1
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
2
|
Lira RB, Dillingh LS, Schuringa JJ, Yahioglu G, Suhling K, Roos WH. Fluorescence lifetime imaging microscopy of flexible and rigid dyes probes the biophysical properties of synthetic and biological membranes. Biophys J 2024; 123:1592-1609. [PMID: 38702882 PMCID: PMC11214022 DOI: 10.1016/j.bpj.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Sensing of the biophysical properties of membranes using molecular reporters has recently regained widespread attention. This was elicited by the development of new probes of exquisite optical properties and increased performance, combined with developments in fluorescence detection. Here, we report on fluorescence lifetime imaging of various rigid and flexible fluorescent dyes to probe the biophysical properties of synthetic and biological membranes at steady state as well as upon the action of external membrane-modifying agents. We tested the solvatochromic dyes Nile red and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (NBD), the viscosity sensor Bodipy C12, the flipper dye FliptR, as well as the dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), Bodipy C16, lissamine-rhodamine, and Atto647, which are dyes with no previous reported environmental sensitivity. The performance of the fluorescent probes, many of which are commercially available, was benchmarked with well-known environmental reporters, with Nile red and Bodipy C12 being specific reporters of medium hydration and viscosity, respectively. We show that some widely used ordinary dyes with no previous report of sensing capabilities can exhibit competing performance compared to highly sensitive commercially available or custom-based solvatochromic dyes, molecular rotors, or flipper in a wide range of biophysics experiments. Compared to other methods, fluorescence lifetime imaging is a minimally invasive and nondestructive method with optical resolution. It enables biophysical mapping at steady state or assessment of the changes induced by membrane-active molecules at subcellular level in both synthetic and biological membranes when intensity measurements fail to do so. The results have important consequences for the specific choice of the sensor and take into consideration factors such as probe sensitivity, response to environmental changes, ease and speed of data analysis, and the probe's intracellular distribution, as well as potential side effects induced by labeling and imaging.
Collapse
Affiliation(s)
- Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| | - Laura S Dillingh
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands; Department of Hematology, Universitair Medisch Centrum Groningen & Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jan-Jacob Schuringa
- Department of Hematology, Universitair Medisch Centrum Groningen & Rijksuniversiteit Groningen, Groningen, the Netherlands
| | | | - Klaus Suhling
- Department of Physics, King's College London, Strand, London, UK.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Odehnalová K, Balouch M, Storchmannová K, Petrová E, Konefał M, Zadražil A, Berka K, Brus J, Štěpánek F. Liposomal Copermeation Assay Reveals Unexpected Membrane Interactions of Commonly Prescribed Drugs. Mol Pharm 2024; 21:2673-2683. [PMID: 38682796 DOI: 10.1021/acs.molpharmaceut.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The permeation of small molecules across biological membranes is a crucial process that lies at the heart of life. Permeation is involved not only in the maintenance of homeostasis at the cell level but also in the absorption and biodistribution of pharmacologically active substances throughout the human body. Membranes are formed by phospholipid bilayers that represent an energy barrier for permeating molecules. Crossing this energy barrier is assumed to be a singular event, and permeation has traditionally been described as a first-order kinetic process, proportional only to the concentration gradient of the permeating substance. For a given membrane composition, permeability was believed to be a unique property dependent only on the permeating molecule itself. We provide experimental evidence that this long-held view might not be entirely correct. Liposomes were used in copermeation experiments with a fluorescent probe, where simultaneous permeation of two substances occurred over a single phospholipid bilayer. Using an assay of six commonly prescribed drugs, we have found that the presence of a copermeant can either enhance or suppress the permeation rate of the probe molecule, often more than 2-fold in each direction. This can have significant consequences for the pharmacokinetics and bioavailability of commonly prescribed drugs when used in combination and provide new insight into so-far unexplained drug-drug interactions as well as changing the perspective on how new drug candidates are evaluated and tested.
