- College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Two-dimensional oxalamide based isostructural MOFs for CO2 capture. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Wang K, Zheng TF, Chen JL, Wen HR, Liu SJ, Hu TL. A pH-Stable Tb III-Based Metal-Organic Framework as a Turn-On and Blue-Shift Fluorescence Sensor toward Benzaldehyde and Salicylaldehyde in Aqueous Solution. Inorg Chem 2022; 61:16177-16184. [PMID: 36149649 DOI: 10.1021/acs.inorgchem.2c02763] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new polydentate tetracarboxylic acid with a benzothiadiazole unit (4',4'''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1'-biphenyl]-3,5-dicarboxylic acid), H4BTDBA) has been used to prepare a pH-stable three-dimensional TbIII-based metal-organic framework (MOF) with the formula {[(CH3)2NH2]0.7[Tb2(BTDBA)1.5(lac)0.7(H2O)2]·solvents}n (Hlac = lactic acid, JXUST-19). JXUST-19 exhibits a new (4,4,12)-connected topology based on tetranuclear [Tb4] clusters. JXUST-19 can remain stable when soaked in water for at least 1 week and in aqueous solutions with various pH values (2-12) for 24 h. Fluorescence study indicates JXUST-19 can be employed as a rare turn-on and blue-shift MOF sensor toward benzaldehyde (BZ) and salicylaldehyde (SA). To date, JXUST-19 represents the first TbIII-based turn-on MOF sensor toward salicylaldehyde in aqueous solution, and the fluorescence enhancement and naked-eye detection of BZ have been rarely reported. In addition, JXUST-19 based fluorescent test papers, light-emitting diode lamp beads, and portable composite films were developed to realize naked-eye detection of BZ and SA, which has great potential in practical applications.
Collapse
Affiliation(s)
- Ke Wang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
12
|
Gogia A, Mandal SK. Topologically Driven Pore/Surface Engineering in a Recyclable Microporous Metal-Organic Vessel Decorated with Hydrogen-Bond Acceptors for Solvent-Free Heterogeneous Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27941-27954. [PMID: 35679587 DOI: 10.1021/acsami.2c06141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of metal-organic frameworks (MOFs) comprising custom-designed linkers/ligands as efficient and recyclable heterogeneous catalysts is on the rise. However, the topologically driven bifunctional porous MOFs for showcasing a synergistic effect of two distinct activation pathways of substrates (e.g., involving hydrogen bonding and a Lewis acid) in multicomponent organic transformations are very challenging. In particular, the novelty of such studies lies in the proper pore and/or surface engineering in MOFs for bringing the substrates in close proximity to understand the mechanistic aspects at the molecular level. This work represents the topological design, solid-state structural characterization, and catalytic behavior of an oxadiazole tetracarboxylate-based microporous three-dimensional (3D) metal-organic framework (MOF), {[Zn2(oxdia)(4,4'-bpy)2]·8.5H2O}n (1), where the tetrapodal (4-connected) 5,5'-(1,3,4-oxadiazole-2,5-diyl)diisophthalate (oxdia4-), the tetrahedral metal vertex (Zn(II)), and a 2-connected pillar linker 4,4'-bipyridine (4,4'-bpy) are unique in their roles for the formation, stability, and function. As a proof of concept, the efficient utilization of both the oxadiazole moiety with an ability to provide H-bond acceptors and the coordinatively unsaturated Zn(II) centers in 1 is demonstrated for the catalytic process of the one-pot multicomponent Biginelli reaction under mild conditions and without a solvent. The key steps of substrate binding with the oxadiazole moiety are ascertained by a fluorescence experiment, demonstrating a decrease or increase in the emission intensity upon interaction with the substrates. Furthermore, the inherent polarizability of the oxadiazole moiety is exploited for CO2 capture and its size-selective chemical fixation to cyclic carbonates at room temperature and under solvent-free conditions. For both catalytic processes, the chemical stability, structural integrity, heterogeneity, versatility in terms of substrate scope, and mechanistic insights are discussed. Interestingly, the first catalytic process occurs on the surface, while the second reaction occurs inside the pore. This study opens new ways to catalyze different organic transformation reactions by utilizing this docking strategy to bring the multiple components close together by a microporous MOF.
Collapse
Affiliation(s)
- Alisha Gogia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
13
|
Ma LN, Zhang L, Zhang WF, Wang ZH, Hou L, Wang YY. Amide-Functionalized In-MOF for Effective Hydrocarbon Separation and CO2 Catalytic Fixation. Inorg Chem 2022; 61:2679-2685. [DOI: 10.1021/acs.inorgchem.1c03821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Wan-Fang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Zi-Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| |
Collapse
|
14
|
Lv H, Chen H, Hu T, Zhang X. Nanocage-based {In 2Tm 2}-organic framework for efficiently catalyzing the cycloaddition reaction of CO 2 with epoxides and Knoevenagel condensation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of [In2Tm2(μ2-OH)2(CO2)10(H2O)2] clusters and H5BDCP ligand generated a highly robust nanoporous MOF with high catalytic performance in the cycloaddition reaction of epoxides with CO2 and Knoevenagel condensation.
Collapse
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
15
|
Liu X, Ding M, Ma P, Yao J. Optimizing the mobility of active species in ionic liquid/MIL-101 composites for boosting carbon dioxide conversion. NEW J CHEM 2022. [DOI: 10.1039/d1nj04914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mobility of active species has been optimized based on ionic liquid/metal–organic framework (MOF) composites for efficient CO2 chemical fixation.
