1
|
Guo W, Chai DF, Li J, Yang X, Fu S, Sui G, Zhuang Y, Guo D. Strain Engineering for Electrocatalytic Overall Water Splitting. Chempluschem 2024; 89:e202300605. [PMID: 38459914 DOI: 10.1002/cplu.202300605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
Strain engineering is a novel method that can achieve superior performance for different applications. The lattice strain can affect the performance of electrochemical catalysts by changing the binding energy between the surface-active sites and intermediates and can be affected by the thickness, surface defects and composition of the materials. In this review, we summarized the basic principle, characterization method, introduction strategy and application direction of lattice strain. The reactions on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are focused. Finally, the present challenges are summarized, and suggestions for the future development of lattice strain in electrocatalytic overall water splitting are put forward.
Collapse
Affiliation(s)
- Wenxin Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Yan Zhuang
- Mat Sci & Engn, Jiamusi, 154007, Heilongjiang, Peoples R China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
2
|
Du Y, Xie F, Lu M, Lv R, Liu W, Yan Y, Yan S, Zou Z. Continuous strain tuning of oxygen evolution catalysts with anisotropic thermal expansion. Nat Commun 2024; 15:1780. [PMID: 38418515 PMCID: PMC10901830 DOI: 10.1038/s41467-024-46216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/19/2024] [Indexed: 03/01/2024] Open
Abstract
Compressive strain, downshifting the d-band center of transition metal oxides, is an effective way to accelerate the sluggish kinetics of oxygen evolution reaction (OER) for water electrolysis. Here, we find that anisotropic thermal expansion can produce compressive strains of the IrO6 octahedron in Sr2IrO4 catalyst, thus downshifting its d-band center. Different from the previous strategies to create constant strains in the crystals, the thermal-triggered compressive strains can be real-timely tuned by varying temperature. As a result of the thermal strain accelerating OER kinetics, the Sr2IrO4 exhibits the nonlinear lnjo - T-1 (jo, exchange current density; T, absolute temperature) Arrhenius relationship, resulting from the thermally induced low-barrier electron transfer in the presence of thermal compressive strains. Our results verify that the thermal field can be utilized to manipulate the electronic states of Sr2IrO4 via thermal compressive strains downshifting the d-band center, significantly accelerating the OER kinetics, beyond the traditional thermal diffusion effects.
Collapse
Affiliation(s)
- Yu Du
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Fakang Xie
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Mengfei Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Rongxian Lv
- Industrial Center, Nanjing Institute of Technology, No. 1 Hongjing Avenue, Nanjing, 211167, Jiangsu, PR China
| | - Wangxi Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Yuandong Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China.
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, PR China
| |
Collapse
|
3
|
Zhao W, Xu F, Liu L, Liu M, Weng B. Strain-Induced Electronic Structure Modulation on MnO 2 Nanosheet by Ir Incorporation for Efficient Water Oxidation in Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308060. [PMID: 37845788 DOI: 10.1002/adma.202308060] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Indexed: 10/18/2023]
Abstract
Oxygen electrochemistry plays a key role in renewable energy technologies, such as fuel cells and electrolyzers, but its slow kinetics limits the performance and the commercialization of such devices. Here, a strained MnO2 nanosheet induced by Ir incorporation is developed with optimized electronic structure by a simple hydrothermal method. With the incorporation of Ir, the strain induces elongated Mn─O bond length, and thereby tuning the electronic structure to favor the oxygen evolution reaction (OER) performance. The obtained catalyst exhibits an excellent mass activity of 5681 A g-1 at an overpotential of 300 mV in 0.5 m H2 SO4 , and reaches 50 and 100 mA cm-2 at overpotentials of only 240 and 277 mV, respectively. The catalyst is also stable even at 300 mA cm-2 in 0.5 m H2 SO4 . Using the nanosheet as the OER catalyst and the Pt/C as the hydrogen evolution reaction catalyst, a two-electrode electrolyzer achieves 10 mA cm-2 with only a cell voltage of 1.453 V for overall water splitting in 0.5 m H2 SO4 . This strategy enables the material with high feasibility for practical applications on hydrogen production.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Luqiong Liu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, Hunan Province, 410083, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| |
Collapse
|
4
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Ahmad W, Hou Y, Khan R, Wang L, Zhou S, Wang K, Wan Z, Zhou S, Yan W, Ling M, Liang C. V-Integration Modulates t 2g -Electrons of a Single Crystal Ir 1- x (Ir 0.8 V 0.2 O 2 ) x -BHC for Boosted and Durable OER in Acidic Electrolyte. SMALL METHODS 2023:e2201247. [PMID: 37086116 DOI: 10.1002/smtd.202201247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Realizing efficacious π-donation from the O 2p orbital to electron-deficient metal (t2g ) d-orbitals along with separately tuned adsorption of *O and *OOH, is an imperious pre-requisite for an electrocatalyst design to demonstrate boosted oxygen evolution reaction (OER) performance. To regulate the π-donation and the adsorption ability for *O and *OOH, herein, a facile strategy to modulate the electron transfer from electron-rich t2g -orbitals to electron-deficient t2g -orbitals, via strong π-donation from the π-symmetry lone pairs of the bridging O2- , and the d-band center of a biomimetic honeycomb (BHC)-like nanoarchitecture (Ir1- x (Ir0.8 V0.2 O2 )x -BHC) is introduced. The suitable integration of V heteroatoms in the single crystal system of IrO2 decreases the electron density on the neighboring Ir sites, and causes an upshift in the d-band center of Ir1- x (Ir0.8 V0.2 O2 )x -BHC, weakening the adsorption of *O while strengthening that of *OOH, lowers the energy barrier for OER. Therefore, BHC design demonstrates excellent OER performance (shows a small overpotential of 238 mV at 10 mA cm-2 and a Tafel slope of 39.87 mV dec-1 ) with remarkable stability (130 h) in corrosive acidic electrolyte. This work opens a new corridor to design robust biomimetic nanoarchitectures of modulated π-symmetry (t2g ) d-orbitals and the band structure, to achieve excellent activity and durability in acidic environment.
