1
|
Shirazi HA, Lee S, Ullah S, Almdal K. Structural and tribological studies on the interaction of porcine gastric mucin with non- and cationic-modified β-lactoglobulins. Colloids Surf B Biointerfaces 2024; 238:113924. [PMID: 38669751 DOI: 10.1016/j.colsurfb.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
β-lactoglobulin (BLG) is the major whey protein with negative charges at neutral pH in aqueous media. Thus, the interaction with mucins, the major polyanionic component of mucus, is very weak due to the electrostatic repulsion between them. The present study postulates that cationization of BLG molecules may reverse the interaction characteristics between BLG and mucin from repulsive to associative. To this end, cationic-modified BLGs were prepared by grafting positively charged ethylenediamine (EDA) moieties into the negatively charged carboxyl groups on the aspartic and glutamic acid residues and compared with non-modified BLG upon mixing with porcine gastric mucin (PGM). To characterize the structural and conformational features of PGM, non/cationized BLGs, and their mixtures, various spectroscopic approaches, including zeta potential, dynamic light scattering (DLS), and circular dichroism (CD) spectroscopy were employed. Importantly, we have taken surface adsorption with optical waveguide lightmode spectroscopy (OWLS), and tribological properties with pin-on-disk tribometry at the sliding interface as the key approaches to determine the interaction nature between them as mixing PGM with polycations can lead to synergistic lubrication at the nonpolar substrate in neutral aqueous media as a result of an electrostatic association. All the spectroscopic studies and a substantial improvement in lubricity collectively supported a tenacious and associative interaction between PGM and cationized BLGs, but not between PGM and non-modified BLG. This study demonstrates a unique and successful approach to intensify the interaction between BLG and mucins, which is meaningful for a broad range of disciplines, including food science, macromolecular interactions, and biolubrication etc.
Collapse
Affiliation(s)
- Hadi Asgharzadeh Shirazi
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 JT9, Leeds, The United Kingdom.
| | - Saif Ullah
- Department of Chemistry, Technical University of Denmark, DTU Chemistry, DK-2800, Kgs. Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Chemistry, Technical University of Denmark, DTU Chemistry, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Weiand E, Koenig PH, Rodriguez-Ropero F, Roiter Y, Angioletti-Uberti S, Dini D, Ewen JP. Boundary Lubrication Performance of Polyelectrolyte-Surfactant Complexes on Biomimetic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7933-7946. [PMID: 38573738 PMCID: PMC11025133 DOI: 10.1021/acs.langmuir.3c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Aqueous mixtures of oppositely charged polyelectrolytes and surfactants are useful in many industrial applications, such as shampoos and hair conditioners. In this work, we investigate the friction between biomimetic hair surfaces in the presence of adsorbed complexes formed from cationic polyelectrolytes and anionic surfactants in an aqueous solution. We apply nonequilibrium molecular dynamics (NEMD) simulations using the coarse-grained MARTINI model. We first developed new MARTINI parameters for cationic guar gum (CGG), a functionalized, plant-derived polysaccharide. The complexation of CGG and the anionic surfactant sodium dodecyl sulfate (SDS) on virgin and chemically damaged biomimetic hair surfaces was studied using a sequential adsorption approach. We then carried out squeeze-out and sliding NEMD simulations to assess the boundary lubrication performance of the CGG-SDS complex compressed between two hair surfaces. At low pressure, we observe a synergistic friction behavior for the CGG-SDS complex, which gives lower shear stress than either pure CGG or SDS. Here, friction is dominated by viscous dissipation in an interfacial layer comprising SDS and water. At higher pressures, which are probably beyond those usually experienced during hair manipulation, SDS and water are squeezed out, and friction increases due to interdigitation. The outcomes of this work are expected to be beneficial to fine-tune and screen sustainable hair care formulations to provide low friction and therefore a smooth feel and reduced entanglement.
Collapse
Affiliation(s)
- Erik Weiand
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Institute
of Molecular Science and Engineering, Imperial
College London, South
Kensington Campus, London SW7 2AZ, U.K.
- Thomas
Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Peter H. Koenig
- Corporate
Functions Analytical and Data & Modeling Sciences, Mason Business
Center, The Procter and Gamble Company, Mason, Ohio 45040, United States
| | - Francisco Rodriguez-Ropero
- Corporate
Functions Analytical and Data & Modeling Sciences, Mason Business
Center, The Procter and Gamble Company, Mason, Ohio 45040, United States
| | - Yuri Roiter
- Corporate
Functions Analytical and Data & Modeling Sciences, Mason Business
Center, The Procter and Gamble Company, Mason, Ohio 45040, United States
| | - Stefano Angioletti-Uberti
- Institute
of Molecular Science and Engineering, Imperial
College London, South
Kensington Campus, London SW7 2AZ, U.K.