Collapse
Affiliation(s)
- Klára Odehnalová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Martin Balouch
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
- Zentiva, k.s., U Kabelovny 130, Prague 10 102 37, Czech Republic
| | - Kateřina Storchmannová
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Eliška Petrová
- Department of Organic Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Magdalena Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague 6 162 00, Czech Republic
| | - Aleš Zadražil
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague 6 162 00, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| |
Collapse
|
4
|
Sharma P, Vaiwala R, Gopinath AK, Chockalingam R, Ayappa KG. Structure of the Bacterial Cell Envelope and Interactions with Antimicrobials: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7791-7811. [PMID: 38451026 DOI: 10.1021/acs.langmuir.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Amar Krishna Gopinath
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rajalakshmi Chockalingam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| |
Collapse
|
5
|
Sato K, Nakagawa Y, Mori M, Takinoue M, Kinbara K. Transient control of lytic activity via a non-equilibrium chemical reaction system. NANOSCALE 2024. [PMID: 38465880 DOI: 10.1039/d3nr06626f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The development of artificial non-equilibrium chemical reaction systems has recently attracted considerable attention as a new type of biomimetic. However, due to the lack of bioorthogonality, such reaction systems could not be linked to the regulation of any biological phenomena. Here, we have newly designed a non-equilibrium reaction system based on olefin metathesis to produce the Triton X-mimetic non-ionic amphiphile as a kinetic product. Using phospholipid vesicles encapsulating fluorescent dyes and red blood cells as cell models, we demonstrate that the developed chemical reaction system is applicable for transient control of the resulting lytic activity.
Collapse
Affiliation(s)
- Kohei Sato
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Yume Nakagawa
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Miki Mori
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Masahiro Takinoue
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Department of Computer Science, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
6
|
Kravchenko SV, Domnin PA, Grishin SY, Vershinin NA, Gurina EV, Zakharova AA, Azev VN, Mustaeva LG, Gorbunova EY, Kobyakova MI, Surin AK, Fadeev RS, Ostroumova OS, Ermolaeva SA, Galzitskaya OV. Enhancing the Antimicrobial Properties of Peptides through Cell-Penetrating Peptide Conjugation: A Comprehensive Assessment. Int J Mol Sci 2023; 24:16723. [PMID: 38069046 PMCID: PMC10706425 DOI: 10.3390/ijms242316723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 μM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.
Collapse
Affiliation(s)
- Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Pavel A. Domnin
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Sergei Y. Grishin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikita A. Vershinin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Elena V. Gurina
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Anastasiia A. Zakharova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Leila G. Mustaeva
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Elena Y. Gorbunova
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| | - Olga S. Ostroumova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | | | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| |
Collapse
|
7
|
Pazin WM, Miranda RR, Toledo KA, Kjeldsen F, Constantino CJL, Brewer JR. pH-Dependence Cytotoxicity Evaluation of Artepillin C against Tumor Cells. Life (Basel) 2023; 13:2186. [PMID: 38004326 PMCID: PMC10672498 DOI: 10.3390/life13112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Brazilian green propolis is a well-known product that is consumed globally. Its major component, Artepillin C, showed potential as an antitumor product. This study explored the impact of Artepillin C on fibroblast and glioblastoma cell lines, used as healthy and very aggressive tumor cell lines, respectively. The focus of the study was to evaluate the pH-dependence of Artepillin C cytotoxicity, since tumor cells are known to have a more acidic extracellular microenvironment compared to healthy cells, and Artepillin C was shown to become more lipophilic at lower pH values. Investigations into the pH-dependency of Artepillin C (6.0-7.4), through viability assays and live cell imaging, revealed compelling insights. At pH 6.0, MTT assays showed the pronounced cytotoxic effects of Artepillin C, yielding a notable reduction in cell viability to less than 12% among glioblastoma cells following a 24 h exposure to 100 µM of Artepillin C. Concurrently, LDH assays indicated significant membrane damage, affecting approximately 50% of the total cells under the same conditions. Our Laurdan GP analysis suggests that Artepillin C induces autophagy, and notably, provokes a lipid membrane packing effect, contributing to cell death. These combined results affirm the selective cytotoxicity of Artepillin C within the acidic tumor microenvironment, emphasizing its potential as an effective antitumor agent. Furthermore, our findings suggest that Artepillin C holds promise for potential applications in the realm of anticancer therapies given its pH-dependence cytotoxicity.
