1
|
Li DM, Zuo R, Wang J, Le Z. The Designs and Applications of Tetraphenylethylene Macrocycles and Cages. Chemistry 2025; 31:e202403715. [PMID: 39663182 DOI: 10.1002/chem.202403715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Macrocycles and cages are very attractive for the development of functional materials due to their unique inner cavities. Building blocks with interesting functions and synthetic conveniences are especially attractive. Tetraphenylethylene (TPE) is such an entity with C2 symmetry and tetrakis-functional groups easily modifiable. As a typical aggregation-induced emission (AIE) active compound, TPE perfectly unites the functions of fluorescence and structural building blocks together. The unique marriage of the two roles into one component makes TPE an ideal platform for the development of functional molecular systems including macrocycles and cages. The TPE macrocycles and cages are not merely a simple combination of those two but also generate added values unseen in either component alone. The fluorescence properties of TPE in macrocycles/cages are greatly improved or modulated, which makes them more suitable for various applications compared to their linear counterparts. In this review, the chemistry and design principles of TPE macrocycles/cages are surveyed first. The unique properties of those compounds are also discussed to provide general guidance for their functionalization. A brief discussion of their applications focusing on the utilization of their unique fluorescence is also presented. In the last, outlooks and future perspectives of TPE macrocycles/cages are provided for further developments.
Collapse
Affiliation(s)
- Dong-Mi Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471000, China
| | - Ruhai Zuo
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu avenue, Nanchang, 330031, China
| | - Jinhua Wang
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu avenue, Nanchang, 330031, China
| | - Zhiping Le
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu avenue, Nanchang, 330031, China
| |
Collapse
|
2
|
Xu Y, Li R, Liang F, Peng X, Liu YA, Jia F, Wen K. Ortho-Functionalization of Pillar[4]arene[1]benzoquinone Monoxime via Selective 1,4-Addition of Grignard Reagents. Org Lett 2025. [PMID: 39849305 DOI: 10.1021/acs.orglett.4c04564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Ortho-functionalization of pillar[n]arenes has been a formidable challenge, partially due to the fragility of their macrocyclic skeletons. In this concise report, we describe a facile synthetic method for monoarylation/alkylation at the position ortho to the oxime functionality in pillar[4]arene[1]benzoquinone monoxime (1) via addition of Grignard reagents. The described method enables the creation of various mono-ortho-alkyl/aryl-substituted pillar[5]arene derivatives that were previously inaccessible.
Collapse
Affiliation(s)
- Yuxuan Xu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China
| | - Runmei Li
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Fengjun Liang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Xiaolong Peng
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Yahu A Liu
- Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California 92127, United States
| | - Fei Jia
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Ke Wen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| |
Collapse
|
3
|
Han XN, Han Y, Chen CF. Fluorescent Macrocyclic Arenes: Synthesis and Applications. Angew Chem Int Ed Engl 2025:e202424276. [PMID: 39814606 DOI: 10.1002/anie.202424276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Fluorescent macrocyclic arenes have attracted increasing interest in macrocyclic and supramolecular chemistry due to their exceptional photophysical properties and versatile applications. Classical macrocyclic arenes modified with fluorescent groups at the upper or bottom rims have long provided valuable platforms across various fields. Recently, a large number of novel fluorescent macrocyclic arenes directly composed of polycyclic aromatic or heteroaromatic building blocks including naphthalene, anthracene, tetraphenylethene, pyrene, fluorene, carbazole, acridan, phenothiazine, coumarin, triphenylamine, benzothiadiazole and so on, have been reported, and they have shown specific fluorescent property, and also exhibited broad applications in molecular recognition, sensing, bioimaging and functional materials. In this review, we focus on the recent advances in the synthesis and applications of fluorescent macrocyclic arenes containing polycyclic aromatic or heteroaromatic skeletons emerged in the past decade. By categorizing these fluorescent macrocyclic arenes based on the different building blocks, this review provides a comprehensive summary of their synthesis, properties and applications.
Collapse
Affiliation(s)
- Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Xue W, Liu Y, Li H, Ling X, Zhao B, Yin Y. Step Cyclization to Give Part Belt Oxygen-Functionalized Pillar[6,10]arenes. Org Lett 2025; 27:528-532. [PMID: 39733441 DOI: 10.1021/acs.orglett.4c04607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Part belt oxygen-functionalized pillar[6,10]arenes are synthesized by step cyclization. An oxygen-substituted tetramer and hexamer have been prepared to construct the O3 pillar[6]arene 4 via a hexamer cyclization reaction and the O6 pillar[10]arene 7 through a [4 + 1+4 + 1] cyclization reaction. X-ray crystallographic studies reveal that both macrocycles have a large cavity and indicate that the part belt oxygen-functionalized pillar[6,10]arenes have both similar cyclic structures and certain differences in configuration compared to pillararene. A variable-temperature 1H NMR experiment also demonstrated the structure differences between O3 pillar[6]arene 4 and traditional pillararene.