Collapse
Affiliation(s)
- Waqar Ahmad
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Yunpeng Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Rashid Khan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Shiyu Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Kun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Zhengwei Wan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Wenjun Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Chengdu Liang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| |
Collapse
|
6
|
Li X, Ge L, Du Y, Huang H, Ha Y, Fu Z, Lu Y, Yang W, Wang X, Cheng Z. Highly Oxidized Oxide Surface toward Optimum Oxygen Evolution Reaction by Termination Engineering. ACS NANO 2023; 17:6811-6821. [PMID: 36943144 DOI: 10.1021/acsnano.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The oxygen evolution reaction (OER) is a critical step for sustainable fuel production through electrochemistry process. Maximizing active sites of nanocatalyst with enhanced intrinsic activity, especially the activation of lattice oxygen, is gradually recognized as the primary incentive. Since the surface reconfiguration to oxyhydroxide is unavoidable for oxygen-activated transition metal oxides, developing a surface termination like oxyhydroxide in oxides is highly desirable. In this work, we demonstrate an unusual surface termination of (111)-facet Co3O4 nanosheet that is exclusively containing edge-sharing octahedral Co3+ similar to CoOOH that can perform at approximately 40 times higher current density at 1.63 V (vs RHE) than commercial RuO2. It is found that this surface termination has an oxidized oxygen state in contrast to standard Co-O systems, which can serve as active site independently, breaking the scaling relationship limit. This work forwards the applications of oxide electrocatalysts in the energy conversion field by surface termination engineering.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Liangbing Ge
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yumeng Du
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Haoliang Huang
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhengping Fu
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yalin Lu
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaolin Wang
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| |
Collapse
|
7
|
Parvin S, Bothra N, Dutta S, Maji M, Mura M, Kumar A, Chaudhary DK, Rajput P, Kumar M, Pati SK, Bhattacharyya S. Inverse 'intra-lattice' charge transfer in nickel-molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center. Chem Sci 2023; 14:3056-3069. [PMID: 36937581 PMCID: PMC10016623 DOI: 10.1039/d2sc04617b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
The prevalence of intermetallic charge transfer is a marvel for fine-tuning the electronic structure of active centers in electrocatalysts. Although Pauling electronegativity is the primary deciding factor for the direction of charge transfer, we report an unorthodox intra-lattice 'inverse' charge transfer from Mo to Ni in two systems, Ni73Mo alloy electrodeposited on Cu nanowires and NiMo-hydroxide (Ni : Mo = 5 : 1) on Ni foam. The inverse charge transfer deciphered by X-ray absorption fine structure studies and X-ray photoelectron spectroscopy has been understood by the Bader charge and projected density of state analyses. The undercoordinated Mo-center pushes the Mo 4d-orbitals close to the Fermi energy in the valence band region while Ni 3d-orbitals lie in the conduction band. Since electrons are donated from the electron-rich Mo-center to the electron-poor Ni-center, the inverse charge transfer effect navigates the Mo-center to become positively charged and vice versa. The reverse charge distribution in Ni73Mo accelerates the electrochemical hydrogen evolution reaction in alkaline and acidic media with 0.35 and 0.07 s-1 turnover frequency at -33 ± 10 and -54 ± 8 mV versus the reversible hydrogen electrode, respectively. The corresponding mass activities are 10.5 ± 2 and 2.9 ± 0.3 A g-1 at 100, and 54 mV overpotential, respectively. Anodic potential oxidizes the Ni-center of NiMo-hydroxide for alkaline water oxidation with 0.43 O2 s-1 turnover frequency at 290 mV overpotential. This extremely durable homologous couple achieves water and urea splitting with cell voltages of 1.48 ± 0.02 and 1.32 ± 0.02 V, respectively, at 10 mA cm-2.
Collapse
Affiliation(s)
- Sahanaz Parvin
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Neha Bothra
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Mamoni Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Maglu Mura
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Ashwani Kumar
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Dhirendra K Chaudhary
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
- Centre for Renewable Energy, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V. B. S. Purvanchal University Jaunpur 222003 India
| | - Parasmani Rajput
- Beamline Development and Application Section, Bhabha Atomic Research Center Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushakti Nagar Mumbai-400094 India
| | - Manvendra Kumar
- Department of Physics, Institute of Science, Shri Vaishnav Vidyapeeth Viswavidyalaya Indore 453111 India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| |
Collapse
|
8
|
Mao X, Wang L, Li Y. Machine-Learning-Assisted Discovery of High-Efficient Oxygen Evolution Electrocatalysts. J Phys Chem Lett 2023; 14:170-177. [PMID: 36579956 DOI: 10.1021/acs.jpclett.2c02873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Iridium oxide (IrO2) is the predominant electrocatalyst for the oxygen evolution reaction (OER), but its low efficiency and high cost limit its applications. In this work, we have developed a strategy by combination of high-throughput density functional theory (DFT) and machine learning (ML) techniques for material discovery on IrO2-based electrocatalysts with enhanced OER activity. A total of 36 kinds of metal dopants are considered to substitute for Ir to form binary and ternary metal oxides, and the most stable surface structures are selected from a total of 4648 structures for OER activity evaluation. Utilizing the neural network language model (NNLM), we associate the atomic environment with the formation energies of crystals and free energies of OER intermediates, and finally a series of potential candidates have been screened as the superior OER catalysts. Our strategy could efficiently explore promising electrocatalysts, especially for evaluating complex multi-metallic compounds.