Collapse
Affiliation(s)
- Wallance M. Pazin
- Department of Physics and Meteorology, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Renata R. Miranda
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Karina A. Toledo
- Department of Biological Sciences, School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil;
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Carlos J. L. Constantino
- Department of Physics, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| |
Collapse
|
8
|
Chen R, Song Y, Wang Z, Ji H, Du Z, Ma Q, Yang Y, Liu X, Li N, Sun Y. Developments in small-angle X-ray scattering (SAXS) for characterizing the structure of surfactant-macromolecule interactions and their complex. Int J Biol Macromol 2023; 251:126288. [PMID: 37582436 DOI: 10.1016/j.ijbiomac.2023.126288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
The surfactant-macromolecule interactions (SMI) are one of the most critical topics for scientific research and industrial application. Small-angle X-ray scattering (SAXS) is a powerful tool for comprehensively studying the structural and conformational features of macromolecules at a size ranging from Angstroms to hundreds of nanometers with a time-resolve in milliseconds scale. The SAXS integrative techniques have emerged for comprehensively analyzing the SMI and the structure of their complex in solution. Here, the various types of emerging interactions of surfactant with macromolecules, such as protein, lipid, nuclear acid, polysaccharide and virus, etc. have been systematically reviewed. Additionally, the principle of SAXS and theoretical models of SAXS for describing the structure of SMI as well as their complex has been summarized. Moreover, the recent developments in the applications of SAXS for charactering the structure of SMI have been also highlighted. Prospectively, the capacity to complement artificial intelligence (AI) in the structure prediction of biological macromolecules and the high-throughput bioinformatics sequencing data make SAXS integrative structural techniques expected to be the primary methodology for illuminating the self-assembling dynamics and nanoscale structure of SMI. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.
Collapse
Affiliation(s)
- Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Yang Song
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhichun Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Hang Ji
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhongyao Du
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Qingwen Ma
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Ying Yang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Xingxun Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, CAS, Shanghai, China.
| | - Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
9
|
De Nicola A, Montis C, Donati G, Molinaro A, Silipo A, Balestri A, Berti D, Di Lorenzo F, Zhu YL, Milano G. Bacterial lipids drive compartmentalization on the nanoscale. NANOSCALE 2023; 15:8988-8995. [PMID: 37144495 PMCID: PMC10210972 DOI: 10.1039/d3nr00559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
The design of cellular functions in synthetic systems, inspired by the internal partitioning of living cells, is a constantly growing research field that is paving the way to a large number of new remarkable applications. Several hierarchies of internal compartments like polymersomes, liposomes, and membranes are used to control the transport, release, and chemistry of encapsulated species. However, the experimental characterization and the comprehension of glycolipid mesostructures are far from being fully addressed. Lipid A is indeed a glycolipid and the endotoxic part of Gram-negative bacterial lipopolysaccharide; it is the moiety that is recognized by the eukaryotic receptors giving rise to the modulation of innate immunity. Herein we propose, for the first time, a combined approach based on hybrid Particle-Field (hPF) Molecular Dynamics (MD) simulations and Small Angle X-Ray Scattering (SAXS) experiments to gain a molecular picture of the complex supramolecular structures of lipopolysaccharide (LPS) and lipid A at low hydration levels. The mutual support of data from simulations and experiments allowed the unprecedented discovery of the presence of a nano-compartmentalized phase composed of liposomes of variable size and shape which can be used in synthetic biological applications.
Collapse
Affiliation(s)
- Antonio De Nicola
- Scuola Superiore Meridionale, Via Largo San Marcellino 10, 80132 Napoli, Italy
- Graduate School of Organic Materials Science, Yamagata, University, Jonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Costanza Montis
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Greta Donati
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - Arianna Balestri
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Debora Berti
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - You-Liang Zhu
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Giuseppe Milano
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering, Piazzale V. Tecchio, 80, 80125 Napoli, Italy.