Collapse
Affiliation(s)
- Weijian Xue
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Yuhang Liu
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Huiqian Li
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Xiangyu Ling
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Bing Zhao
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Yanbing Yin
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| |
Collapse
|
5
|
Li E, Lin T, Dai S, Chen C, Lyu CK, Xie H, Zhang J, Lam JWY, Tang BZ, Zhu J, Lin N. Single-Molecule Resolved Conformational and Orbital Symmetry Breaking in Tetraphenylethylene-Based Macrocycles. J Am Chem Soc 2024; 146:33956-33963. [PMID: 39611652 DOI: 10.1021/jacs.4c12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Tetraphenylethylene (TPE) is a prototype aggregate-induced emission molecule. TPE-based conjugated macrocycles exhibit unique optical properties due to their peculiar cyclic topology. Because the symmetry of macrocycles strongly affects their photophysical properties, here we report a single-molecule study of the structures and orbitals of two TPE-based macrocycles of (C26H18)4 and (C26H18)6. Using scanning tunneling microscopy and spectroscopy, we discover that both macrocycles undergo spontaneous symmetry breaking in their conformations and frontier orbitals. The computational analyses reveal that the symmetry breaking is driven by a subtle interplay of higher extended conjugation between phenyl and node carbon atoms and conformation flexibility of the macrocycles. The observed symmetry breaking in TPE-based macrocycles is expected to strongly alter their photophysical properties.
Collapse
Affiliation(s)
- En Li
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Tao Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Songshan Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengyi Chen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Cheng-Kun Lyu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Huilin Xie
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jianyu Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jacky Wing Yip Lam
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen) 518172, Guangdong, China
| | - Jun Zhu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen) 518172, Guangdong, China
| | - Nian Lin
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
6
|
Shi TH, Akine S, Ohtani S, Kato K, Ogoshi T. Friedel-Crafts Acylation for Accessing Multi-Bridge-Functionalized Large Pillar[n]arenes. Angew Chem Int Ed Engl 2024; 63:e202318268. [PMID: 38108597 DOI: 10.1002/anie.202318268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Pillar[n]arenes can be constructed using a Friedel-Crafts alkylation process. However, due to the reversible nature of the alkylation, mixture of large pillar[n]arenes (n≥7) are obtained as minor products, and thus laborious purification are necessary to isolate the larger pillar[n]arenes. Moreover, inert methylene bridges are introduced during the alkylation process, and the multi-functionalization of the bridges has never been investigated. Herein, an irreversible Friedel-Crafts acylation is used to prepare pillar[n]arenes. Due to the irreversible nature of the acylation, the reaction of precursors bearing carboxylic acids and electron-rich arene rings results in a size-exclusive formation of pillar[n]arenes, in which the ring-size is determined by the precursor length. Because of this size-selective formation, laborious separation of undesired macrocycles is not necessary. Moreover, the bridges of pillar[n]arenes are selectively installed with reactive carbonyl groups using the acylation method, whose positions are determined by the precursor used. The carbonyl bridges can be easily converted into versatile functional groups, leading to various laterally modified pillar[n]arenes, which cannot be accessed by the alkylation strategy.
Collapse
Affiliation(s)
- Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Ishikawa, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Ishikawa, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Ishikawa, Japan
| |
Collapse
|
7
|
Coady Z, Smith JN, Wilson KA, White NG. Stereoselective Single Step Cyclization to Give Belt-Functionalized Pillar[6]arenes. J Org Chem 2024; 89:1397-1406. [PMID: 38214497 DOI: 10.1021/acs.joc.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Two macrocycles were synthesized through cyclization reactions of secondary benzylic alcohols, giving pillar[6]arenes with a methyl substituent at each belt position. These macrocycles form stereoselectively with only the rtctct isomer with alternating up and down orientations of the belt methyl groups definitively identified. Isolated yields were modest (7 and 9%), but the macrocycles are prepared in a single step from either a commercially available alcohol or a very readily prepared precursor. X-ray crystal structures of the macrocycles indicate they have a capsule-like structure, which is far from the conventional pillar shape. Density functional theory calculations reveal that the energy barrier required to obtain the pillar conformation is significantly higher for these belt-functionalized macrocycles than for conventional belt-unfunctionalized pillar[6]arenes.