Collapse
Affiliation(s)
- Xi Liu
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Meili Ding
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Pan Ma
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianfeng Yao
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
16
|
Wang GD, Li YZ, Zhang WF, Hou L, Wang YY, Zhu Z. Acetylene Separation by a Ca-MOF Containing Accessible Sites of Open Metal Centers and Organic Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58862-58870. [PMID: 34870404 DOI: 10.1021/acsami.1c20533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient separation of acetylene from a ternary acetylene-containing mixture is an important and vital task in petrochemical industry, which is difficult to achieve using a single material. Herein, a new Ca2+-based metal-organic framework (MOF) [Ca(dtztp)0.5(DMA)]·2H2O (1) was constructed using the N,O-donor ligand 2,5-di(2H-tetrazol-5-yl)terephthalic acid and the less-studied alkaline earth Ca2+ ions. The MOF shows a 3D honeycomb framework based on unique metal-carboxylate-azolate rod secondary building units. Owing to the presence of high-density organic hydrogen-bonding acceptors and open metal sites (OMSs), the activated MOF shows high adsorption capacity for C2H2 and selectivity for C2H2 over CO2, C2H4, C2H6, and CH4. Dynamic breakthrough experiments indicated the actual C2H2 separation potential of the MOF from binary (C2H2-C2H4 and C2H2-CO2) and ternary (C2H2-C2H4-CO2 and C2H2-C2H4-C2H6) mixtures. Simulations revealed that the synergistic interactions between the OMSs and N atoms in MOF and C2H2 molecules play an important role in the separation of C2H2.
Collapse
Affiliation(s)
- Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wan-Fang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
17
|
A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101715] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Wang D, Chen K, Wang M, You Y, Zhou X. A two-fold interpenetrated Zn-based coordination polymer for highly selective and sensitive detection of MnO4−. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Güçlü Y, Erer H, Demiral H, Altintas C, Keskin S, Tumanov N, Su BL, Semerci F. Oxalamide-Functionalized Metal Organic Frameworks for CO 2 Adsorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33188-33198. [PMID: 34251186 DOI: 10.1021/acsami.1c11330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) have received great attention in recent years as potential adsorbents for CO2 capture due to their unique properties. However, the high cost and their tedious synthesis procedures impede their industrial application. A series of new CO2-philic oxalamide-functionalized MOFs have been solvothermally synthesized: {[Zn3(μ8-OATA)1.5(H2O)2(DMF)]·5/2H2O·5DMF}n (Zn-OATA), {[NH2(CH3)2][Cd(μ4-HOATA)]·H2O·DMF}n (Cd-OATA), and {[Co2(μ7-OATA)(H2O)(DMF)2]·2H2O·3DMF}n (Co-OATA) (H4OATA = N,N'-bis(3,5-dicarboxyphenyl)oxalamide). In Zn-OATA, the [Zn2(CO2)4] SBUs are connected by OATA4- ligands into a 3D framework with 4-connected NbO topology. In Cd-OATA, two anionic frameworks with a dia topology interpenetrated each other to form a porous structure. In Co-OATA, [Co2(CO2)4] units are linked by four OATA4- to form a 3D framework with binodal 4,4-connected 42·84 PtS-type topology. Very interestingly, Cu-OATA can be prepared from Zn-OATA by a facile metal ions exchange procedure without damaging the structure while the CO2 adsorption ability can be largely enhanced when Zn(II) metal ions are exchanged to Cu(II). These new MOFs possess channels decorated by the CO2-philic oxalamide groups and accessible open metal sites, suitable for highly selective CO2 adsorption. Cu-OATA exhibits a significant CO2 adsorption capacity of 25.35 wt % (138.85 cm3/g) at 273 K and 9.84 wt % (50.08 cm3/g) at 298 K under 1 bar with isosteric heat of adsorption (Qst) of about 25 kJ/mol. Cu-OATA presents a very high selectivity of 5.5 for CO2/CH4 and 43.8 for CO2/N2 separation at 0.1 bar, 298 K. Cd-OATA exhibits a CO2 sorption isotherm with hysteresis that can be originated from structural rearrangements. Cd-OATA adsorbs CO2 up to 11.90 wt % (60.58 cm3/g) at 273 K and 2.26 wt % (11.40 cm3/g) at 298 K under 1 bar. Moreover, these new MOFs exhibit high stability in various organic solvents, water, and acidic or basic media. The present work opens a new opportunity in the development of improved and cost-effective MOF adsorbents for highly efficient CO2 capture.