| |
Collapse
|
10
|
Ledum M, Sen S, Bore SL, Cascella M. On the equivalence of the hybrid particle-field and Gaussian core models. J Chem Phys 2023; 158:2890484. [PMID: 37184022 DOI: 10.1063/5.0145142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Hybrid particle-field molecular dynamics is a molecular simulation strategy, wherein particles couple to a density field instead of through ordinary pair potentials. Traditionally considered a mean-field theory, a momentum and energy-conserving hybrid particle-field formalism has recently been introduced, which was demonstrated to approach the Gaussian Core model potential in the grid-converged limit. Here, we expand on and generalize the correspondence between the Hamiltonian hybrid particle-field method and particle-particle pair potentials. Using the spectral procedure suggested by Bore and Cascella, we establish compatibility to any local soft pair potential in the limit of infinitesimal grid spacing. Furthermore, we document how the mean-field regime often observed in hybrid particle-field simulations is due to the systems under consideration, and not an inherent property of the model. Considering the Gaussian filter form, in particular, we demonstrate the ability of the Hamiltonian hybrid particle-field model to recover all structural and dynamical properties of the Gaussian Core model, including solid phases, a first-order phase transition, and anomalous transport properties. We quantify the impact of the grid spacing on the correspondence, as well as the effect of the particle-field filtering length scale on the emergent particle-particle correlations.
Collapse
Affiliation(s)
- Morten Ledum
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Samiran Sen
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|
11
|
Kumar D, Suna A, Ray D, Aswal VK, Bahadur P, Tiwari S. Structural Changes in Liposomal Vesicles in Association with Sodium Taurodeoxycholate. AAPS PharmSciTech 2023; 24:95. [PMID: 37012522 DOI: 10.1208/s12249-023-02550-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Liposomes composed of soy lecithin (SL) have been studied widely for drug delivery applications. The stability and elasticity of liposomal vesicles are improved by incorporating additives, including edge activators. In this study, we report the effect of sodium taurodeoxycholate (STDC, a bile salt) upon the microstructural characteristics of SL vesicles. Liposomes, prepared by the thin film hydration method, were characterized by dynamic light scattering (DLS), small-angle neutron scattering (SANS), electron microscopy, and rheological techniques. We noticed a reduction in the size of vesicles with the incremental addition of STDC. Initial changes in the size of spherical vesicles were ascribed to the edge-activating action of STDC (0.05 to 0.17 µM). At higher concentrations (0.23 to 0.27 µM), these vesicles transformed into cylindrical structures. Morphological transitions at higher STDC concentrations would have occurred due to its hydrophobic interaction with SL molecules in the bilayer. This was ascertained from nuclear magnetic resonance observations. Whereas shape transitions underscored the deformability of vesicles in the presence of STDC, the consistency of bilayer thickness ruled out any dissociative effect. It was interesting to notice that SL-STDC mixed structures could survive high thermal stress, electrolyte addition, and dilution.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, India
| | - Abhishek Suna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, India
| | - Debes Ray
- Solid State Physical Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vinod K Aswal
- Solid State Physical Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, Gujarat, 395007, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, India.
| |
Collapse
|
12
|
Tan SW, Gooran N, Lim HM, Yoon BK, Jackman JA. Tethered Bilayer Lipid Membrane Platform for Screening Triton X-100 Detergent Replacements by Electrochemical Impedance Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:874. [PMID: 36903751 PMCID: PMC10005542 DOI: 10.3390/nano13050874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In light of regulatory considerations, there are ongoing efforts to identify Triton X-100 (TX-100) detergent alternatives for use in the biological manufacturing industry to mitigate membrane-enveloped pathogen contamination. Until now, the efficacy of antimicrobial detergent candidates to replace TX-100 has been tested regarding pathogen inhibition in endpoint biological assays or probing lipid membrane disruption in real-time biophysical testing platforms. The latter approach has proven especially useful to test compound potency and mechanism of action, however, existing analytical approaches have been limited to studying indirect effects of lipid membrane disruption such as membrane morphological changes. A direct readout of lipid membrane disruption by TX-100 detergent alternatives would be more practical to obtain biologically relevant information to guide compound discovery and optimization. Herein, we report the use of electrochemical impedance spectroscopy (EIS) to investigate how TX-100 and selected replacement candidates-Simulsol SL 11W (Simulsol) and cetyltrimethyl ammonium bromide (CTAB)-affect the ionic permeability of tethered bilayer lipid membrane (tBLM) platforms. The EIS results revealed that all three detergents exhibited dose-dependent effects mainly above their respective critical micelle concentration (CMC) values while displaying distinct membrane-disruptive behaviors. TX-100 caused irreversible membrane disruption leading to complete solubilization, whereas Simulsol caused reversible membrane disruption and CTAB induced irreversible, partial membrane defect formation. These findings establish that the EIS technique is useful for screening the membrane-disruptive behaviors of TX-100 detergent alternatives with multiplex formatting possibilities, rapid response, and quantitative readouts relevant to antimicrobial functions.