Collapse
Affiliation(s)
- Zeke Coady
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jordan N Smith
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Katie A Wilson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
8
|
Zhang Q, Meng X, Qu J, Zhao F, Liao X, Li Z, He Y, Zhang X, Cao Z. Conformer aggregates exhibit dual wavelength emissions on chiral binaphthyl-based triphenylethylenes and acetone detection. Chemistry 2023:e202303708. [PMID: 38088216 DOI: 10.1002/chem.202303708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 12/23/2023]
Abstract
The study on structure-property relationship has been a significant focus in the field of organic molecular luminescence. In the present work, three chiral binaphthyl-based triphenylethylene (HTPE) derivatives were prepared through condensation reactions. Despite their similar structures, these compounds exhibited distinct luminescent properties. Diphenylmethane-derived HTPE displayed dual-state emissions, characterized by dual-wavelength emissions which were insensitive to the polarity of solvents. The dual emissions in solution state could be attributed to the different locally excited (LE) excitons. However, upon aggregation, two stable conformers were generated, probably leading to different emission peaks. In contrast, dibenzocycloheptadiene-derived HTPE aggregates showed only a single emission peak. Surprisingly, fluorene-derived HTPE exhibited obvious luminescence in neither solution nor aggregate states due to inherent π-π interactions. These conclusions were substantiated by X-ray analysis, spectroscopic analysis, and theory calculations. Application studies demonstrated that fluorescence on/off switches could be achieved through exposure to acetone. More importantly, trace amounts of acetone could be detected using luminescent materials in both organic and aqueous phases with a detection limit of 0.08 %. Thus, this work not only presents a strategy for designing chiral triphenylethylene fluorophores but also provides valuable information for dual wavelength emissions resulting from two stable conformations.
Collapse
Affiliation(s)
- Qing Zhang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xin Meng
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Jun Qu
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Fapeng Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xiaoming Liao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zan Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Yuanchun He
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xiaoxiang Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Ziping Cao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| |
Collapse
|
9
|
Wang K, Zhang R, Song Z, Zhang K, Tian X, Pangannaya S, Zuo M, Hu X. Dimeric Pillar[5]arene as a Novel Fluorescent Host for Controllable Fabrication of Supramolecular Assemblies and Their Photocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206897. [PMID: 36683255 PMCID: PMC10037968 DOI: 10.1002/advs.202206897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
A dimeric fluorescent macrocycle m-TPE Di-EtP5 (meso-tetraphenylethylene dimeric ethoxypillar[5]arene) is synthesized based on the meso-functionalized ethoxy pillar[5]arene. Through the connectivity of two pillar[5]arenes by CC double bond, the central tetraphenylethylene (TPE) moiety is simultaneously formed. The resultant bicyclic molecule not only retains the host-guest properties of pillararenes but also introduces the interesting aggregation-induced emission properties inherent in the embedded TPE structure. Three dinitrile derivatives with various linkers are designed as guests (G1, G2, and G3) to form host-guest assemblies with m-TPE Di-EtP5. The morphological control and fluorescence properties of the assemblies are successfully realized. G1 with a shorter alkyl chain as the linker completely threads into the cavities of the host. G2, due to its longer chain length, forms a linear supramolecular polymer upon binding to m-TPE Di-EtP5. G3 differs from G2 by possessing a bulky phenyl group in the middle of the chain, which can be further assembled with m-TPE Di-EtP5 to form supramolecular layered polymer and precipitated out in solution, and can be efficiently applied to photocatalytic reactions.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Rongbo Zhang
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Zejing Song
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Kaituo Zhang
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Xueqi Tian
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Srikala Pangannaya
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Minzan Zuo
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Xiao‐Yu Hu
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| |
Collapse
|
10
|
Zhang T, Wang K, Huang X, Jiao J, Hu XY. Pillar[5]arene Derivatives Embedded with Aggregation-Induced Emission Luminogens and Their Fluorescence Regulation. Chemistry 2023; 29:e202203738. [PMID: 36595380 DOI: 10.1002/chem.202203738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Through McMurry coupling reaction, three meso-position functionalized pillar[5]arene derivatives (H-1, H-2, and H-3) have been successfully prepared by embedding aggregation-induced emission luminogens (AIEgens, diphenyldibenzofulvene (DPDBF) and tetraphenylethylene (TPE)) into the skeleton of supramolecular macrocycles. H-1, bearing [15 ]paracyclophane ([15 ]PCP) and DPDBF moiety, exhibits yellow emission and demonstrates obvious AIE effect. In order to further improve the host-guest properties of this type of structure, H-2 and H-3 are prepared by replacing the [15 ]PCP moiety with pillar[5]arene backbone, both of which show significant AIE effect and excellent host-guest complexation properties with pyrazine salt guest G-1 and 1,4-dicyanobutane G-2. Our findings indicate that G-1 can decrease the fluorescence intensity of the AIE macrocycles, while G-2 can increase their fluorescence intensity in solution.