- Thomas
Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Daniele Dini
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Institute
of Molecular Science and Engineering, Imperial
College London, South
Kensington Campus, London SW7 2AZ, U.K.
- Thomas
Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - James P. Ewen
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Institute
of Molecular Science and Engineering, Imperial
College London, South
Kensington Campus, London SW7 2AZ, U.K.
- Thomas
Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
3
|
Kruszewska N, Mazurkiewicz A, Szala G, Słomion M. Characterization of Synovial Fluid Components: Albumin-Chondroitin Sulfate Interactions Seen through Molecular Dynamics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6935. [PMID: 36234275 PMCID: PMC9572199 DOI: 10.3390/ma15196935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The friction coefficient of articular cartilage (AC) is very low. A method of producing tailor-made materials with even similar lubrication properties is still a challenge. The physicochemical reasons for such excellent lubrication properties of AC are still not fully explained; however, a crucial factor seems to be synergy between synovial fluid (SF) components. As a stepping stone to being able to produce innovative materials characterized by a very low friction coefficient, we studied the interactions between two important components of SF: human serum albumin (HSA) and chondroitin sulfate (CS). The molecular dynamics method, preceded by docking, is used in the study. Interactions of HSA with two types of CS (IV and VI), with the addition of three types of ions often found in physiological solutions: Ca2+, Na+, and Mg2+, are compared. It was found that there were differences in the energy of binding values and interaction maps between CS-4 and CS-6 complexes. HSA:CS-4 complexes were bound stronger than in the case of HSA:CS-6 because more interactions were formed across all types of interactions except one-the only difference was for ionic bridges, which were more often found in HSA:CS-6 complexes. RMSD and RMSF indicated that complexes HSA:CS-4 behave much more stably than HSA:CS-6. The type of ions added to the solution was also very important and changed the interaction map. However, the biggest difference was caused by the addition of Ca2+ ions which were prone to form ionic bridges.
Collapse
Affiliation(s)
- Natalia Kruszewska
- Institute of Mathematics and Physics, Bydgoszcz University of Science and Technology, Kaliskiego 7 Street, 85-796 Bydgoszcz, Poland
| | - Adam Mazurkiewicz
- Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7 Street, 85-796 Bydgoszcz, Poland
| | - Grzegorz Szala
- Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7 Street, 85-796 Bydgoszcz, Poland
| | - Małgorzata Słomion
- Faculty of Management, Bydgoszcz University of Science and Technology, Kaliskiego 7 Street, 85-796 Bydgoszcz, Poland
| |
Collapse
|
4
|
Liu X, Claesson PM. Bioinspired Bottlebrush Polymers for Aqueous Boundary Lubrication. Polymers (Basel) 2022; 14:2724. [PMID: 35808769 PMCID: PMC9269121 DOI: 10.3390/polym14132724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/30/2023] Open
Abstract
An extremely efficient lubrication system is achieved in synovial joints by means of bio-lubricants and sophisticated nanostructured surfaces that work together. Molecular bottlebrush structures play crucial roles for this superior tribosystem. For example, lubricin is an important bio-lubricant, and aggrecan associated with hyaluronan is important for the mechanical response of cartilage. Inspired by nature, synthetic bottlebrush polymers have been developed and excellent aqueous boundary lubrication has been achieved. In this review, we summarize recent experimental investigations of the interfacial lubrication properties of surfaces coated with bottlebrush bio-lubricants and bioinspired bottlebrush polymers. We also discuss recent advances in understanding intermolecular synergy in aqueous lubrication including natural and synthetic polymers. Finally, opportunities and challenges in developing efficient aqueous boundary lubrication systems are outlined.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Per M. Claesson
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden;
| |
Collapse
|
5
|
Phospholipids and Hyaluronan: From Molecular Interactions to Nano- and Macroscale Friction. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phospholipids and hyaluronan are two key biomolecules that contribute to the excellent lubrication of articular joints. Phospholipids alone and in combination with hyaluronan have also displayed low friction forces on smooth surfaces in micro- and nanosized tribological contacts. In an effort to develop aqueous-based lubrication systems, it is highly relevant to explore if these types of molecules also are able to provide efficient lubrication of macroscopic tribological contacts involving surfaces with roughness larger than the thickness of the lubricating layer. To this end, we investigated the lubrication performance of hyaluronan, the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and mixtures of these two components using glass surfaces in a mini-traction machine. We compared our data with those obtained using flat silica surfaces in previous atomic force microscopy studies, and we also highlighted insights on hyaluronan–phospholipid interactions gained from recent simulations. Our data demonstrate that hyaluronan alone does not provide any lubricating benefit, but DPPC alone and in mixtures with hyaluronan reduces the friction force by an order of magnitude.