Collapse
Affiliation(s)
- Xinnan Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, People's Republic of China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, People's Republic of China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, People's Republic of China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, People's Republic of China
| |
Collapse
|
9
|
Kong Y, Lu C, Wang J, Ying S, Liu T, Ma X, Yi FY. Molecular Regulation Based on Functional Trimetallic Metal-Organic Frameworks for Efficient Oxygen Evolution Reaction. Inorg Chem 2022; 61:10934-10941. [PMID: 35772081 DOI: 10.1021/acs.inorgchem.2c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Metal-organic frameworks (MOFs) as classic crystalline porous materials have attracted great interest in the catalytic field. However, how to realize molecular regulation of the MOF structure to achieve a remarkable oxygen evolution reaction (OER) electrocatalyst is still a challenge. Herein, we designed several series of special MOF materials to explore the relationship between the structure and properties as well as the related reactive mechanism. First, various metal centers, including Fe, Co, Ni, Zn, and Mg, were utilized to construct the first series of trimetallic MOF materials, namely, M3-MOF-BDC, where BDC = 1,4-benzenedicarboxylic acid, also known as terephthalic acid. Among of them, Fe3-MOF-BDC shows the best OER performance and only needs an overpotential of 312 mV at 10 mA cm-2. Then, functional BDC-X ligands (X = NH2, OH, NO2, DH) with various characteristic groups were selected to construct a new series, namely, Fe3-MOF-BDC-X, to further improve its OER electrocatalytic performance. As expected, Fe3-MOF-BDC-NH2 exhibited a greatly enhanced OER performance with ultralow Tafel slopes of 45 mV dec-1 and overpotentials of 280 mV at 10 mA cm-2 when the BDC-NH2 ligand was adopted, even superior to commercial IrO2 (323 mV) and most of the reported pristine MOFs as OER electrodes. Much higher structural stability was proven. The detailed structure-property relationship and mechanism are discussed. In a word, this work provides a very important theoretical basis for the design and exploration of new MOF electrocatalysts.
Collapse
Affiliation(s)
- Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chunxiao Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
10
|
Wang Y, Xu W, Chen X, Li C, Xie J, Yang Y, Zhu T, Zhang C. Single-atom Ir 1 supported on rutile TiO 2 for excellent selective catalytic oxidation of ammonia. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128670. [PMID: 35290894 DOI: 10.1016/j.jhazmat.2022.128670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Gaseous ammonia (NH3) in the atmosphere is potentially harmful to both human health and the environment. The selective catalytic oxidation of NH3 (termed as NH3-SCO) into N2 and H2O is a promising method for decreasing NH3 emissions. A highly efficient catalyst is required for controlling NH3 emissions by this method in practice. In this study, we prepared Ir/TiO2 catalysts using different crystal structures of TiO2 (rutile, P25 or anatase) as supports by a simple impregnation method and evaluated their performance in the NH3-SCO. We found that the Ir/TiO2-R (rutile) catalyst performed better than the Ir/TiO2-P25 (mixed-phase) and Ir/TiO2-A (anatase) catalyst. High-angle annular dark-field images of the aberration-corrected scanning transmission electron microscopy revealed that the Ir species were mainly atomically dispersed on the TiO2 support in Ir/TiO2-R with 1 wt% Ir loading, whereas the Ir species agglomerated to form clusters or nanoparticles in Ir/TiO2-P25 and Ir/TiO2-A. The combined results of X-ray absorption fine structure, H2-temperature-programmed reduction, and in situ diffuse reflectance for infrared Fourier Transform spectroscopy studies suggested that atomically dispersed Ir species had stronger electronic metal-support interaction with rutile TiO2, which resulted in easier to adsorb and activate O2 at the interface and thus, better low-temperature activity of the Ir/TiO2-R catalyst.
Collapse
Affiliation(s)
- Yixi Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xueyan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chaoqun Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Xie
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyu Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Metal Coordination Determines the Catalytic Activity of IrO2 Nanoparticles for the Oxygen Evolution Reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Sugawara Y, Ueno S, Kamata K, Yamaguchi T. A Trend in the Crystal Structures of Iron‐based Oxides and their Catalytic Efficiencies for the Oxygen Evolution Reaction in Alkaline. ChemElectroChem 2022. [DOI: 10.1002/celc.202101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuuki Sugawara
- Tokyo Institute of Technology laboratory for Chemistry and Life Science R1-174259 Nagatsuta-choMidori-ku 226-8503 Yokohama JAPAN
| | - Satomi Ueno
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Laboratory for Chemistry and Life Science JAPAN
| | - Keigo Kamata
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Laboratory for Materials and Structures JAPAN
| | - Takeo Yamaguchi
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Laboratory for Chemistry and Life Science R1-17, Nagatsuta-cho 4259, Modori-kuYokohama 226-8503 Yokohama JAPAN
| |
Collapse
|
13
|
Li L, Wang P, Shao Q, Huang X. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004243. [PMID: 33749035 DOI: 10.1002/adma.202004243] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/16/2020] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane (PEM) water electrolyzers hold great significance for renewable energy storage and conversion. The acidic oxygen evolution reaction (OER) is one of the main roadblocks that hinder the practical application of PEM water electrolyzers. Highly active, cost-effective, and durable electrocatalysts are indispensable for lowering the high kinetic barrier of OER to achieve boosted reaction kinetics. To date, a wide spectrum of advanced electrocatalysts has been designed and synthesized for enhanced acidic OER performance, though Ir and Ru based nanostructures still represent the state-of-the-art catalysts. In this Progress Report, recent research progress in advanced electrocatalysts for improved acidic OER performance is summarized. First, fundamental understanding about acidic OER including reaction mechanisms and atomic understanding to acidic OER for rational design of efficient electrocatalysts are discussed. Thereafter, an overview of the progress in the design and synthesis of advanced acidic OER electrocatalysts is provided in terms of catalyst category, i.e., metallic nanostructures (Ir and Ru based), precious metal oxides, nonprecious metal oxides, and carbon based nanomaterials. Finally, perspectives to the future development of acidic OER are provided from the aspects of reaction mechanism investigation and more efficient electrocatalyst design.