Collapse
Affiliation(s)
- Tao Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Xingyi Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Jianmin Jiao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| |
Collapse
|
11
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim-Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022; 61:e202204589. [PMID: 35451151 DOI: 10.1002/anie.202204589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/06/2022]
Abstract
A "rim-differentiated" pillar[6]arene (RD-P[6]) was obtained successfully, with the assistance of a dimeric silver trifluoroacetate template, among eight different constitutional isomers in a direct and regioselective manner. The solid-state conformation of this macrocycle could switch from the 1,3,5-alternate to a truly rim-differentiated one upon guest inclusion. This highly symmetric RD-P[6] not only hosts metal-containing molecules inside its cavity, but also can form a pillar[6]arene-C60 adduct through co-crystallization on account of donor-acceptor interactions. The development of synthetic strategies to desymmetrize pillararenes offers new opportunities for engineering complex molecular architectures and organic electronic materials.
Collapse
Affiliation(s)
- Yang Chao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Tushar Ulhas Thikekar
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Wangjian Fang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Jiong Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Nianfeng Ouyang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yan Gao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| |
Collapse
|
12
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
13
|
Wang K, Huang X, Mohan M, Zhang K, Zuo M, Shen Y, Zhao Y, Niemeyer J, Hu XY. Tetraphenylethylene-embedded [1 5]paracyclophanes: AIEgen and macrocycle merged novel supramolecular hosts used for sensing Ni 2+ ions. Chem Commun (Camb) 2022; 58:6196-6199. [PMID: 35506735 DOI: 10.1039/d2cc01491b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transformation of [15]paracyclophanes ([15]PCP) into fluorophores has been achieved by embedding tetraphenylethene (TPE) units into their skeletons at the meso-positions. The obtained two hosts demonstrated distinct aggregation-induced emission (AIE) properties and their fluorescence could be selectively quenched by Ni2+ ions.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Xingyi Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Makesh Mohan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Kaituo Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Yuhong Shen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Yue Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| |
Collapse
|
14
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim‐Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Chao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | | | - Wangjian Fang
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Rong Chang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Jiong Xu
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Nianfeng Ouyang
- Xiamen University College of Chemistry & Chemical Engineering CHINA
| | - Jun Xu
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Yan Gao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Minjie Guo
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Han Zuilhof
- WUR: Wageningen University & Research Chemistry NETHERLANDS
| | - Andrew Chi-Hau Sue
- Xiamen University College of Chemistry and Chemical Engineering 422 Siming S. Rd.Siming Dist. 361005 Xiamen CHINA
| |
Collapse
|
15
|
Wang Z, Liu YA, Yang H, Hu WB, Wen K. ortho-Functionalization of Pillar[5]arene: An Approach to Mono- ortho-Alkyl/Aryl-Substituted A1/A2-Dihydroxypillar[5]arene. Org Lett 2022; 24:1822-1826. [PMID: 35225626 DOI: 10.1021/acs.orglett.2c00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the fact that the rim and lateral functionalizations of pillar[n]arenes have been well explored, ortho-functionalization has rarely been realized. In this work, we report a facile method of introducing a single functionality ortho to the hydroxyl group in A1/A2-dihydroxypillar[5]arene via a Grignard addition to pillar[4]arene[1]quinone followed by a dienone-phenol rearrangement. The described ortho-alkylation/arylation method allowed formation of various mono ortho-alkyl/aryl-substituted A1/A2-dihydroxypillar[5]arenes previously difficult to obtain.