Collapse
|
6
|
Effect of Ion and Binding Site on the Conformation of Chosen Glycosaminoglycans at the Albumin Surface. ENTROPY 2022; 24:e24060811. [PMID: 35741532 PMCID: PMC9222412 DOI: 10.3390/e24060811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022]
Abstract
Albumin is one of the major components of synovial fluid. Due to its negative surface charge, it plays an essential role in many physiological processes, including the ability to form molecular complexes. In addition, glycosaminoglycans such as hyaluronic acid and chondroitin sulfate are crucial components of synovial fluid involved in the boundary lubrication regime. This study presents the influence of Na+, Mg2+ and Ca2+ ions on human serum albumin–hyaluronan/chondroitin-6-sulfate interactions examined using molecular docking followed by molecular dynamics simulations. We analyze chosen glycosaminoglycans binding by employing a conformational entropy approach. In addition, several protein–polymer complexes have been studied to check how the binding site and presence of ions influence affinity. The presence of divalent cations contributes to the decrease of conformational entropy near carboxyl and sulfate groups. This observation can indicate the higher affinity between glycosaminoglycans and albumin. Moreover, domains IIIA and IIIB of albumin have the highest affinity as those are two domains that show a positive net charge that allows for binding with negatively charged glycosaminoglycans. Finally, in discussion, we suggest some research path to find particular features that would carry information about the dynamics of the particular type of polymers or ions.
Collapse
|
7
|
de Paula FH, de Freitas FA, Nunes DG, Iglauer S, Gramatges AP, Nascimento RS, Lachter ER. Alkyl glyceryl ethers as water-based lubricant additives in mixtures with xanthan gum. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Lin W, Klein J. Recent Progress in Cartilage Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005513. [PMID: 33759245 DOI: 10.1002/adma.202005513] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Healthy articular cartilage, covering the ends of bones in major joints such as hips and knees, presents the most efficiently-lubricated surface known in nature, with friction coefficients as low as 0.001 up to physiologically high pressures. Such low friction is indeed essential for its well-being. It minimizes wear-and-tear and hence the cartilage degradation associated with osteoarthritis, the most common joint disease, and, by reducing shear stress on the mechanotransductive, cartilage-embedded chondrocytes (the only cell type in the cartilage), it regulates their function to maintain homeostasis. Understanding the origins of such low friction of the articular cartilage, therefore, is of major importance in order to alleviate disease symptoms, and slow or even reverse its breakdown. This progress report considers the relation between frictional behavior and the cellular mechanical environment in the cartilage, then reviews the mechanism of lubrication in the joints, in particular focusing on boundary lubrication. Following recent advances based on hydration lubrication, a proposed synergy between different molecular components of the synovial joints, acting together in enabling the low friction, has been proposed. Additionally, recent development of natural and bio-inspired lubricants is reviewed.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jacob Klein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
9
|
Kruszewska N, Domino K, Drelich R, Urbaniak W, Petelska AD. Interactions between Beta-2-Glycoprotein-1 and Phospholipid Bilayer-A Molecular Dynamic Study. MEMBRANES 2020; 10:membranes10120396. [PMID: 33291449 PMCID: PMC7762114 DOI: 10.3390/membranes10120396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the interactions appearing when the beta-2-glycoprotein-1 binds to a lipid bilayer. The inter- and intra-molecular forces acting between the two macromolecular systems have been investigated using a molecular dynamics simulation method. The importance of water bridges has also been addressed. Additionally, the viscoelastic response of the bilayer has been studied. In detail, the (saturated-chain) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and (unsaturated-chain) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) bilayers have been chosen to test their behavior near the protein. Both of the lipids have a polar head but different chemical structures and are similar to the main phospholipids present in the synovial fluid. This study is meaningful for further explaining the worsening friction properties in articular cartilage, as the inactivation of phospholipid bilayers by beta-2-glycoprotein-1 is believed to be a cause of the destruction of cartilage in most rheumatic diseases and osteoarthritis. It was found that the protein binds stronger to the DPPC bilayer than to the POPE, but in both cases, it has the potential to change the local bilayer stability. Nevertheless, the binding forces are placed within a small area (only a few lipids contribute to the binding, creating many interactions). However, together, they are not stronger than the covalent bonds between C-O, thus, potentially, it is possible to push the lipids into the bilayer but detaching the lipids' heads from the tail is not possible. Additionally, the protein causes water displacement from the vicinity of the bilayer, and this may be a contributor to the instability of the bilayer (disrupting the water bridges needed for the stabilization of the bilayer, especially in the case of DPPC where the heads are not so well stabilized by H-bonds as they are in POPE). Moreover, it was found that the diffusivity of lipids in the DPPC bilayer bound to the protein is significantly different from the diffusivity of the ones which are not in contact with the protein. The POPE bilayer is stiffer due to intramolecular interactions, which are stronger than in the DPPC; thus, the viscous to elastic effects in the POPE case are more significant than in the case of the DPPC. It is, therefore, harder to destabilize the POPE bilayer than the DPPC one.