Collapse
Affiliation(s)
- Yunus Güçlü
- Department of Energy Systems Engineering, Faculty of Technology, Kırklareli University, 39000 Kırklareli, Turkey
| | - Hakan Erer
- Department of Chemistry, Faculty of Science and Letters, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey
| | - Hakan Demiral
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey
| | - Cigdem Altintas
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul Turkey
| | - Nikolay Tumanov
- Chemistry Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Fatih Semerci
- Department of Energy Systems Engineering, Faculty of Technology, Kırklareli University, 39000 Kırklareli, Turkey
| |
Collapse
|
20
|
Chakraborty G, Das P, Mandal SK. Efficient and Highly Selective CO 2 Capture, Separation, and Chemical Conversion under Ambient Conditions by a Polar-Group-Appended Copper(II) Metal-Organic Framework. Inorg Chem 2021; 60:5071-5080. [PMID: 33703884 DOI: 10.1021/acs.inorgchem.1c00101] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A polar sulfone-appended copper(II) metal-organic framework (MOF; 1) has been synthesized from the dual-ligand approach comprised of tetrakis(4-pyridyloxymethylene)methane and dibenzothiophene-5,5'-dioxide-3,7-dicarboxylic acid under solvothermal conditions. This has been studied by different techniques that included single-crystal X-ray diffractometry, based on which the presence of Lewis acidic open-metal sites as well as polar sulfone groups aligned on the pore walls is identified. MOF 1 displays a high uptake of CO2 over N2 and CH4 with an excellent selectivity (S = 883) for CO2/N2 (15:85) at 298 K under flue gas combustion conditions. Additionally, the presence of Lewis acidic metal centers facilitates an efficient size-selective catalytic performance at ambient conditions for the conversion of CO2 into industrially valuable cyclic carbonates. The experimental investigations for this functional solvent-free heterogeneous catalyst are also found to be in good correlation with the computational studies provided by configurational bias Monte Carlo simulation for both CO2 capture and its conversion.
Collapse
Affiliation(s)
- Gouri Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
21
|
Chen CC, Cai Y, Wang LF, Wu YD, Yin HJ, Zhou JR, Ni CL, Liu W. Three Silver(I) Coordination Polymers Based on Pyridyl Ligands and Auxiliary Carboxylic Ligands: Luminescence and Efficient Sensing Properties. Inorg Chem 2021; 60:5463-5473. [PMID: 33793227 DOI: 10.1021/acs.inorgchem.0c02853] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Easily producible sensors for harmful industrial waste compounds are of significant interest for both human health and the environment. Three novel coordination polymers, [Ag(μ-aca)(μ4-bztpy)1/2] (1), [Ag(μ-bza)(μ-bpa)] (2), and [Ag2(μ-aca)2(μ-bpa)2]·EtOH·2H2O (3), were assembled in this study by reactions using Ag+ as a node with the pyridyl ligand 1,2,4,5-tetrakis(4-pyridyl)benzene (bztpy) or 9,10-bis(4-pyridyl)anthracene (bpa) and an auxiliary chelating carboxylic ligand. Single-crystal X-ray structural analyses revealed that compound 1 has a 3D framework consisting of 1D [Ag(aca)]∞ chains and bztpy linkers, while 2 and 3 have 2D layered structures consisting of binuclear Ag-carboxylate units and bpa linkers, respectively. Topological studies revealed that 1 has a bbf topology, while 2 and 3 are 2D [4,4] rhombic grids. The compounds were further characterized by powder X-ray diffraction, IR, elemental analysis, thermogravimetric analysis, and a luminescence study. The solids of 1-3 exhibited intense photoluminescent emission with λemmax at ca. 493, 472, and 500 nm, respectively. Remarkably, due to their excellent framework stability, 1 and 2 can act as multiresponsive luminescent sensors for nitrobenzene, Fe3+, and Cr2O72- with a high selectivity and sensitivity ascribed to their quenching effect.
Collapse
Affiliation(s)
- Cong-Cong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Yue Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Long-Fei Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yun-Dang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Hao-Jun Yin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Jia-Rong Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Chun-Lin Ni
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Wei Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| |
Collapse
|
22
|
|
23
|
Ke Z, Xiao H, Wen Y, Du S, Zhou X, Xiao J, Li Z. Adsorption Property of Starch-Based Microporous Carbon Materials with High Selectivity and Uptake for C1/C2/C3 Separation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhanfan Ke
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Huiyu Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yijing Wen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shengjun Du
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xin Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jing Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
- State Key Lab of Subtropical Building Science of China, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
24
|
Liu RS, Shi XD, Wang CT, Gao YZ, Xu S, Hao GP, Chen S, Lu AH. Advances in Post-Combustion CO 2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice. CHEMSUSCHEM 2021; 14:1428-1471. [PMID: 33403787 DOI: 10.1002/cssc.202002677] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
Collapse
Affiliation(s)
- Ru-Shuai Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiao-Dong Shi
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Cheng-Tong Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu-Zhou Gao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shuang Xu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shaoyun Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
25
|
Decavanadate-based clusters as bifunctional catalysts for efficient treatment of carbon dioxide and simulant sulfur mustard. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Mercuri G, Moroni M, Domasevitch KV, Di Nicola C, Campitelli P, Pettinari C, Giambastiani G, Galli S, Rossin A. Carbon Dioxide Capture and Utilization with Isomeric Forms of Bis(amino)‐Tagged Zinc Bipyrazolate Metal–Organic Frameworks. Chemistry 2021; 27:4746-4754. [DOI: 10.1002/chem.202005216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/27/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Giorgio Mercuri
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Marco Moroni
- Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | | | - Corrado Di Nicola
- Scuola di Scienze e Tecnologie Università di Camerino Via S. Agostino 1 62032 Camerino Italy
| | - Patrizio Campitelli
- Scuola di Scienze e Tecnologie Università di Camerino Via S. Agostino 1 62032 Camerino Italy
| | - Claudio Pettinari
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
- Scuola del Farmaco e dei Prodotti della Salute Università di Camerino Via S. Agostino 1 62032 Camerino Italy
| | - Giuliano Giambastiani
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES) UMR 7515 CNRS-University of Strasbourg (UdS) 25, rue Becquerel 67087 Strasbourg Cedex 02 France
- Alexander Butlerov Institute of Chemistry Kazan Federal University 420008 Kazan Russian Federation
| | - Simona Galli
- Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Andrea Rossin
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| |
Collapse
|
27
|
Huang ZW, Hu KQ, Mei L, Wang CZ, Chen YM, Wu WS, Chai ZF, Shi WQ. Potassium Ions Induced Framework Interpenetration for Enhancing the Stability of Uranium-Based Porphyrin MOF with Visible-Light-Driven Photocatalytic Activity. Inorg Chem 2021; 60:651-659. [PMID: 33382238 DOI: 10.1021/acs.inorgchem.0c02473] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stability of many MOFs is not satisfactory, which severely limits the exploration of their potential applications. Given this, we have proposed a strategy to improve the stability of MOFs by introducing alkali metal K+ capable of coordinating with metal nodes, which finally induces the interpenetrating uranyl-porphyrin framework to connect as a whole (IHEP-9). The stability experiments reveal that the IHEP-9 has good thermal stability up to 400 °C and can maintain its crystalline state in the aqueous solution with pH ranging from 2 to 11. The catalytic activity of IHEP-9 as a heterogeneous photocatalyst for CO2 cycloaddition under the driving of visible light at room temperature is also demonstrated. This induced interpenetration and fixation method may be promising for the fabrication of more functional MOFs with improved structural stability.