Collapse
Affiliation(s)
- Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Pengtang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
14
|
Zhang K, Zou R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100129. [PMID: 34114334 DOI: 10.1002/smll.202100129] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/06/2021] [Indexed: 05/14/2023]
Abstract
Oxygen evolution reaction (OER) is an important half-reaction involved in many electrochemical applications, such as water splitting and rechargeable metal-air batteries. However, the sluggish kinetics of its four-electron transfer process becomes a bottleneck to the performance enhancement. Thus, rational design of electrocatalysts for OER based on thorough understanding of mechanisms and structure-activity relationship is of vital significance. This review begins with the introduction of OER mechanisms which include conventional adsorbate evolution mechanism and lattice-oxygen-mediated mechanism. The reaction pathways and related intermediates are discussed in detail, and several descriptors which greatly assist in catalyst screen and optimization are summarized. Some important parameters suggested as measurement criteria for OER are also mentioned and discussed. Then, recent developments and breakthroughs in experimental achievements on transition metal-based OER electrocatalysts are reviewed to reveal the novel design principles. Finally, some perspectives and future directions are proposed for further catalytic performance enhancement and deeper understanding of catalyst design. It is believed that iterative improvements based on the understanding of mechanisms and fundamental design principles are essential to realize the applications of efficient transition metal-based OER electrocatalysts for electrochemical energy storage and conversion technologies.
Collapse
Affiliation(s)
- Kexin Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Baik C, Lee SW, Pak C. Glycine-induced ultrahigh-surface-area IrO2@IrOx catalyst with balanced activity and stability for efficient water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sun W, Wang Z, Tian X, Deng H, Liao J, Ma C, Yang J, Gong X, Huang W, Ge C. In situ formation of grain boundaries on a supported hybrid to boost water oxidation activity of iridium oxide. NANOSCALE 2021; 13:13845-13857. [PMID: 34477659 DOI: 10.1039/d1nr01795k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coupling electrochemical water splitting with renewable energy sources shows great potential to produce hydrogen fuel. The sluggish kinetics of the oxygen evolution reaction (OER) resulting from the complicated reaction mechanism and the requirement of the noble metal iridium as the anode catalyst are the two key challenges in implementing proton exchange membrane electrolysis. These challenges may be overcome by the nanoscale design and assembly of novel hybrid materials. Grain boundaries (GBs) are a common crystallographic feature that increase in variability and attractiveness as the particle size decreases. However, the effects of GBs on OER activity in supported hybrid IrO2 catalysts remain unclear. In this study, supported hybrid IrO2 catalysts containing ultrafine nanoparticles were prepared via the self-assembly of iridium precursors on the β-MnO2 surface. The GBs induced intriguing features such as abundant coordination-unsaturated iridium sites and surface hydroxylation, resulting in enhanced OER activity. The formation of GBs was strongly dependent on the nature of the support. In addition to the morphology, the crystal structure of the substrate may play an important role in inducing dense nanoparticle growth. The established relationship between GB formation and OER activity provides an opportunity to design more stable and effective IrO2-based hybrid materials for the OER.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu Y, Liang X, Chen H, Gao R, Shi L, Yang L, Zou X. Iridium-containing water-oxidation catalysts in acidic electrolyte. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63722-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Ma CL, Wang ZQ, Sun W, Cao LM, Gong XQ, Yang J. Surface Reconstruction for Forming the [IrO 6]-[IrO 6] Framework: Key Structure for Stable and Activated OER Performance in Acidic Media. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29654-29663. [PMID: 34148341 DOI: 10.1021/acsami.1c06599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The surface reconstruction of iridium-based derivatives (AxIryOz) was extensively demonstrated to have an excellent oxygen evolution reaction (OER) performance in an acidic medium. It is urgent to use various spectroscopy and computational methods to explore the electronic state changes in the surface reconstruction process. Herein, the underestimated Lu2Ir2O7 was synthesized and investigated. Four typical forms of electrochemistry impedance spectra involved in the reconstruction process revealed three dominating forms of reconstructed pyrochlore in the OER stage, including the inner intact pyrochlore, mid metastable [IrO6]-[IrO6] framework, and the outer collapse amorphous layer. The enhancing electron transport efficiency of the corner-shared [IrO6]-[IrO6] framework was revealed as a critical role in acidic systems. The density of state (DOS) for the constructed [IrO6]-[IrO6] framework corroborated the enhancement of Ir-O hybridization and the downshift of the d-band center. Additionally, we contrast the pristine and reconstruction properties of the Pr2Ir2O7, Eu2Ir2O7, and Lu2Ir2O7 in alkaline and acidic media. The DOS and the XANES results reveal the scale relationship between the O 2p band center and the intrinsic activity for bulk pyrochlore in alkaline media. The highest O 2p center and the highest Ir-O hybridization of Lu2Ir2O7 exhibited the best OER performance among the Ir-based pyrochlore, up to a ninefold improvement in Ir-mass activity compared to IrO2. Our findings emphasize the electrochemical behavior of the reconstruction process for activated water-splitting performance.