Collapse
Affiliation(s)
- Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Negin Gooran
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye Min Lim
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Sharma P, Vaiwala R, Parthasarathi S, Patil N, Verma A, Waskar M, Raut JS, Basu JK, Ayappa KG. Interactions of Surfactants with the Bacterial Cell Wall and Inner Membrane: Revealing the Link between Aggregation and Antimicrobial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15714-15728. [PMID: 36472987 DOI: 10.1021/acs.langmuir.2c02520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surfactants with their intrinsic ability to solubilize lipid membranes are widely used as antibacterial agents, and their interactions with the bacterial cell envelope are complicated by their differential aggregation tendencies. We present a combined experimental and molecular dynamics investigation to unravel the molecular basis for the superior antimicrobial activity and faster kill kinetics of shorter-chain fatty acid surfactant, laurate, when compared with the longer-chain surfactants studied in contact time assays with live Escherichia coli (E. coli). From all-atom molecular dynamics simulations, translocation events across peptidoglycan were the highest for laurate followed by sodium dodecyl sulfate, myristate, palmitate, oleate, and stearate. The translocation kinetics were positively correlated with the critical micellar concentration, which determined the free monomer surfactant concentration available for translocation across peptidoglycan. Interestingly, aggregates showed a lower propensity to translocate across the peptidoglycan layer and longer translocation times were observed for oleate, thereby revealing an intrinsic sieving property of the bacterial cell wall. Molecular dynamics simulations with surfactant-incorporated bacterial inner membranes revealed the greatest hydrophobic mismatch and membrane thinning in the presence of laurate when compared with the other surfactants. The enhanced antimicrobial efficacy of laurate over oleate was further verified by experiments with giant unilamellar vesicles, and electroporation molecular dynamics simulations revealed greater inner membrane poration tendency in the presence of laurate when compared with the longer-chain surfactants. Our study provides molecular insights into surfactant translocation across peptidoglycan and chain length-induced structural disruption of the inner membrane, which correlate with contact time kill efficacies observed as a function of chain length with E. coli. The insights gained from our study uncover unexplored barrier properties of the bacterial cell envelope to rationalize the development of antimicrobial formulations and therapeutics.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | | | - Nivedita Patil
- Unilever Research and Development, Bangalore 560066, India
| | - Anant Verma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Morris Waskar
- Unilever Research and Development, Bangalore 560066, India
| | - Janhavi S Raut
- Unilever Research and Development, Bangalore 560066, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Orekhov PS, Bozdaganyan ME, Voskoboynikova N, Mulkidjanian AY, Karlova MG, Yudenko A, Remeeva A, Ryzhykau YL, Gushchin I, Gordeliy VI, Sokolova OS, Steinhoff HJ, Kirpichnikov MP, Shaitan KV. Mechanisms of Formation, Structure, and Dynamics of Lipoprotein Discs Stabilized by Amphiphilic Copolymers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:361. [PMID: 35159706 PMCID: PMC8838559 DOI: 10.3390/nano12030361] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency.