Collapse
Affiliation(s)
- Zhi-Wei Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, China.,Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Mei Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wang-Suo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Fang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Liu J, Chen M, Cui H. Recent progress in environmental applications of metal-organic frameworks. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:26-38. [PMID: 33460404 DOI: 10.2166/wst.2020.572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanomaterials have aroused the interest of many researchers and become a research hotspot in recent years and metal-organic frameworks (MOFs) included in that are a class of new organic-inorganic hybrid porous materials formed through the self-assembly of organic ligands and inorganic metal ions. MOFs have been attracting increasing attention due to their structural diversification, large specific surface area, high porosity, inerratic pore space framework. These characteristics play their advantages in different fields and make some excellent achievements. This article summarizes the research progress of metal-organic framework in the field of environment especially the remarkable achievements in adsorption and provides a clear help for understanding the research progress and prospects for future research.
Collapse
Affiliation(s)
- Jianming Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China E-mail:
| | - Meichen Chen
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China E-mail:
| | - Haohui Cui
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China E-mail:
| |
Collapse
|
29
|
Li YZ, Wang GD, Lu YK, Hou L, Wang YY, Zhu Z. A Multi-Functional In(III)-Organic Framework for Acetylene Separation, Carbon Dioxide Utilization, and Antibiotic Detection in Water. Inorg Chem 2020; 59:15302-15311. [DOI: 10.1021/acs.inorgchem.0c02291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yu-Ke Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
30
|
Tavakoli Z. Catalytic CO2 fixation over a high-throughput synthesized copper terephthalate metal-organic framework. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Wu ZL, Gu AL, Gao N, Cui HY, Wang WM, Cui JZ. Solvent-Dependent Assembly and Magnetic Relaxation Behaviors of [Cu 4I 3] Cluster-Based Lanthanide MOFs: Acting as Efficient Catalysts for Carbon Dioxide Conversion with Propargylic Alcohols. Inorg Chem 2020; 59:15111-15119. [PMID: 32997940 DOI: 10.1021/acs.inorgchem.0c02050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two structurally similar metal-organic frameworks (MOFs) [Dy2Cu4I3(IN)7(DMF)2]·DMF (1) and [Dy2Cu4I3(IN)7(DMA)2]·DMA (2) (HIN = isonicotinic acid) feathering different coordinated solvent molecules were successfully isolated by tuning the types of solvents in the reaction system. Structural tests indicate that 1 and 2 are both built from 1D Dy(III) chains and copper iodide clusters [Cu4I3], generating into three-dimensional frameworks with an open 1D channel along the a axis. 1 and 2 display extensive and excellent solvent stability. Magnetic studies of 1 and 2 indicate that they exhibit interesting solvent-dependent magnetization dynamics. Importantly, 1 and 2 can act as highly effective catalysts for the carboxylic cyclization of propargyl alcohols with carbon dioxide (CO2) under ambient operating conditions. Additionally, the substrate scope was further explored over compound 1 based on the optimal conditions, and it exhibits efficient cyclic carboxylation of various terminal propargylic alcohols with CO2. This research offers an effective approach for the solvent-guided synthesis of MOFs materials and also presents the great application value of MOFs in CO2 chemical conversion.