Collapse
Affiliation(s)
- Cheng-Long Ma
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Sun
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Li-Mei Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ji Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
19
|
The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nat Commun 2021; 12:3935. [PMID: 34168129 PMCID: PMC8225786 DOI: 10.1038/s41467-021-24181-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Combining high activity and stability, iridium oxide remains the gold standard material for the oxygen evolution reaction in acidic medium for green hydrogen production. The reasons for the higher electroactivity of amorphous iridium oxides compared to their crystalline counterpart is still the matter of an intense debate in the literature and, a comprehensive understanding is needed to optimize its use and allow for the development of water electrolysis. By producing iridium-based mixed oxides using aerosol, we are able to decouple the electronic processes from the structural transformation, i.e. Ir oxidation from IrO2 crystallization, occurring upon calcination. Full characterization using in situ and ex situ X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy allows to unambiguously attribute their high electrochemical activity to structural features and rules out the iridium oxidation state as a critical parameter. This study indicates that short-range ordering, corresponding to sub-2nm crystal size for our samples, drives the activity independently of the initial oxidation state and composition of the calcined iridium oxides. The origins of the superior catalytic activity of poorly crystallized Ir-based oxide material for the OER in acid is still under debate. Here, authors synthesize porous IrMo oxides to deconvolute the effect of Ir oxidation state from short-range ordering and show the latter to be a key factor.
Collapse
|
20
|
Eichhorn J, Jiang CM, Cooper JK, Sharp ID, Toma FM. Nanoscale Heterogeneities and Composition-Reactivity Relationships in Copper Vanadate Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23575-23583. [PMID: 33998233 DOI: 10.1021/acsami.1c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The photoelectrochemical performance of thin film photoelectrodes can be impacted by deviations from the stoichiometric composition, both at the macroscale and at the nanoscale. This issue is especially pronounced for the class of ternary compounds that are currently investigated for simultaneously achieving the optoelectronic characteristics and chemical stability required for solar fuel generation. Here, we combine macroscopic photoelectrochemical testing with atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM) to reveal relationships between photoelectrochemical activity, nanoscale morphology, and local chemical composition in copper vanadate (CVO) thin films as a model system. For films with varying Cu/(Cu + V) ratios around the ideal stoichiometry of stoiberite Cu5V2O10, AFM resolves submicrometer morphology variations, which correlate with variations of the Cu content resolved by STXM. Both stoichiometric and Cu-deficient films exhibit a clear photoresponse, which indicates electronic tolerance to reduced Cu content. While both films exhibit homogeneous O and V content, they are also characterized by local regions of Cu enrichment and depletion that extend beyond individual grains. By contrast, Cu-rich photoelectrodes exhibit a tendency toward CuO secondary phase formation and a significantly reduced photoelectrochemical activity, indicating a significantly poor electronic tolerance to Cu-enrichment. These findings highlight that the average film composition at the macroscale is insufficient for defining structure-function relationships in complex ternary compounds. Rather, correlating microscopic variations in chemical composition to macroscopic photoelectrochemical performance provides insights into photocatalytic activity and stability that are otherwise not apparent from pure macroscopic characterization.
Collapse
Affiliation(s)
- Johanna Eichhorn
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Chang-Ming Jiang
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Jason K Cooper
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ian D Sharp
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Francesca M Toma
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Roy KS, Subramaniam C, Panchakarla LS. Non-Stoichiometry Induced Exsolution of Metal Oxide Nanoparticles via Formation of Wavy Surfaces and their Enhanced Electrocatalytic Activity: Case of Misfit Calcium Cobalt Oxide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9897-9907. [PMID: 33591175 DOI: 10.1021/acsami.0c20891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most heterogeneous catalytic reactions demand high density and yet spatially separated nanoparticles that are strongly anchored on the oxide surfaces. Such nanoparticles can be deposited or synthesized in situ via nonstoichiometric methods. To date, nanoparticles have been exsolved from perovskite oxide surfaces using nonstoichiometric processes. However, the density of the space-separated nanoparticles on the oxide surfaces is still low. And less attention is paid toward the changes that happen to the host during the nanoparticle exsolution process. In this work, we demonstrated in situ exsolution of ultrafine nanoparticles (∼5 nm) of either Co3O4 or Ca(OH)2 via judicious control of nonstoichiometry in a misfit Ca3Co4O9 (CCO). The nanoparticle density over the CCO surface reached as high as 8500/μm2, which is significantly higher than previously reported values. High-resolution electron microscopy studies reveal the formation mechanism of Co3O4 nanoparticles over CCO, and the formation takes palace via the formation of wavy surfaces on the CCO. Defects caused by the nonstoichiometric synthesis created microstrain within the host CCO, resulting in making the new density of states near the Fermi energy. Further, the exsolution process turned the inert host (CCO) into electrocatalytically active toward water splitting. The nonstoichiometric samples obtained by shorter annealing times showed high electrocatalytic behavior for the hydrogen evolution (HER) and oxygen evolution (OER) reactions. The catalytic activity is further enhanced (reaching overpotential of 320 mV and 410 mV for HER and OER respectively, for a current density of 10 mA/cm2) by removing the surface nanoparticles. The observation indicates that the active sites that are produced during the nonstoichiometric synthesis also present in the bulk of the CCO (host). We believe that similar nonstoichiometric synthesis can be applied to a wide variety of tricomponent systems, and they could endow the hosts with novel properties for applications such as catalysis and thermoelectrics.