Collapse
Affiliation(s)
- Zhuo Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yahu A Liu
- Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California 92127, United States
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Bo Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ke Wen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
16
|
Hexnut[12]arene and its derivatives: Synthesis, host-guest properties, and application as nonporous adaptive crystals. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Zhou Y, Tang H, Li ZH, Xu L, Wang L, Cao D. Bio-inspired AIE pillar[5]arene probe with multiple binding sites to discriminate alkanediamines. Chem Commun (Camb) 2021; 57:13114-13117. [PMID: 34766614 DOI: 10.1039/d1cc05153a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two functionalized pillar[5]arenes (H1 and H2) with significant AIE properties were synthesized. H2 is an excellent probe to selectively detect specific alkanediamines owing to its multiple binding sites, which result in the enhancement of emission based on the AIE mechanism and the induced-fit mechanism, and provides a new strategy to develop probes with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yibin Zhou
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Zhao-Hui Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Linxian Xu
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
18
|
Ling L, Jiang S, Lan S, Zhang C, Ma D. Step-Growth Cyclo-Oligomerization for the Preparation of Functionalized Pillar[6]arenes with Alternating Methylene Bridge Substitutions. Org Lett 2021; 23:9327-9331. [PMID: 34792361 DOI: 10.1021/acs.orglett.1c03736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Methylene-bridge-substituted pillar[6]arenes (PA[6]) are synthesized by step-growth cyclo-oligomerization. Dimers, trimers, tetramers, and hexamers with substituted methylene bridges are synthesized. Hexamers are converted to PA[6] derivatives with alternating methylene bridge substitutions by ring-closing reactions. PA[6] derivatives are further modified with pyrene groups or carboxylate groups by Suzuki-Miyaura coupling reactions. The modifications render PA[6] fluorescent or water-soluble. A host-guest chemistry study confirms that the water-soluble PA[6] derivative is a high-affinity host toward suitable guests in water.
Collapse
Affiliation(s)
- Li Ling
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Siyang Jiang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Shang Lan
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Chun Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.,School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang 318000, China
| |
Collapse
|
19
|
Fan Y, Hu K, Nan J, Shen Y. Tetraphenylethene-Embedded Pillar[5]arene and [15]Paracyclophane: Distorted Cavities and Host-Guest Binding Properties. Molecules 2021; 26:molecules26195915. [PMID: 34641459 PMCID: PMC8512412 DOI: 10.3390/molecules26195915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Two aggregation-induced emission (AIE) macrocycles (DMP[5]-TPE and PCP[5]-TPE) were prepared by embedding Tetraphenylethene (TPE) unit into the skeletons of Dimethoxypillar[5]arene (DMP[5]) and [15]Paracyclophane ([15]PCP) at meso position, respectively. In crystal, the PCP[5]-TPE showed a distorted cavity, and the incubation of hexane inside the DMP[5]-TPE cavity caused a distinct change in the molecular conformation compared to PCP[5]-TPE. There was no complexation between PCP[5]-TPE and 1,4-dicyanobutane (DCB). UV absorption experiments showed the distorted cavity of DMP[5]-TPE hindered association with DCB.
Collapse
|
20
|
Tian X, Zuo M, Niu P, Velmurugan K, Wang K, Zhao Y, Wang L, Hu XY. Orthogonal Design of a Water-Soluble meso-Tetraphenylethene-Functionalized Pillar[5]arene with Aggregation-Induced Emission Property and Its Therapeutic Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37466-37474. [PMID: 34314153 DOI: 10.1021/acsami.1c07106] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An orthogonal strategy was utilized for synthesizing a novel water-soluble pillar[5]arene (m-TPEWP5) with tetraphenylethene-functionalized on the bridged methylene group (meso-position) of the pillararene skeleton. The obtained macrocycle exhibit both the aggregation-induced emission (AIE) effect and interesting host-guest property. Moreover, it can be made to bind with a tailor-made camptothecin-based prodrug guest (DNS-G) to form AIE-nanoparticles based on host-guest interaction and the fluorescence resonance energy transfer process for fabricating a drug delivery system. This novel type of water-soluble AIE-active macrocycle can serve as a potential fluorescent material for cancer diagnosis and therapy. In addition, the present orthogonal strategy for designing meso-functionalized aromatic macrocycles may pave a new avenue for creating novel supramolecular structures and functional materials.
Collapse
Affiliation(s)
- Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Pengbo Niu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yue Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
21
|
Cai Y, Yan X, Wang S, Zhu Z, Cen M, Ou C, Zhao Q, Yan Q, Wang J, Yao Y. Pillar[5]arene-Based 3D Hybrid Supramolecular Polymer for Green Catalysis in Water. Inorg Chem 2021; 60:2883-2887. [PMID: 33570384 DOI: 10.1021/acs.inorgchem.0c03645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pillar[n]arene-based supramolecular polymers have attracted great interest because of their tunable morphologies and external stimuli responsiveness. However, most of the investigations of supramolecular polymers previously reported were focused on their formation and transformation, and investigations on their applications are rare. Herein, we designed and prepared hybrid polymeric materials by incorporating Pd nanoparticles into a supramolecular polymer, constructed from a pillar[5]arene dimer and a three-arm guest. The obtained hybrid polymer was fully characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive X-ray mapping, and X-ray diffraction technologies. Importantly, the hybrid supramolecular polymeric materials exhibited desirable catalytic activity for reductions of toxic nitroaromatics and C-C bond-forming Suzuki-Miyaura reaction in aqueous solution.