Collapse
Affiliation(s)
- Zhi-Lei Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Ai-Ling Gu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Ning Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Hui-Ya Cui
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Wen-Min Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China.,Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P.R. China
| | - Jian-Zhong Cui
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
32
|
Das P, Mandal SK. Unprecedented High Temperature CO 2 Selectivity and Effective Chemical Fixation by a Copper-Based Undulated Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37137-37146. [PMID: 32686423 DOI: 10.1021/acsami.0c09024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Post- and precombustion CO2 capture and separation are the vital challenges from industrial viewpoint, as the accessible technologies are not cost-effective and cumbersome. Thus, the development of functional metal-organic frameworks (MOFs) that are found to be promising materials for selective CO2 capture, separation, and conversion is gaining an importance in the scientific world. Based on the strategic design, a new functionalized triazine-based undulated paddle-wheel Cu-MOF (1), {[Cu(MTABA)(H2O)]·4H2O·2EtOH·DMF}n (where, H2MTABA = 4,4'-((6-methoxy-1,3,5-triazine-2,4-diyl)bis(azanediyl))dibenzoic acid), has been synthesized under solvothermal conditions and fully characterized. MOF 1 contains a one-dimensional channel along the a-axis with pore walls decorated with open metal sites, and multifunctional groups (amine, triazine, and methoxy). Unlike other porous materials, activated 1 (1') possesses exceptional increment in CO2/N2 and CO2/CH4 selectivity with increased temperature calculated by the ideal adsorbed solution theory. With an increase in temperature from 298 to 313 K, the selectivity of CO2 rises from 350.3 to 909.5 at zero coverage, which is unprecedented till date. Moreover, 1' behaves as a bifunctional heterogeneous catalyst through Lewis acid (open metal) and Brönsted acid sites to facilitate the chemical fixation of CO2 to cyclic carbonates under ambient conditions. The high selectivity for CO2 by 1' even at higher temperature was further corroborated with configurational bias Monte Carlo molecular simulation that ascertains the multiple CO2-philic sites and epoxide binding sites in 1' to further decipher the mechanistic pathway.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
33
|
Selective CO2 adsorption and Lewis acid catalytic activity towards naphthimidazole synthesis by a Zn-MOF. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Gupta AK, Guha N, Krishnan S, Mathur P, Rai DK. A Three-Dimensional Cu(II)-MOF with Lewis acid−base dual functional sites for Chemical Fixation of CO2 via Cyclic Carbonate Synthesis. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Liu J, Wu D, Yang GP, Wu Y, Zhang S, Jin J, Wang YY. Rational Stepwise Construction of Different Heterometallic-Organic Frameworks (HMOFs) for Highly Efficient CO 2 Conversion. Chemistry 2020; 26:5400-5406. [PMID: 31943406 DOI: 10.1002/chem.201905194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/11/2020] [Indexed: 11/07/2022]
Abstract
The coordination preference of different metal ions and ligands have an immense influence on the constructions of functional MOF materials. In this work, two new monometallic complexes, namely [Ag(HL)(bipy)0.5 ] (1) and {[Tb(L)1.5 (H2 O)]⋅4 H2 O}n (2) (bipy=4,4-bipyridine), have been synthesized successfully by employing a bifunctional 2-(imidazol-1-yl)terephthalic acid (H2 L) ligand. After that, two new different heterometallic-organic frameworks (HMOFs), namely {[TbAg(L)2 (H2 O)3 ]⋅H2 O}n (3) and [TbAg(L)2 (H2 O)]n (4), were obtained from complexes 1 and 2 as the precursors based on a rational stepwise construction strategy and the theory of hard and soft acids and bases (HSAB principle), respectively. The HMOFs bearing dual metallic catalytic sites (Tb and Ag) can be used as heterogeneous catalysts without losing performance for the chemical fixation of CO2 with epoxides including the sterically hindered epoxides, demonstrating some of the highest reported catalytic activity values. This work may provide a new synthetic route toward tailoring new HMOFs with excellent catalytic activity.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, Shaanxi Key Laboratory of, Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Dan Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, Shaanxi Key Laboratory of, Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, Shaanxi Key Laboratory of, Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Yunlong Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, Shaanxi Key Laboratory of, Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Shuyu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, Shaanxi Key Laboratory of, Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, Shaanxi Key Laboratory of, Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, the Ministry of Education, Shaanxi Key Laboratory of, Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| |
Collapse
|
36
|
Chakraborty G, Das P, Mandal SK. Polar Sulfone-Functionalized Oxygen-Rich Metal-Organic Frameworks for Highly Selective CO 2 Capture and Sensitive Detection of Acetylacetone at ppb Level. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11724-11736. [PMID: 32011848 DOI: 10.1021/acsami.9b22658] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A rational combination of an oxygen-rich pyridyl substituted tetrapodal ligand, tetrakis(4-pyridyloxymethylene)methane (TPOM), and a polar sulfone-functionalized conjugated bent dicarboxylate linker, dibenzothiophene-5,5'-dioxide-3,7-dicarboxylic acid (H2(3,7-DBTDC)), with d10 metal centers, Zn(II) and Cd(II), has led to the construction of two new three-dimensional (3D) metal-organic frameworks,{[Zn2(TPOM)(3,7-DBTDC)2]·7H2O·DMA}n (1) and {[Cd2(TPOM)(3,7-DBTDC)2]·6H2O·3DMF}n (2). Single-crystal X-ray analysis indicates that 1 is a 3D framework with a dinuclear repeating unit having two different Zn(II) centers (tetrahedral and square pyramidal) and 2 is a 3D framework comprised of a dinuclear repeating unit with one crystallographically independent distorted pentagonal bipyramidal Cd(II) coordinated to chelating/bridging carboxylates and nitrogen atoms of the TPOM ligand. In both cases, the pores are aligned with oxygen atoms of the TPOM ligand and decorated with polar sulfone moieties. On the basis of the stability established by thermogravimetric analysis and powder X-ray diffraction (PXRD) and the presence of large solvent accessible voids (25.4% for 1 and 40.6% for 2), gas sorption studies of different gases (N2, CO2, and CH4) and water vapor have been explored for both 1 and 2. The CO2 sorption isotherm depicts type I isotherm with an uptake of 93.6 cm3 g-1 (for 1) and 100.6 cm3 g-1 (for 2) at 195 K. Additionally, sorption of CO2 is highly selective over that of N2 and CH4 for both 1 and 2 due to the strong quadrupolar interactions between sulfone moieties and CO2 molecules. Configurational bias Monte Carlo (CBMC) molecular simulation has further justified the highly selective CO2 capture. On the other hand, the luminescence nature of 1 and 2 has been employed for highly selective detection of acetylacetone in aqueous methanol with a limit of 59 ppb in 1 and 66 ppb in 2, which are among the best reported values so far in the literature. The Stern-Volmer plots, spectral overlap, density functional theory calculations, CBMC simulation, and time-resolved lifetime measurements have been utilized for an extensive mechanistic study. The exclusive selectivity for acetylacetone in 1 and 2 have been confirmed by competitive selectivity test. Both exhibited good recyclability and stability after sensing experiments analyzed by fluorescence, PXRD, and field emission scanning electron microscopy studies.