Collapse
Affiliation(s)
- Kankona Singha Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | - Leela S Panchakarla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
22
|
Liu L, Yang X, Zhao Y, Yao B, Hou Y, Fu W. The rational design of Cu 2-xSe@(Co,Cu)Se 2 core-shell structures as bifunctional electrocatalysts for neutral-pH overall water splitting. NANOSCALE 2021; 13:1134-1143. [PMID: 33399603 DOI: 10.1039/d0nr07897b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly active and stable bifunctional electrocatalysts for H2 generation from neutral-pH water are desired, but difficult to achieve. The modification of the electronic and crystal structure of a material by element doping, morphology design and constructing a complex is a valid strategy for obtaining high-performance catalysts toward overall water splitting. In this study, a novel Cu2-xSe@(Co,Cu)Se2 core-shell structure with ultrathin (Co,Cu)Se2 nanosheets anchored as a shell on an internal Cu2-xSe core was fabricated, for the first time, by integrating the three above-mentioned modification methods. Benefiting from the synergistic effect between components and the unique structure, the Cu2-xSe@(Co,Cu)Se2 core-shell structure can serve as an efficient bifunctional electrocatalyst for both HERs and OERs in neutral-pH electrolytes with a current density of 10 mA cm-2 at the overpotentials of 106 mV and 396 mV, respectively. Additionally, the material just requires a cell voltage of 1.73 V to afford a current density of 10 mA cm-2 in a neutral two-electrode electrolyzer. Such performances significantly outperform control catalysts and analogues. Even more importantly, the original concept of coordinated regulation presented in this work can broaden our horizons in the design of new and highly efficient catalysts for neutral water splitting.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Xiao Yang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Yuanqing Zhao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Bingbing Yao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
23
|
Sarkar S, Ramarao SD, Das T, Das R, Vinod CP, Chakraborty S, Peter SC. Unveiling the Roles of Lattice Strain and Descriptor Species on Pt-Like Oxygen Reduction Activity in Pd–Bi Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03415] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shreya Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - S. D. Ramarao
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Tisita Das
- Harish-Chandra Research Institute, HBNI, Allahabad, Uttar Pradesh 211019, India
| | - Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - C. P. Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sudip Chakraborty
- Department of Physics, Indian Institute of Technology, Simrol, Indore 453552, India
| | - Sebastian C. Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| |
Collapse
|
24
|
Zhu J, Wei M, Meng Q, Chen Z, Fan Y, Hasan SW, Zhang X, Lyu D, Tian ZQ, Shen PK. Ultrathin-shell IrCo hollow nanospheres as highly efficient electrocatalysts towards the oxygen evolution reaction in acidic media. NANOSCALE 2020; 12:24070-24078. [PMID: 33241831 DOI: 10.1039/d0nr06601j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Improving the utilization of Ir electrocatalysts for the oxygen evolution reaction (OER) to significantly reduce their loading is essential for low-cost hydrogen production in proton exchange membrane water electrolysis. Herein, IrCo hollow nanospheres featuring a novel structure with ultrathin continuous shells which have only eleven atomic layers (2.26 nm) were synthesized by a facile sequential reduction route using NaBH4 as a reducing agent at room temperature. It is revealed that the key intermediate in the formation of hollow nanospheres is amorphous cobalt boride formed between Co2+ and NaHB4 in the first reducing step. The average diameter of the IrCo nanospheres was found to be 73.71 nm with the atomic ratio of 47.1% and 52.9% for Co and Ir, respectively. The IrCo hollow nanospheres exhibit highly efficient OER activity and long-term durability with a low overpotential of 284 mV at 10 mA cm-2 (32.5 μgIr cm-2) and a high mass activity of 8.49 A mg-1 (5.7 times higher than that of commercial IrO2 (1.49 A mg-1) at 1.7 V. The performance is also proved using an overall water splitting device with the overpotential of 318 mV to achieve 10 mA cm-2 as well as a 17 mV shift at 5 mA cm-2 after 14 h. This improvement is critically attributed to the advantages of the hollow structure, ultrathin continuous shells which are oxidized into IrOxin situ and strong lattice strain effects induced by the specific hollow structure and alloying Co into Ir crystal lattices (1.6% against metallic iridium). These characteristics endow the hollow nanospheres with great potential to minimize the Ir loading dramatically for practical applications, compared to other previously reported structures like nanoparticles, nanoneedles and nanowires.