Collapse
Affiliation(s)
- Natalia Kruszewska
- Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
- Correspondence: (N.K.); (A.D.P.)
| | - Krzysztof Domino
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland;
| | - Radosław Drelich
- Faculty of Mathematics, Physics and Technical Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-867 Bydgoszcz, Poland; (R.D.); (W.U.)
| | - Wiesław Urbaniak
- Faculty of Mathematics, Physics and Technical Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-867 Bydgoszcz, Poland; (R.D.); (W.U.)
| | - Aneta D. Petelska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-425 Bialystok, Poland
- Correspondence: (N.K.); (A.D.P.)
| |
Collapse
|
10
|
Dong R, Bao L, Yu Q, Wu Y, Ma Z, Zhang J, Cai M, Zhou F, Liu W. Effect of Electric Potential and Chain Length on Tribological Performances of Ionic Liquids as Additives for Aqueous Systems and Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39910-39919. [PMID: 32804469 DOI: 10.1021/acsami.0c11016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As pure lubricants, ILs performed very well by forming the classical self-assembly bilayer at the sliding interface. The interface mechanism is still not clear in a very polar, e.g., water-based lubricating system. In this work, the interfacial absorption and tribological behavior of carboxylic alkanolamine ionic liquids (CAILs) serving as aqueous lubricating additives were studied by applying positive and negative potentials on the friction pair, accompanied by the comprehensive discussion of data from critical micelle concentration, quartz crystal microbalance, ECR, and MD results. The results reveal that the adsorption behavior, unexpectedly, was affected by the high polarity of H2O, where a less dense double-layer structure is observed at the interface by model imitation. Conversely, the monomolecular adsorption layer constructed electrostatically between the polar head (-COO-) and the positive base dominates the tribofilm. Meanwhile, the cations are partially accumulating around anions in the presence of static electricity, which does not form a neat and dense one-to-one corresponding cation-anion pair. In the solution, the IL maintains a state of dissociation and minor agglomeration. Furthermore, an increase in alkyl chains contributes to the thickness of the protective film generated by CAILs on the sliding asperity. Eventually, the synergistic effect from physical adsorption and the tribochemical reaction is responsible for excellent lubricity and antiwear performance of CAILs.
Collapse
Affiliation(s)
- Rui Dong
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Bao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jiaying Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
11
|
Zander T, Garamus VM, Dédinaité A, Claesson PM, Bełdowski P, Górny K, Dendzik Z, Wieland DCF, Willumeit-Römer R. Influence of the Molecular Weight and the Presence of Calcium Ions on the Molecular Interaction of Hyaluronan and DPPC. Molecules 2020; 25:E3907. [PMID: 32867196 PMCID: PMC7504306 DOI: 10.3390/molecules25173907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/03/2022] Open
Abstract
Hyaluronan is an essential physiological bio macromolecule with different functions. One prominent area is the synovial fluid which exhibits remarkable lubrication properties. However, the synovial fluid is a multi-component system where different macromolecules interact in a synergetic fashion. Within this study we focus on the interaction of hyaluronan and phospholipids, which are thought to play a key role for lubrication. We investigate how the interactions and the association structures formed by hyaluronan (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are influenced by the molecular weight of the bio polymer and the ionic composition of the solution. We combine techniques allowing us to investigate the phase behavior of lipids (differential scanning calorimetry, zeta potential and electrophoretic mobility) with structural investigation (dynamic light scattering, small angle scattering) and theoretical simulations (molecular dynamics). The interaction of hyaluronan and phospholipids depends on the molecular weight, where hyaluronan with lower molecular weight has the strongest interaction. Furthermore, the interaction is increased by the presence of calcium ions. Our simulations show that calcium ions are located close to the carboxylate groups of HA and, by this, reduce the number of formed hydrogen bonds between HA and DPPC. The observed change in the DPPC phase behavior can be attributed to a local charge inversion by calcium ions binding to the carboxylate groups as the binding distribution of hyaluronan and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine is not changed.