Collapse
Affiliation(s)
- Gouri Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
37
|
Gupta V, Mandal SK. A Highly Stable Triazole‐Functionalized Metal–Organic Framework Integrated with Exposed Metal Sites for Selective CO
2
Capture and Conversion. Chemistry 2020; 26:2658-2665. [DOI: 10.1002/chem.201903912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Vijay Gupta
- Department of Chemical SciencesIndian Institute of Science Education and Research Mohali Sector 81, Manauli PO, S.A.S. Nagar Mohali Punjab 140306 India
| | - Sanjay K. Mandal
- Department of Chemical SciencesIndian Institute of Science Education and Research Mohali Sector 81, Manauli PO, S.A.S. Nagar Mohali Punjab 140306 India
| |
Collapse
|
38
|
Kumar N, Paul AK. Triggering Lewis Acidic Nature through the Variation of Coordination Environment of Cd-Centers in 2D-Coordination Polymers. Inorg Chem 2020; 59:1284-1294. [PMID: 31916441 DOI: 10.1021/acs.inorgchem.9b02997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rational design and successful synthesis of novel functional metal-organic frameworks relies on careful selection of metals and versatile organic ligands. A newly designed pyrazole-based dicarboxylate ligand, 5-(3,5-dimethyl-1H-pyrazol-1-yl) 1,3-benzenedicarboxylic acid (H2L), was utilized to obtain two new Cd-based coordination polymers I [Cd(L)(H2O)]·H2O and II [Cd(L)] under similar reaction conditions via solvothermal strategy. Single-crystal X-ray data confirmed that compound I exhibits a two-dimensional (2D) skeleton comprising pentagonal bipyramidal Cd-ions and an organic ligand moiety. Compound II has also formed a two-dimensional layer arrangement with the connectivity between trigonal bipyramidal Cd-ions and the organic ligand. Topological analysis revealed that compound I has formed unique 43.63 net topology while compound II has displayed a 44.62 sql net topology with 2D frameworks. The Lewis acidic nature of both I and II containing a Cd2+ metal center has been correlated with the coordination number through dye adsorption-desorption and catalysis studies. The selective adsorption of anionic dye and the extent of adsorption are interrelated with the Cd-ion geometry. For the first time, the role of coordinated water molecule has been analyzed through heterogeneous catalysis reaction (i.e., cyanosilylation) with Cd-based 2D-coordination polymers (CPs). The plausible mechanisms have been proposed to explain the subsequent role of coordination number and environment in CPs.
Collapse
Affiliation(s)
- Nikhil Kumar
- Department of Chemistry , National Institute of Technology Kurukshetra , Kurukshetra 136119 , India
| | - Avijit Kumar Paul
- Department of Chemistry , National Institute of Technology Kurukshetra , Kurukshetra 136119 , India
| |
Collapse
|
39
|
Hou SL, Dong J, Zhao B. Formation of CX Bonds in CO 2 Chemical Fixation Catalyzed by Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806163. [PMID: 31216093 DOI: 10.1002/adma.201806163] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Transformation of CO2 based on metal-organic framework (MOF) catalysts is becoming a hot research topic, not only because it will help to reduce greenhouse gas emission, but also because it will allow for the production of valuable chemicals. In addition, a large number of impressive products have been synthesized by utilizing CO2 . In fact, it is the formation of new covalent bonds between CO2 and substrate molecules that successfully result in CO2 solidly inserting into the products, and only four types of new CX bonds, including CH, CC, CN, and CO bonds, are observed in this exploration. An overview of recent progress in constructing CX bonds for CO2 conversion catalyzed by various MOF catalysts is provided. The catalytic mechanism of generating different CX bonds is further discussed according to both structural features of MOFs and the interactions among CO2 , substrates, as well as MOFs. The future opportunities and challenges in this field are also tentatively covered.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| | - Jie Dong
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| |
Collapse
|
40
|
Liao J, Zeng W, Zheng B, Cao X, Wang Z, Wang G, Yang Q. Highly efficient CO 2 capture and conversion of a microporous acylamide functionalized rht-type metal–organic framework. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00231c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A microporous acylamide functionalized rht-type MOF (HNUST-9) with Lewis acidic open copper sites and CO2-philic acylamide groups exhibits high performance for CO2 capture, separation and chemical conversion.