Collapse
Affiliation(s)
- Philipp S. Orekhov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Marine E. Bozdaganyan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia Voskoboynikova
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Armen Y. Mulkidjanian
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Karlova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Yury L. Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Valentin I. Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| |
Collapse
|
15
|
Supported Lipid Bilayer Platform for Characterizing the Membrane-Disruptive Behaviors of Triton X-100 and Potential Detergent Replacements. Int J Mol Sci 2022; 23:ijms23020869. [PMID: 35055053 PMCID: PMC8775805 DOI: 10.3390/ijms23020869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Triton X-100 (TX-100) is a widely used detergent to prevent viral contamination of manufactured biologicals and biopharmaceuticals, and acts by disrupting membrane-enveloped virus particles. However, environmental concerns about ecotoxic byproducts are leading to TX-100 phase out and there is an outstanding need to identify functionally equivalent detergents that can potentially replace TX-100. To date, a few detergent candidates have been identified based on viral inactivation studies, while direct mechanistic comparison of TX-100 and potential replacements from a biophysical interaction perspective is warranted. Herein, we employed a supported lipid bilayer (SLB) platform to comparatively evaluate the membrane-disruptive properties of TX-100 and a potential replacement, Simulsol SL 11W (SL-11W), and identified key mechanistic differences in terms of how the two detergents interact with phospholipid membranes. Quartz crystal microbalance-dissipation (QCM-D) measurements revealed that TX-100 was more potent and induced rapid, irreversible, and complete membrane solubilization, whereas SL-11W caused more gradual, reversible membrane budding and did not induce extensive membrane solubilization. The results further demonstrated that TX-100 and SL-11W both exhibit concentration-dependent interaction behaviors and were only active at or above their respective critical micelle concentration (CMC) values. Collectively, our findings demonstrate that TX-100 and SL-11W have distinct membrane-disruptive effects in terms of potency, mechanism of action, and interaction kinetics, and the SLB platform approach can support the development of biophysical assays to efficiently test potential TX-100 replacements.
Collapse
|
16
|
Xia Y, Sun S, Zhang Z, Ma W, Dou Y, Bao M, Yang K, Yuan B, Kang Z. Real-Time Monitoring the Staged Interactions between Cationic Surfactants and a Phospholipid Bilayer Membrane. Phys Chem Chem Phys 2022; 24:5360-5370. [DOI: 10.1039/d1cp05598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cationic surfactant-lipid interaction directs the development of novel types of nanodrugs or nanocarriers. The membrane action of cationic surfactants also has a wide range of applications. In this work,...
Collapse
|
17
|
Drab M, Pandur Ž, Penič S, Iglič A, Kralj-Iglič V, Stopar D. A Monte Carlo study of giant vesicle morphologies in nonequilibrium environments. Biophys J 2021; 120:4418-4428. [PMID: 34506775 DOI: 10.1016/j.bpj.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
It is known that giant vesicles undergo dynamic morphological changes when exposed to a detergent. The solubilization process may take multiple pathways. In this work, we identify lipid vesicle shape dynamics before the solubilization of 1,2-dioleoyl-sn-glycero-3-phosphocholine giant vesicles with Triton X-100 (TR) detergent. The violent lipid vesicle dynamics was observed with laser confocal scanning microscopy and was qualitatively explained via a numerical simulation. A three-dimensional Monte Carlo scheme was constructed that emulated the nonequilibrium conditions at the beginning stages of solubilization, accounting for a gradual addition of TR detergent molecules into the lipid bilayers. We suggest that the main driving factor for morphology change in lipid vesicles is the associative tendency of the TR molecules, which induces spontaneous curvature of the detergent inclusions, an intrinsic consequence of their molecular shape. The majority of the observed lipid vesicle shapes in the experiments were found to correspond very well to the numerically calculated shapes in the phase space of possible solutions. The results give an insight into the early stages of lipid vesicle solubilization by amphiphilic molecules, which is nonequilibrium in nature and very difficult to study.