Collapse
Affiliation(s)
- Thomas Zander
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht: Centre for Materials and Costal Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (T.Z.); (V.M.G.); (R.W.-R.)
| | - Vasil M. Garamus
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht: Centre for Materials and Costal Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (T.Z.); (V.M.G.); (R.W.-R.)
| | - Andra Dédinaité
- Department of Chemistry, Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden; (A.D.); (P.M.C.)
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Per M. Claesson
- Department of Chemistry, Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden; (A.D.); (P.M.C.)
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Piotr Bełdowski
- Institue of Mathematics and Physics, UTP University of Science and Technology, al. Kaliskiego 7, 85-796 Bydgoszcz, Poland;
| | - Krzysztof Górny
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (K.G.); (Z.D.)
| | - Zbigniew Dendzik
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (K.G.); (Z.D.)
| | - D. C. Florian Wieland
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht: Centre for Materials and Costal Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (T.Z.); (V.M.G.); (R.W.-R.)
| | - Regine Willumeit-Römer
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht: Centre for Materials and Costal Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (T.Z.); (V.M.G.); (R.W.-R.)
| |
Collapse
|
12
|
Plausinaitis D, Sinkevicius L, Samukaite-Bubniene U, Ratautaite V, Ramanavicius A. Evaluation of electrochemical quartz crystal microbalance based sensor modified by uric acid-imprinted polypyrrole. Talanta 2020; 220:121414. [PMID: 32928426 DOI: 10.1016/j.talanta.2020.121414] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/17/2023]
Abstract
Uric acid-imprinted polypyrrole-based (MIP(UA)-Ppy) electrochemical quartz crystal microbalance sensor (EQCM) was developed. Experiments and theoretical calculations were focused on molecular interactions between uric acid molecule and: i) polypyrrole imprinted by uric acid (MIP(UA)-Ppy) ii) polypyrrole film without any molecular imprints (NIP-Ppy). Resonant frequency differences during electrochemical deposition of MIP(UA)-Ppy and NIP-Ppy films were observed and were attributed to the phenomenon of molecule capture within formed Ppy matrix. EQCM-resonators modified by MIP-Ppy showed the following advantages: selectivity, qualitative response, cost-effectiveness, and simple procedure. The selectivity of MIP(UA)-Ppy was tested by the replacement of uric acid in the PBS solution with several different concentrations of caffeine and glucose. Langmuir isotherm based molecular adsorption model was applied to evaluate the interaction of MIP(UA)-Ppy with uric acid. From experimental results calculated the standard Gibbs free energy of association (ΔGa) of uric acid with MIP(UA)-Ppy is -16.4 ± 2.05 kJ/mol and with NIP-Ppy is -13.3 ± 8.56 kJ/mol ΔG values illustrate that the formation of uric acid complex with MIP(UA)-Ppy is thermodynamically more favourable than that for complexation with NIP-Ppy.
Collapse
Affiliation(s)
- Deivis Plausinaitis
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Naugarduko str. 24, LT-03225, Vilnius, Lithuania
| | - Linas Sinkevicius
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Naugarduko str. 24, LT-03225, Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Naugarduko str. 24, LT-03225, Vilnius, Lithuania; NanoTechnas - Center of Nanotechnology and Materials Science at Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko str. 24, LT-03225, Vilnius, Lithuania; State Research Institute Centre for Physical Sciences and Technology, Department of Functional Materials and Electronics, Sauletekio ave. 3, Vilnius, Lithuania
| | - Vilma Ratautaite
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Naugarduko str. 24, LT-03225, Vilnius, Lithuania; State Research Institute Centre for Physical Sciences and Technology, Department of Functional Materials and Electronics, Sauletekio ave. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Naugarduko str. 24, LT-03225, Vilnius, Lithuania; NanoTechnas - Center of Nanotechnology and Materials Science at Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko str. 24, LT-03225, Vilnius, Lithuania; State Research Institute Centre for Physical Sciences and Technology, Department of Functional Materials and Electronics, Sauletekio ave. 3, Vilnius, Lithuania.