Collapse
Affiliation(s)
- Junxiong Liao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Wenjiang Zeng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Xiyang Cao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Guanyu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Qingyuan Yang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
41
|
Ma L, Liu Y, Li Y, Hu Q, Hou L, Wang Y. Three Lanthanide Metal‐Organic Frameworks Based on an Ether‐Decorated Polycarboxylic Acid Linker: Luminescence Modulation, CO
2
Capture and Conversion Properties. Chem Asian J 2019; 15:191-197. [DOI: 10.1002/asia.201901506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/28/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Li‐Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
- Shaanxi Institute of International Trade& Commerce Xi'an 712046 P. R. China
| | - Yong‐Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Qi‐Xuan Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| |
Collapse
|
42
|
Sun C, Zhao S, Qu F, Han W, You J. Determination of adenosine triphosphate based on the use of fluorescent terbium(III) organic frameworks and aptamer modified gold nanoparticles. Mikrochim Acta 2019; 187:34. [PMID: 31814046 DOI: 10.1007/s00604-019-4019-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
Abstract
A thiol-labeled adenosine triphosphate (ATP) binding aptamer is covalently linked on the surface of gold nanoparticles (AuNPs). This warrants protection of the red AuNPs from aggregation in high salt condition. The dispersed AuNPs can quench the fluorescence of the Tb(III)-MOFs at 547 nm with the excitation wavelength of 290 nm. This is ascribed to the combined action of inner filter effect, dynamic quenching and fluorescence resonance energy transfer. If the aptamer binds ATP to form folded structures, the AuNPs aggregate in high salt medium and the green fluorescence of the Tb(III)-MOFs is recovered. This method shows good sensitivity and selectivity for ATP, and the linear range is from 0.5 to 10 μM of ATP with the detection limitat of 0.32 μM. It was applied to the determination of ATP in (spiked) human plasma with satisfactory recoveries (from 93.2% to 106.3%). Oppositely, when the unlabeled aptamer is used instead of thiol-labeled aptamer in this process, the ATP-aptamer complexes rather than unlabeled aptamer provide greater protection for AuNPs against salt-induced aggregation. It is found that when the aptamer covalently binds to AuNPs, the steric hindrance is dominant for the stabilization of AuNPs; for unlabeled aptamer, the electrostatic repulsion is responsible for their stability, irrespective of whether ATP is present or not. These two different forces lead to the aggregation or dispersion of AuNPs with addition of target in salt solution. Graphical abstractThe impact of two repulsive forces (electrostatic repulsion and steric repulsion) on the stabilization of gold nanoparticles, and its application in fluorescent terbium metal-organic frameworks as a nanoprobe for adenosine triphosphate.
Collapse
Affiliation(s)
- Chao Sun
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China.,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China.,Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shiyu Zhao
- Dalai Nur Sub-bureau of Hulunbuir Ecology and Enviroment Bureau, Dalai Nur District, Hulunbuir, 021410, Inner Mongolia, China
| | - Fei Qu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China. .,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Wenli Han
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China.,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China.,Key Laboratory of Tibetan Medicine Research & Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810001, China
| |
Collapse
|
43
|
Wang H, Zhang Z, Wang H, Guo L, Li L. Metal β-diketonate complexes as highly efficient catalysts for chemical fixation of CO 2 into cyclic carbonates under mild conditions. Dalton Trans 2019; 48:15970-15976. [PMID: 31595278 DOI: 10.1039/c9dt03584b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The potential of metal β-diketonate complexes for the catalysis of the chemical fixation of CO2 into cyclic carbonates at 1 atm CO2 and near room temperature was demonstrated. Their potential for the capture and simultaneous conversion of CO2 in a dilute CO2 stream was also determined. The catalysts were easily synthesized and commercially available. Therefore, this CO2 transformation was less energy- and material-consuming, which made this reaction closer to true "green" chemistry.