Collapse
Affiliation(s)
- Jinhui Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education; Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li X, Liu H, Sun Y, Zhu L, Yin X, Sun S, Fu Z, Lu Y, Wang X, Cheng Z. High Oxygen Evolution Activity of Tungsten Bronze Oxides Boosted by Anchoring of Co 2+ at Nb 5+ Sites Accompanied by Substantial Oxygen Vacancy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002242. [PMID: 33240771 PMCID: PMC7675188 DOI: 10.1002/advs.202002242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/12/2020] [Indexed: 06/01/2023]
Abstract
The participation of lattice oxygen in the oxygen evolution reaction (OER) process has been proved to be faster in kinetics than the mechanisms where only metal is involved, although activating the lattice oxygen in the traditional rigid structures remains a big challenge. In this work, efforts are devoted to exploring a new flexible structure that is competent in providing large amounts of oxygen vacancies as well as offering the freedom to manipulate the electronic structure of metal cations. This is demonstrated by anchoring low valence state Co at high valence state Nb sites in the tetragonal tungsten bronze (TTB)-structured Sr0.5Ba0.5Nb2- x Co x O6-δ , with different ratios of Co to Nb to optimize the Co substitution proportion. It is found that the occupation of Co in the Nb5+ sites gives rise to the generation of massive surface oxygen vacancies (Ovac), while Co itself is stabilized in Co2+ by adjacent Ovac. The coexistence of Ovac and LS Co2+ enables an oxygen intercalation mechanism in the optimal SBNC45 with specific activity at 1.7 V versus reversible hydrogen electrode that is 20 times higher than for the commercial IrO2. This work illuminates an entirely new avenue to rationally design OER electrocatalysts with ultrafast kinetics.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute for Superconducting & Electronic Materials (ISEM)Australia Institute for Innovative MaterialsInnovation CampusUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Huan Liu
- Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Yanhua Sun
- Institute for Superconducting & Electronic Materials (ISEM)Australia Institute for Innovative MaterialsInnovation CampusUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Liuyang Zhu
- Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xiaofeng Yin
- Henan Collaborative Innovation Center of Energy‐Saving Building MaterialsXinyang Normal UniversityXinyang464000P. R. China
| | - Shujie Sun
- Henan Collaborative Innovation Center of Energy‐Saving Building MaterialsXinyang Normal UniversityXinyang464000P. R. China
| | - Zhengping Fu
- Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Yalin Lu
- Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xiaolin Wang
- Institute for Superconducting & Electronic Materials (ISEM)Australia Institute for Innovative MaterialsInnovation CampusUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Zhenxiang Cheng
- Institute for Superconducting & Electronic Materials (ISEM)Australia Institute for Innovative MaterialsInnovation CampusUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| |
Collapse
|
26
|
Wang Y, Liang Z, Zheng H, Cao R. Recent Progress on Defect‐rich Transition Metal Oxides and Their Energy‐Related Applications. Chem Asian J 2020; 15:3717-3736. [DOI: 10.1002/asia.202000925] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| |
Collapse
|
27
|
Ma C, Sun W, Qamar Zaman W, Zhou Z, Zhang H, Shen Q, Cao L, Yang J. Lanthanides Regulated the Amorphization-Crystallization of IrO 2 for Outstanding OER Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34980-34989. [PMID: 32658446 DOI: 10.1021/acsami.0c08969] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Research has been focused on regulating the amorphous surface of Ir-based materials to achieve a higher oxygen evolution reaction (OER) activity. The IrOx amorphous layer is generally considered to be substantial enough to break the limitation created by the conventional adsorbate evolution mechanism (AEM) in acidic media. In this work, we used lanthanides to regulate IrOx amorphization-crystallization through inhibiting the crystallization of iridium atoms in the calcination process. The chosen route created abundant crystalline-amorphous (c-a) interfaces, which greatly enhanced the charge transfer kinetics and the stability of the materials. The mass activity of iridium in the synthesized IrO2@LuIr1-nOx(OH)y structure reached 128.3 A/gIr, which is 14.6-fold that of the benchmark IrO2. All the IrO2@LnIr1-nOx(OH)y (Ln = La-Lu) structures reflected 290-300 mV of overpotential at 10 mA/cmgeo2. We demonstrate that a highly active c-a interface possesses an efficient charge transfer capability and is conducive to the stability of the activated oxygen species. The surface-activated oxygen species and the tensile strain [IrO6] octahedron regulated by lanthanides are synergistically beneficial for increasing the intrinsic OER activity. Our research findings introduce c-a interface generation by the regulation of lanthanides as a new method for the rational design of robust OER catalysts.
Collapse
Affiliation(s)
- Chenglong Ma
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Wei Sun
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Zhenhua Zhou
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Hao Zhang
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Qicheng Shen
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Limei Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| | - Ji Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei long Road, Shanghai 200237, China
| |
Collapse
|
28
|
Kim TY, Lee SW, Pak C. Optimization of carbon-supported Ir–Ru alloys for polymer electrolyte fuel cell anodes under cell reversal. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Buvat G, Eslamibidgoli MJ, Youssef AH, Garbarino S, Ruediger A, Eikerling M, Guay D. Effect of IrO6 Octahedron Distortion on the OER Activity at (100) IrO2 Thin Film. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04347] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaëtan Buvat
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
| | - Mohammad J. Eslamibidgoli
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Azza Hadj Youssef
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
| | | | - Andreas Ruediger
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
| | - Michael Eikerling
- IEK-13, Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Daniel Guay
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
| |
Collapse
|
30
|
Superb water splitting activity of the electrocatalyst Fe 3Co(PO 4) 4 designed with computation aid. Nat Commun 2019; 10:5195. [PMID: 31729366 PMCID: PMC6858335 DOI: 10.1038/s41467-019-13050-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
For efficient water splitting, it is essential to develop inexpensive and super-efficient electrocatalysts for the oxygen evolution reaction (OER). Herein, we report a phosphate-based electrocatalyst [Fe3Co(PO4)4@reduced-graphene-oxide(rGO)] showing outstanding OER performance (much higher than state-of-the-art Ir/C catalysts), the design of which was aided by first-principles calculations. This electrocatalyst displays low overpotential (237 mV at high current density 100 mA cm−2 in 1 M KOH), high turnover frequency (TOF: 0.54 s−1), high Faradaic efficiency (98%), and long-term durability. Its remarkable performance is ascribed to the optimal free energy for OER at Fe sites and efficient mass/charge transfer. When a Fe3Co(PO4)4@rGO anodic electrode is integrated with a Pt/C cathodic electrode, the electrolyzer requires only 1.45 V to achieve 10 mA cm−2 for whole water splitting in 1 M KOH (1.39 V in 6 M KOH), which is much smaller than commercial Ir-C//Pt-C electrocatalysts. This cost-effective powerful oxygen production material with carbon-supporting substrates offers great promise for water splitting. The sluggish kinetics of the oxygen evolution reaction (OER) is the main obstacle in water splitting which is generally catalyzed by precious metals. Here, authors report a DFT predicted non-precious bimetallic phosphate electrocatalyst that displays high OER activity and stability.