Collapse
Affiliation(s)
- Yan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Siyuan Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zhiwen Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Qian Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
22
|
Chen YY, Jiang XM, Gong GF, Yao H, Zhang YM, Wei TB, Lin Q. Pillararene-based AIEgens: research progress and appealing applications. Chem Commun (Camb) 2021; 57:284-301. [DOI: 10.1039/d0cc05776b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pillararene-based AIEgens and AIE materials, constructed using different assembly forms, show attractive applications in various areas.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Mei Jiang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Guan-Fei Gong
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
23
|
Knyazeva IR, Gerasimova TP, Kolesnikov IE, Syakaev VV, Katsyuba SA, Burilov AR. Photophysical properties of new anthracene-ended calix[4]resorcinols. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Guo H, Ye J, Zhang Z, Wang Y, Yuan X, Ou C, Ding Y, Yan C, Wang J, Yao Y. Pillar[5]arene-Based [2]Rotaxane: Synthesis, Characterization, and Application in a Coupling Reaction. Inorg Chem 2020; 59:11915-11919. [PMID: 32815726 DOI: 10.1021/acs.inorgchem.0c01752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanically interlocked molecules are a class of smart supramolecular species because of their interesting topological structure and application in various areas, such as biology and nanoscience. In this work, we used "multicomponent reaction" to fabricate a new [2]rotaxane based on pillar[5]arene from different small-sized molecules. The molecular structure of the obtained [2]rotaxane R was confirmed by 1H and 13C NMR, high-resolution electrospray ionization mass spectrometry, two-dimensional nuclear Overhauser effect spectroscopy, and density functional theory studies. Interestingly, the [2]rotaxane-based organometallic cross-linked catalyst (Pd@R) was easily constructed via the coordination between triazole groups and Pd(NO3)2. Pd@R proved to be a good catalyst for the Suzuki-Miyaura coupling reaction with excellent stability and repeatability.
Collapse
Affiliation(s)
- Hao Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. China.,School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Junmei Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. China
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
25
|
Lei S, Xiao H, Zeng Y, Tung C, Wu L, Cong H. BowtieArene: A Dual Macrocycle Exhibiting Stimuli‐Responsive Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sheng‐Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
26
|
Lei S, Xiao H, Zeng Y, Tung C, Wu L, Cong H. BowtieArene: A Dual Macrocycle Exhibiting Stimuli‐Responsive Fluorescence. Angew Chem Int Ed Engl 2020; 59:10059-10065. [DOI: 10.1002/anie.201913340] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Sheng‐Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
27
|
Zhang M, Li J, Yu L, Wang X, Bai M. Tuning the fluorescence based on the combination of TICT and AIE emission of a tetraphenylethylene with D–π–A structure. RSC Adv 2020; 10:14520-14524. [PMID: 35497165 PMCID: PMC9051877 DOI: 10.1039/d0ra00107d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
A simple D–π–A structured tetraphenylethylene with two electron-rich methyloxy groups and two electron withdrawing cyano groups, which features both twisted intramolecular charge-transfer (TICT) and aggregation-induced emission (AIE) properties, namely TPEOMeCN has been prepared. The emission of TPEOMeCN examined in various solvents is dependent on the polarities of solvents, which indicates the TICT character. The emission intensity of the compound also enhances with the increasing water fraction in H2O–DMSO mixtures, demonstrating the typical AIE property. Excitingly, the TICT and AIE emission could be observed separately or simultaneously by adjusting the water fraction or viscosity of the solvent. Encouragingly, the combined emission of the TPEOMeCN derived from this single molecule could be readily tuned via regulating the viscosity of the system, resulting in a broad emission peak which covers the visible spectrum (400–700 nm). This work provides a general strategy for designing molecules combining TICT emission and AIE for application as full-color emitters. The combination of the TICT and AIE properties in a tetraphenylethylene based molecule with D–π–A structure is observed by simply adjusting the viscosity of the solvent.![]()
Collapse
Affiliation(s)
- Mengxing Zhang
- Marine College
- Shandong University, Weihai
- Weihai 264209
- People's Republic of China
| | - Jiale Li
- Marine College
- Shandong University, Weihai
- Weihai 264209
- People's Republic of China
| | - Lirong Yu
- Marine College
- Shandong University, Weihai
- Weihai 264209
- People's Republic of China
| | - Xi Wang
- Marine College
- Shandong University, Weihai
- Weihai 264209
- People's Republic of China
| | - Ming Bai
- Marine College
- Shandong University, Weihai
- Weihai 264209
- People's Republic of China
- SDU-ANU Joint Science College
| |
Collapse
|
28
|
Yao H, Zhou Q, Wang J, Chen YY, Kan XT, Wei TB, Zhang YM, Lin Q. Highly selective Fe 3+ and F -/H 2PO 4- sensor based on a water-soluble cationic pillar[5]arene with aggregation-induced emission characteristic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117215. [PMID: 31158772 DOI: 10.1016/j.saa.2019.117215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/25/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
A water-soluble cationic pillar[5]arene (CWP5) without lager conjugated construction was first reported as a novel pillar[5]arene-based aggregation-induced emission luminogen (AIEgen), which showed a remarkable aggregation-induced emission (AIE) with the concentration increasing. The AIE effect of CWP5 has affected by different solvent, it had the lowest critical aggregation concentration (CAC) value and highest fluoresence emission intensity in DMSO solution. Simultaneously, CWP5 can serve as a chemosensor for the successively fluorescent detection of Fe3+ and F-/H2PO4- with high sensitivity and selectivity. A rewritable portable test kit made from CWP5 provides a possibility to on-site detection and manufacture of encryption and decryption materials.