Collapse
Affiliation(s)
- Hongmei Wang
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Zulei Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Hailong Wang
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Liping Guo
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Lei Li
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| |
Collapse
|
44
|
Li CP, Zhou H, Wang JJ, Liu BL, Wang S, Yang X, Wang ZL, Liu CS, Du M, Zhou W. Mechanism-Property Correlation in Coordination Polymer Crystals toward Design of a Superior Sorbent. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42375-42384. [PMID: 31647866 DOI: 10.1021/acsami.9b16386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A methodology was developed to design superior sorbents of oxoanions. To integrate the high efficiency of chemisorption, selectivity, and recyclability into one sorbent, understanding the nature of oxoanions-sorbent interactions and the structural evolution of the sorbents is essential. Three cationic Ag(I) coordination polymers (CPs) are synthesized for dichromate (Cr2O72-) removal, and three distinct oxoanion-exchange mechanisms are identified, namely, the replacement, breath, and reconstruction processes, depending on the degree of framework distortion induced by the dichromate-CP interactions. The single crystal to single crystal transformation during the oxoanion exchange has been investigated by using single-crystal X-ray diffraction and energy-dispersive X-ray microanalysis. The replacement process, due to a weak chemisorption, shows excellent recyclability at the cost of reduction of efficiency and selectivity of adsorption. The reconstruction process may achieve a high efficiency and selectivity, but it loses recyclability. Due to the formation of a Ag-O(dichromate) bond and the breathing effect of the framework, the sorbent with the breath mechanism shows both superior efficiency and high recyclability in dichromate removal. The study of perrhenate (ReO4-) removal using the same CPs demonstrates that one CP performing the reconstruction process during dichromate removal turns to the breath process in removal of perrhenate anions. These results of mechanism-property correlation provide an insight into improvement of the methodology to fabricate a superior CP sorbent for oxoanion removal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science , Zhengzhou University of Light Industry , Zhengzhou 450002 , P. R. China
| | - Miao Du
- Henan Provincial Key Laboratory of Surface & Interface Science , Zhengzhou University of Light Industry , Zhengzhou 450002 , P. R. China
| | - Wuzong Zhou
- School of Chemistry , University of St Andrews , St Andrews , Fife KY16 9ST , U.K
| |
Collapse
|
45
|
|
46
|
Huang C, Zhu K, Zhang Y, Shao Z, Wang D, Mi L, Hou H. Directed Structural Transformations of Coordination Polymers Supported Single-Site Cu(II) Catalysts To Control the Site Selectivity of C-H Halogenation. Inorg Chem 2019; 58:12933-12942. [PMID: 31535849 DOI: 10.1021/acs.inorgchem.9b01891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A main difficulty in C-H bond functionalization is to undertake the catalyst control accurately where the reaction takes place. In this work, to achieve highly effective and regioselective single-site catalysts, a three-dimensional (3D) rhombus-like framework of {[Mn(Hidbt)DMF]·H2O}n (1) [H3idbt = 5,5'-(1H-imidazole-4,5-diyl)-bis(2H-tetrazole)] containing coordinated DMF molecules was constructed. For the dissolution-recrystallization structural transformation process, attractive structural transformations proceeded from 1 to a new crystalline species formulated as {[Mn3(idbt)2(H2O)2]·3H2O}n (2) with a 3D windowlike architecture, and then the Mn ions in 2 could be exchanged with Cu ions through cation exchange in a single-crystal to single-crystal fashion to produce the Cu-exchanged product {[Mn2Cu(idbt)2(H2O)2]·3H2O}n (2a), which had a windowlike framework like that of 2. Furthermore, 2 and 2a were used as heterogeneous catalysts for the regioselective C-H halogenation of phenols with N-halosuccinimides (NCS and NBS) to produce the site selective single monohalogenated products. It was found that the catalytic activity and site selectivity of 2a were much higher than those of 2, because the unique structural features of 2a with the uniformly dispersed CuII active centers served as a single-site catalyst with a site-isolated and well-defined platform to promote the C-H halogenation reaction in regiocontrol and guide an orientation that favored the para selectivity during the reaction process.
Collapse
Affiliation(s)
- Chao Huang
- Center for Advanced Materials Research , Zhongyuan University of Technology , Zhengzhou 450007 , P. R. China
| | - Kaifang Zhu
- Center for Advanced Materials Research , Zhongyuan University of Technology , Zhengzhou 450007 , P. R. China
| | - Yingying Zhang
- Center for Advanced Materials Research , Zhongyuan University of Technology , Zhengzhou 450007 , P. R. China
| | - Zhichao Shao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Dandan Wang
- Center for Advanced Materials Research , Zhongyuan University of Technology , Zhengzhou 450007 , P. R. China
| | - Liwei Mi
- Center for Advanced Materials Research , Zhongyuan University of Technology , Zhengzhou 450007 , P. R. China
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| |
Collapse
|
47
|
Di Y, Cui X, Liu Y, Zhou C, Di Y. One novel functional Cd-CPs as luminescent sensor for efficient sensing of Fe3+ cations in aqueous solution. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Ma LN, Lu YK, Shi WJ, Hou L, Wang YY. Two alkaline earth metal coordination polymers based on a new oxamate-dicarboxylate ligand: Selective fluorescence sensing of Fe3+ in aqueous solution. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Liu Y, Ma LN, Shi WJ, Lu YK, Hou L, Wang YY. Four alkaline earth metal (Mg, Ca, Sr, Ba)-based MOFs as multiresponsive fluorescent sensors for Fe3+, Pb2+ and Cu2+ ions in aqueous solution. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Li Y, Liu Y, Lu Y, Ma L, Hou L, Wang Y. Three New MOFs Induced by Organic Linker Coordination Modes: Gas Sorption, Luminescence, and Magnetic Properties. Chem Asian J 2019; 14:2988-2994. [DOI: 10.1002/asia.201900805] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Yong‐Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)Shaanxi Key Laboratory of Physico-Inorganic ChemistryCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Yang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)Shaanxi Key Laboratory of Physico-Inorganic ChemistryCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 P. R. China
- Shaanxi Institute of International Trade & Commerce Xi'an 712046 P. R. China
| | - Yu‐Ke Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)Shaanxi Key Laboratory of Physico-Inorganic ChemistryCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Li‐Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)Shaanxi Key Laboratory of Physico-Inorganic ChemistryCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)Shaanxi Key Laboratory of Physico-Inorganic ChemistryCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)Shaanxi Key Laboratory of Physico-Inorganic ChemistryCollege of Chemistry & Materials ScienceNorthwest University Xi'an 710069 P. R. China
| |
Collapse
|