Collapse
|
31
|
Chen J, Cui P, Zhao G, Rui K, Lao M, Chen Y, Zheng X, Jiang Y, Pan H, Dou SX, Sun W. Low‐Coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiayi Chen
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science Chinese Academy of Sciences Nanjing 210008 P. R. China
| | - Guoqiang Zhao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Kun Rui
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Mengmeng Lao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Yaping Chen
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Wenping Sun
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
32
|
Wang W, Xu M, Xu X, Zhou W, Shao Z. Perowskitoxid‐Elektroden zur leistungsstarken photoelektrochemischen Wasserspaltung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 V.R. China
| | - Meigui Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 V.R. China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE) Curtin University Perth WA 6845 Australien
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 V.R. China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 V.R. China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE) Curtin University Perth WA 6845 Australien
| |
Collapse
|
33
|
Chen J, Cui P, Zhao G, Rui K, Lao M, Chen Y, Zheng X, Jiang Y, Pan H, Dou SX, Sun W. Low‐Coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2019; 58:12540-12544. [DOI: 10.1002/anie.201907017] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Jiayi Chen
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science Chinese Academy of Sciences Nanjing 210008 P. R. China
| | - Guoqiang Zhao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Kun Rui
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Mengmeng Lao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Yaping Chen
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Wenping Sun
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
34
|
Wang W, Xu M, Xu X, Zhou W, Shao Z. Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting. Angew Chem Int Ed Engl 2019; 59:136-152. [PMID: 30790407 DOI: 10.1002/anie.201900292] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Photoelectrochemical (PEC) water splitting is an attractive strategy for the large-scale production of renewable hydrogen from water. Developing cost-effective, active and stable semiconducting photoelectrodes is extremely important for achieving PEC water splitting with high solar-to-hydrogen efficiency. Perovskite oxides as a large family of semiconducting metal oxides are extensively investigated as electrodes in PEC water splitting owing to their abundance, high (photo)electrochemical stability, compositional and structural flexibility allowing the achievement of high electrocatalytic activity, superior sunlight absorption capability and precise control and tuning of band gaps and band edges. In this review, the research progress in the design, development, and application of perovskite oxides in PEC water splitting is summarized, with a special emphasis placed on understanding the relationship between the composition/structure and (photo)electrochemical activity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Meigui Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
35
|
Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2019; 58:4227-4231. [DOI: 10.1002/anie.201813634] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/21/2019] [Indexed: 12/31/2022]
|
36
|
Decoupling structure-sensitive deactivation mechanisms of Ir/IrOx electrocatalysts toward oxygen evolution reaction. J Catal 2019. [DOI: 10.1016/j.jcat.2019.01.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Zhou W, Huang D, Wu Y, Zhao J, Wu T, Zhang J, Li D, Sun C, Feng P, Bu X. Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813634] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wei Zhou
- College of Materials and Chemical EngineeringHubei Provincial Collaborative Innovation Center for New Energy MicrogridKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University No. 8, Daxue Road Yichang 443002 China
| | - Dan‐Dan Huang
- College of Materials and Chemical EngineeringHubei Provincial Collaborative Innovation Center for New Energy MicrogridKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University No. 8, Daxue Road Yichang 443002 China
| | - Ya‐Pan Wu
- College of Materials and Chemical EngineeringHubei Provincial Collaborative Innovation Center for New Energy MicrogridKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University No. 8, Daxue Road Yichang 443002 China
| | - Jun Zhao
- College of Materials and Chemical EngineeringHubei Provincial Collaborative Innovation Center for New Energy MicrogridKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University No. 8, Daxue Road Yichang 443002 China
| | - Tao Wu
- College of Materials and Chemical EngineeringHubei Provincial Collaborative Innovation Center for New Energy MicrogridKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University No. 8, Daxue Road Yichang 443002 China
| | - Jian Zhang
- College of Materials and Chemical EngineeringHubei Provincial Collaborative Innovation Center for New Energy MicrogridKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University No. 8, Daxue Road Yichang 443002 China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringHubei Provincial Collaborative Innovation Center for New Energy MicrogridKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University No. 8, Daxue Road Yichang 443002 China
| | - Chenghua Sun
- Department of Chemistry and BiotechnologyFaculty of Science, Engineering and TechnologySwinburne University of Technology Hawthorn VIC 3122 Australia
| | - Pingyun Feng
- Department of ChemistryUniversity of California Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and BiochemistryCalifornia State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| |
Collapse
|
38
|
Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat Commun 2019; 10:162. [PMID: 30635581 PMCID: PMC6329788 DOI: 10.1038/s41467-018-08144-3] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
The development of active, acid-stable and low-cost electrocatalysts for oxygen evolution reaction is urgent and challenging. Herein we report an Iridium-free and low ruthenium-content oxide material (Cr0.6Ru0.4O2) derived from metal-organic framework with remarkable oxygen evolution reaction performance in acidic condition. It shows a record low overpotential of 178 mV at 10 mA cm-2 and maintains the excellent performance throughout the 10 h chronopotentiometry test at a constant current of 10 mA cm-2 in 0.5 M H2SO4 solution. Density functional theory calculations further revealed the intrinsic mechanism for the exceptional oxygen evolution reaction performance, highlighting the influence of chromium promoter on the enhancement in both activity and stability.
Collapse
|