Collapse
Affiliation(s)
- Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Qi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Jiao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Xiao-Tong Kan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
29
|
Han C, Zhao D, Lü Z, Zhan F, Zhang L, Dong S, Jin L. Synthesis of a Difunctionalized Pillar[5]arene with Hydroxyl and Amino Groups at A1/A2 Positions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengyou Han
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Dezhi Zhao
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Zhifeng Lü
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Fengtao Zhan
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Liangliang Zhang
- Institute of Flexible Electronics; College of Science; Northwestern Polytechnical University; 710072 Xi'an Shaanxi P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering; College of Science; Hunan University; 410082 Changsha Hunan P. R. China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology; School of Life Sciences; Northwestern Polytechnical University; 710072 Xi'an Shaanxi P. R. China
| |
Collapse
|
30
|
Sun S, Lu D, Huang Q, Liu Q, Yao Y, Shi Y. Reversible surface activity and self-assembly behavior and transformation of amphiphilic ionic liquids in water induced by a pillar[5]arene-based host-guest interaction. J Colloid Interface Sci 2019; 533:42-46. [DOI: 10.1016/j.jcis.2018.08.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022]
|
31
|
Kakuta T, Yamagishi TA, Ogoshi T. Stimuli-Responsive Supramolecular Assemblies Constructed from Pillar[ n]arenes. Acc Chem Res 2018; 51:1656-1666. [PMID: 29889488 DOI: 10.1021/acs.accounts.8b00157] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular assemblies are constructed from at least two molecules through various noncovalent bonding modes such as hydrogen bonding, cationic-anionic electrostatic interactions, aromatic interactions, metal-ligand bonding, hydrophobic-hydrophilic interactions, and charge-transfer interactions. Owing to the dynamic and reversible nature of these noncovalent bonds, the assembly and disassembly of these molecules are dynamic and reversible. Molecules self-assemble to form the most conformationally and thermally stable structures through these noncovalent interactions. The formation of these noncovalent interactions is affected by the properties of the environment such as its polarity, temperature, and pressure; thus, the structure of the assembled compounds is determined by the environment. The sizes and shapes of the supramolecular assemblies play an important role in determining their functions. Therefore, controlling their size and shape is important. Introducing stimuli-responsive groups into supramolecular assemblies is a useful way to control their size and shape. Controlling supramolecular structures and motions with external stimuli, i.e., periodic and rotational motions on the molecular scale, structures, and molecular weights at the nano- and micrometer scales, visible shrinking/expansion, and adhesive behavior at a macroscopic scale, is very useful. Macrocyclic host molecules are useful building blocks for the construction of stimuli-responsive supramolecular assemblies because their host ability can be tuned by changing the shape and electron density of the cavity. The size-dependent hosting ability of the cavity is similar to the lock-and-key model in biological systems. Stimuli-responsive supramolecular assemblies have been developed by using macrocyclic compounds such as cyclodextrins, cucurbit[ n]urils, calix[ n]arenes, crown ethers, and related macrocycles. We successfully developed new pillar-shaped macrocyclic hosts in 2008, which were coined pillar[ n]arenes. The unique structural features of pillar[ n]arenes allowed new properties. This year, 2018, marks one decade of research into pillar[ n]arene chemistry, and in that time the properties of pillar[ n]arenes have been widely investigated by various scientists. Thanks to their efforts, the characteristic properties of pillar[ n]arenes that result from their pillar-shaped structures have been elucidated. Their host ability, the chirality of their pillar-shaped structure, and their versatile functionality are unique features of pillar[ n]arenes not seen in other well-known hosts, and these properties are very useful for the creation of new stimuli-responsive supramolecular assemblies. In this Account, we describe photo-, pH- and redox-responsive supramolecular assemblies based on pillar[ n]arenes. First, we discuss molecular-scale stimuli-responsive supramolecular assemblies, i.e., pseudorotaxanes, pseudocatenanes, and supramolecular polymers. We also highlight subnanometer- and micrometer-scale stimuli-responsive supramolecular assembles such as particles and vesicles. Finally, we discuss the macroscopic stimuli-responsive structural changes of surfaces and gels. This Account will provide useful information for researchers working on not only pillar[ n]arene chemistry but also the chemistry of other macrocyclic hosts, and it will inspire new discoveries in the field of supramolecular assemblies and systems containing macrocyclic hosts.