| |
Collapse
|
13
|
Kumar R, Lee YK, Jho YS. Martini Coarse-Grained Model of Hyaluronic Acid for the Structural Change of Its Gel in the Presence of Monovalent and Divalent Salts. Int J Mol Sci 2020; 21:ijms21134602. [PMID: 32610441 PMCID: PMC7370153 DOI: 10.3390/ijms21134602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
Hyaluronic acid (HA) has a wide range of biomedical applications including the formation of hydrogels, microspheres, sponges, and films. The modeling of HA to understand its behavior and interaction with other biomolecules at the atomic level is of considerable interest. The atomistic representation of long HA polymers for the study of the macroscopic structural formation and its interactions with other polyelectrolytes is computationally demanding. To overcome this limitation, we developed a coarse grained (CG) model for HA adapting the Martini scheme. A very good agreement was observed between the CG model and all-atom simulations for both local (bonded interactions) and global properties (end-to-end distance, a radius of gyration, RMSD). Our CG model successfully demonstrated the formation of HA gel and its structural changes at high salt concentrations. We found that the main role of CaCl2 is screening the electrostatic repulsion between chains. HA gel did not collapse even at high CaCl2 concentrations, and the osmotic pressure decreased, which agrees well with the experimental results. This is a distinct property of HA from other proteins or polynucleic acids which ensures the validity of our CG model. Our HA CG model is compatible with other CG biomolecular models developed under the Martini scheme, which allows for large-scale simulations of various HA-based complex systems.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (R.K.); (Y.K.L.)
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan 173234, India
| | - Young Kyu Lee
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (R.K.); (Y.K.L.)
| | - Yong Seok Jho
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (R.K.); (Y.K.L.)
- Correspondence:
| |
Collapse
|
14
|
Moghaddam SZ, Thormann E. Surface forces and friction tuned by thermo-responsive polymer films. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
|
16
|
Biolubrication synergy: Hyaluronan - Phospholipid interactions at interfaces. Adv Colloid Interface Sci 2019; 274:102050. [PMID: 31669714 DOI: 10.1016/j.cis.2019.102050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/24/2022]
Abstract
The manner in which nature has solved lubrication issues has fascinated scientists for centuries, in particular when considering that lubrication is achieved in aqueous media. The most outstanding system in this respect is likely the synovial joint, where close to frictionless motion is realized under different loads and shear rates. This review article focuses on two components present in the synovial area, hyaluronan and phospholipids. We recapitulate what has been learned about their interactions at interfaces from recent experiments, with focus on results obtained using reflectivity techniques at large scale facilities. In parallel, modelling experiments have been carried out and from these efforts new detailed knowledge about how hyaluronan and phospholipids interact has been gained. In this review we combine findings from modelling and experiments to gain deeper insight. Finally, we summarize what has been learned of the lubrication performance of mixtures of phospholipids and hyaluronan.
Collapse
|
17
|
Interactions of a short hyaluronan chain with a phospholipid membrane. Colloids Surf B Biointerfaces 2019; 184:110539. [PMID: 31629183 DOI: 10.1016/j.colsurfb.2019.110539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 01/06/2023]
Abstract
Hyaluronic acid and phospholipids are two components that are present in the synovial fluid, and both are implicated as important facilitators of joint lubrication. In this work we aim to clarify how hyaluronic acid interacts with a phospholipid bilayer through their molecular interactions at the bilayer surface. To this end we performed molecular dynamics simulations of one hyaluronic acid molecule at a phospholipid bilayer in aqueous solution. The simulations were carried out for two aqueous solutions of equal concentrations, containing either NaCl or CaCl2. We analyzed hydrogen bonds, hydrophobic contacts and cation mediated bridges to clarify how hyaluoronic acid binds to a phospholipid bilayer. The analysis shows that calcium ions promote longer lasting bonds between the species as they create calcium ion bridges between the carboxylate group of hyaluronic acid and the phosphate group of the phospholipid. This type of additional bonding does not significantly influence the total number of contact created, but rather stabilizes the contact. The presented results can facilitate understanding of the role of hyaluronic acid and phospholipid interactions in terms of lubrication of articular cartilage.