Collapse
Affiliation(s)
- Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tada-aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
32
|
Lou D, Lu X, Zhang M, Bai M, Jiang J. Regulating the emission of tetraphenylethenes by changing the alkoxyl linkage length between two neighboring phenyl moieties. Chem Commun (Camb) 2018; 54:6987-6990. [PMID: 29708254 DOI: 10.1039/c8cc01184b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alkoxyl linkages with different carbon lengths are employed to link the two neighboring ortho carbons of the two phenyl moieties at the same ethylene carbon of the tetraphenylethene framework, resulting in successful regulation of the molecular conformation and in turn the emission properties.
Collapse
Affiliation(s)
- Dandan Lou
- Marine College, Shandong University (Weihai), Weihai, 264209, China.
| | | | | | | | | |
Collapse
|
33
|
Meichsner E, Nierengarten I, Holler M, Chessé M, Nierengarten JF. A Fullerene-Substituted Pillar[5]arene for the Construction of a Photoactive Rotaxane. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eric Meichsner
- Laboratoire de Chimie des Matériaux Moléculaires; Ecole Européenne de Chimie, Polymères et Matériaux; Université de Strasbourg et CNRS (LIMA - UMR 7042); 25 rue Becquerel FR-67087 Strasbourg Cedex 2 France
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires; Ecole Européenne de Chimie, Polymères et Matériaux; Université de Strasbourg et CNRS (LIMA - UMR 7042); 25 rue Becquerel FR-67087 Strasbourg Cedex 2 France
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires; Ecole Européenne de Chimie, Polymères et Matériaux; Université de Strasbourg et CNRS (LIMA - UMR 7042); 25 rue Becquerel FR-67087 Strasbourg Cedex 2 France
| | - Matthieu Chessé
- Laboratoire de Chimie des Matériaux Moléculaires; Ecole Européenne de Chimie, Polymères et Matériaux; Université de Strasbourg et CNRS (LIMA - UMR 7042); 25 rue Becquerel FR-67087 Strasbourg Cedex 2 France
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires; Ecole Européenne de Chimie, Polymères et Matériaux; Université de Strasbourg et CNRS (LIMA - UMR 7042); 25 rue Becquerel FR-67087 Strasbourg Cedex 2 France
| |
Collapse
|
34
|
Xu L, Wang R, Cui W, Wang L, Meier H, Tang H, Cao D. Stronger host–guest binding does not necessarily give brighter particles: a case study on polymeric AIEE-tunable and size-tunable supraspheres. Chem Commun (Camb) 2018; 54:9274-9277. [DOI: 10.1039/c8cc04905j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compared with the tritopic guest without chains, the tritopic guest with flexible alkyl chains bound to the polymeric host more strongly and induced the formation of larger but duller supraspheres.
Collapse
Affiliation(s)
- Linxian Xu
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Rongrong Wang
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Wei Cui
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Herbert Meier
- Institute of Organic Chemistry
- University of Mainz
- Mainz D-55099
- Germany
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
35
|
Feng HT, Yuan YX, Xiong JB, Zheng YS, Tang BZ. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem Soc Rev 2018; 47:7452-7476. [DOI: 10.1039/c8cs00444g] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Syntheses, photophysical properties and applications of macrocycles and cages based on tetraphenylethylene with aggregation-induced emission (AIE) effect.
Collapse
Affiliation(s)
- Hai-Tao Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Ying-Xue Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Jia-Bin Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Yan-Song Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Ben Zhong Tang
- Department of Chemistry
- The Hong Kong University of Science & Technology
- Kowloon
- China
| |
Collapse
|