Collapse
|
18
|
Zander T, Wieland DCF, Raj A, Salmen P, Dogan S, Dėdinaitė A, Garamus VM, Schreyer A, Claesson PM, Willumeit-Römer R. Influence of high hydrostatic pressure on solid supported DPPC bilayers with hyaluronan in the presence of Ca 2+ ions. SOFT MATTER 2019; 15:7295-7304. [PMID: 31483431 DOI: 10.1039/c9sm01066a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The molecular mechanisms responsible for outstanding lubrication of natural systems, like articular joints, have been the focus of scientific research for several decades. One essential aspect is the lubrication under pressure, where it is important to understand how the lubricating entities adapt under dynamic working conditions in order to fulfill their function. We made a structural investigation of a model system consisting of two of the molecules present at the cartilage interface, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and hyaluronan, at high hydrostatic pressure. Phospholipid layers are found at the cartilage surfaces and are able to considerably reduce friction. Their behavior under load and varied solution conditions is important as pressures of 180 bar are encountered during daily life activities. We focus on how divalent ions, like Ca2+, affect the interaction between DPPC and hyaluronan, as other investigations have indicated that calcium ions influence their interaction. It could be shown that already low amounts of Ca2+ strongly influence the interaction of hyaluronan with DPPC. Our results suggest that the calcium ions increase the amount of adsorbed hyaluronan indicating an increased electrostatic interaction. Most importantly, we observe a modification of the DPPC phase diagram as hyaluronan absorbs to the bilayer which results in an Lα-like structure at low temperatures and a decoupling of the leaflets forming an asymmetric bilayer structure.
Collapse
Affiliation(s)
- Thomas Zander
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Costal Research, Institute of Materials Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pradal C, Yakubov GE, Williams MAK, McGuckin MA, Stokes JR. Lubrication by biomacromolecules: mechanisms and biomimetic strategies. BIOINSPIRATION & BIOMIMETICS 2019; 14:051001. [PMID: 31212257 DOI: 10.1088/1748-3190/ab2ac6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomacromolecules play a key role in protecting human biointerfaces from friction and wear, and thus enable painless motion. Biomacromolecules give rise to remarkable tribological properties that researchers have been eager to emulate. In this review, we examine how molecules such as mucins, lubricin, hyaluronic acid and other components of biotribological interfaces provide a unique set of rheological and surface properties that leads to low friction and wear. We then highlight how researchers have used some of the features of biotribological contacts to create biomimetic systems. While the brush architecture of the glycosylated molecules present at biotribological interfaces has inspired some promising polymer brush systems, it is the recent advance in the understanding of synergistic interaction between biomacromolecules that is showing the most potential in producing surfaces with a high lubricating ability. Research currently suggests that no single biomacromolecule or artificial polymer successfully reproduces the tribological properties of biological contacts. However, by combining molecules, one can enhance their anchoring and lubricating capacity, thus enabling the design of surfaces for use in biomedical applications requiring low friction and wear.
Collapse
Affiliation(s)
- Clementine Pradal
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | | | |
Collapse
|
20
|
Dobryden I, Cortes Ruiz M, Zhang X, Dėdinaitė A, Wieland DCF, Winnik FM, Claesson PM. Thermoresponsive Pentablock Copolymer on Silica: Temperature Effects on Adsorption, Surface Forces, and Friction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:653-661. [PMID: 30605339 DOI: 10.1021/acs.langmuir.8b03729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adsorption of hydrophilic or amphiphilic multiblock copolymers provides a powerful means to produce well-defined "smart" surfaces, especially if one or several blocks are sensitive to external stimuli. We focus here on an A-B-A-B-A copolymer, where A is a cationic poly((3-acrylamido-propyl)-trimethylammonium chloride) (PAMPTMA) block containing 15 (end blocks) or 30 (middle block) repeat units and B is a neutral thermosensitive water-soluble poly(2-isopropyl-2-oxazoline) (PIPOZ) block with 50 repeat units. X-ray reflectivity and quartz crystal microbalance with dissipation monitoring were employed to study the adsorption of PAMPTMA15-PIPOZ50-PAMPTMA30-PIPOZ50-PAMPTMA15 on silica surfaces. The latter technique was employed at different temperatures up to 50 °C. Surface forces and friction between the two silica surfaces across aqueous pentablock copolymer solutions at different temperatures were determined with the atomic force microscopy colloidal probe force and friction measurements. The cationic pentablock copolymer was found to have a high affinity to the negatively charged silica surface, leading to a thin (2 nm) and rigid adsorbed layer. A steric force was encountered at a separation of around 3 nm from hard wall contact. A capillary condensation of a polymer-rich phase was observed at the cloud point of the solution. The friction forces were evaluated using Amontons' rule modified with an adhesion term.
Collapse
Affiliation(s)
- Illia Dobryden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | - Maria Cortes Ruiz
- Department of Chemical Engineering , Grove School of Engineering, the City College of New York , New York , New York 10031 , United States
| | - Xuwei Zhang
- Department of Chemistry , University of Montreal , CP 6128 Succursale Centre Ville , Montreal , Québec H3C3 J7 , Canada
| | - Andra Dėdinaitė
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
- Division of Bioscience and Materials , RISE Research Institutes of Sweden , SE-114 86 Stockholm , Sweden
| | - D C Florian Wieland
- Helmholtz Zentrum Geesthacht, Institute for Materials Research , Max-Planck Straße 1 , 21502 Geesthacht , Germany
| | - Françoise M Winnik
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki FI00014 , Finland
- International Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Per M Claesson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
- Division of Bioscience and Materials , RISE Research Institutes of Sweden , SE-114 86 Stockholm , Sweden
| |
Collapse
|
21
|
Bełdowski P, Weber P, Dėdinaitė A, Claesson PM, Gadomski A. Physical crosslinking of hyaluronic acid in the presence of phospholipids in an aqueous nano-environment. SOFT MATTER 2018; 14:8997-9004. [PMID: 30394485 DOI: 10.1039/c8sm01388h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hyaluronic acid and phospholipids are two components in the synovial joint cavity that contribute to joint lubrication synergistically. Molecular dynamics simulations were performed and hydrogen bonds in hyaluronic acid were analyzed to identify specific sites that are responsible for its physical cross-linking. Two molecular masses of hyaluronic acid, 10 kDa and 160 kDa, were considered. We use molecular dynamics simulations and the small world network approach to investigate dynamic couplings using a distance map applied to oxygen atoms in a chain of hyaluronic acid in the presence of phospholipids and water. The distance characterizing the coupling can be defined in various ways to bring out the most evident differences between various scenarios of the polymer chain conformation We show herein a physical distance understood as H-bond length and classes of these distances which are defined in a coarse-grained picture of the molecule. Simulation results indicate that addition of phospholipids has little influence on hyaluronic acid crosslinking. However, longer chains and addition of lipids promote appreciably long lasting (resilient) networks that may be of importance in biological systems. Specific sites for hydrogen bonding of phospholipids to hyaluronic acid have also been identified.
Collapse
Affiliation(s)
- Piotr Bełdowski
- Institute of Mathematics and Physics, UTP University of Science and Technology, al. Kaliskiego 7, 85-796 Bydgoszcz, Poland.
| | | | | | | | | |
Collapse
|
22
|
Tilton RD. Opportunities for complex fluids engineering
w
ith nanoparticulate polymer brushes. AIChE J 2018. [DOI: 10.1002/aic.16427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Robert D. Tilton
- Center for Complex Fluids Engineering, Dept. of Chemical Engineering Carnegie Mellon University Pittsburgh Pennsylvania 15213
- Center for Complex Fluids Engineering, Dept. of Biomedical Engineering Carnegie Mellon University Pittsburgh Pennsylvania 15213
| |
Collapse
|
23
|
Bełdowski P, Kruszewska N, Yuvan S, Dendzik Z, Goudoulas T, Gadomski A. Capstan-like mechanism in hyaluronan-phospholipid systems. Chem Phys Lipids 2018; 216:17-24. [PMID: 30144435 DOI: 10.1016/j.chemphyslip.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Functionality of articular cartilage results from complex interactions between its molecular components. Among many biomolecules, two are of prime importance for lubrication: hyaluronic acid (HA) and phospholipids (PL). The purpose of this study is to discuss a mechanism of interaction between these two components and how their synergies contribute to nanobiolubrication of articular cartilage. Preliminary molecular dynamics simulations have been performed to investigate these interactions by adopting a capstan-like mechanism of action. By applying a constant pulling force to both ends of a HA molecule, wrapped around a PL micelle, we viewed the rotation of the PL micelle. The simulations were performed upon two physicochemical constraints: force- and solvent-dependency. The results show the efficiency of rotation from intermolecular bond creation and annihilation. We found a direct relation between the available surface of the micelle and the magnitude of the force, which varies significantly through the unwinding. The movement of the attached molecules is characterized by a slide-to-roll relation, which is affected by the viscosity of the surrounding medium. As a consequence, two solvents were studied for specific force conditions and the molecular dynamics simulation exhibited double the slide-to-roll coefficient for the viscous solvent as compared to its low-viscosity limit.
Collapse
Affiliation(s)
- P Bełdowski
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland.
| | - N Kruszewska
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland.
| | - S Yuvan
- Department of Physics, East Carolina University, Greenville, NC 27858, USA
| | - Z Dendzik
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - T Goudoulas
- Technical University of Munich, School of Life Sciences Weihenstephan, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| | - A Gadomski
- UTP University of Science and Technology, Institute of Mathematics and Physics, Kaliskiego 7, PL-85796 Bydgoszcz, Poland
| |
Collapse
|
24
|
Advances in Tribology of Lubricin and Lubricin-Like Synthetic Polymer Nanostructures. LUBRICANTS 2018. [DOI: 10.3390/lubricants6020030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|