Collapse
Affiliation(s)
- Mitja Drab
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Žiga Pandur
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Samo Penič
- Laboratory of Bioelectromagnetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - David Stopar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Archer BJ, Mack JJ, Acosta S, Nakasone R, Dahoud F, Youssef K, Goldstein A, Goldsman A, Held MC, Wiese M, Blumich B, Wessling M, Emondts M, Klankermayer J, Iruela-Arispe ML, Bouchard LS. Mapping Cell Viability Quantitatively and Independently From Cell Density in 3D Gels Noninvasively. IEEE Trans Biomed Eng 2021; 68:2940-2947. [PMID: 33531296 PMCID: PMC8326301 DOI: 10.1109/tbme.2021.3056526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In biomanufacturing there is a need for quantitative methods to map cell viability and density inside 3D bioreactors to assess health and proliferation over time. Recently, noninvasive MRI readouts of cell density have been achieved. However, the ratio of live to dead cells was not varied. Herein we present an approach for measuring the viability of cells embedded in a hydrogel independently from cell density to map cell number and health. METHODS Independent quantification of cell viability and density was achieved by calibrating the 1H magnetization transfer- (MT) and diffusion-weighted NMR signals to samples of known cell density and viability using a multivariate approach. Maps of cell viability and density were generated by weighting NMR images by these parameters post-calibration. RESULTS Using this method, the limits of detection (LODs) of total cell density and viable cell density were found to be 3.88 ×108 cells · mL -1· Hz -1/2 and 2.36 ×109 viable cells · mL -1· Hz -1/2 respectively. CONCLUSION This mapping technique provides a noninvasive means of visualizing cell viability and number density within optically opaque bioreactors. SIGNIFICANCE We anticipate that such nondestructive readouts will provide valuable feedback for monitoring and controlling cell populations in bioreactors.
Collapse
|
19
|
Allegrone G, Ceresa C, Rinaldi M, Fracchia L. Diverse Effects of Natural and Synthetic Surfactants on the Inhibition of Staphylococcus aureus Biofilm. Pharmaceutics 2021; 13:1172. [PMID: 34452132 PMCID: PMC8402037 DOI: 10.3390/pharmaceutics13081172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
A major challenge in the biomedical field is the creation of materials and coating strategies that effectively limit the onset of biofilm-associated infections on medical devices. Biosurfactants are well known and appreciated for their antimicrobial/anti-adhesive/anti-biofilm properties, low toxicity, and biocompatibility. In this study, the rhamnolipid produced by Pseudomonas aeruginosa 89 (R89BS) was characterized by HPLC-MS/MS and its ability to modify cell surface hydrophobicity and membrane permeability as well as its antimicrobial, anti-adhesive, and anti-biofilm activity against Staphylococcus aureus were compared to two commonly used surfactants of synthetic origin: Tween® 80 and TritonTM X-100. The R89BS crude extract showed a grade of purity of 91.4% and was composed by 70.6% of mono-rhamnolipids and 20.8% of di-rhamnolipids. The biological activities of R89BS towards S. aureus were higher than those of the two synthetic surfactants. In particular, the anti-adhesive and anti-biofilm properties of R89BS and of its purified mono- and di-congeners were similar. R89BS inhibition of S. aureus adhesion and biofilm formation was ~97% and 85%, respectively, and resulted in an increased inhibition of about 33% after 6 h and of about 39% after 72 h when compared to their chemical counterparts. These results suggest a possible applicability of R89BS as a protective coating agent to limit implant colonization.
Collapse
|
20
|
Modeling the saturation of detergent association in mixed liposome systems. Colloids Surf B Biointerfaces 2021; 206:111927. [PMID: 34216851 DOI: 10.1016/j.colsurfb.2021.111927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Cells tune the lipid types present in their membranes to adjust for thermal and chemical stability, as well as to promote association and dissociation of small molecules and bound proteins. Understanding the influence of lipid type on molecule association would open doors for targeted cell therapies, in particular when molecular association is observed in the presence of competing membranes. For this reason, we modeled and experimentally observed the association of a small molecule with two membrane types present by measuring the association of the detergent Triton X-100 with two types of liposomes, egg phosphatidylcholine (ePC) liposomes and egg phosphatidic acid (ePA) liposomes, at varying ratios. We called this mixed liposomes, as each liposome population was formed from a different lipid type. Absorbance spectrometry was used to observe the stages of detergent association with mixed liposomes and to determine the detergent concentration at which the liposomes were fully saturated. A saturation model was also derived that predicts the detergent associated with each liposome type when the lipid bilayers are fully saturated with detergent. The techinical input parameters for the model are the detergent to lipid ratio and the relative absorbance intensity for each of the pure liposome species at saturation. With that, the association of detergent with any mixture of those liposome types at saturation can be determined.
Collapse
|
21
|
Górecki R, Antenucci F, Norinkevicius K, Elmstrøm Christiansen L, Myers ST, Trzaskuś K, Hélix-Nielsen C. Effect of Detergents on Morphology, Size Distribution, and Concentration of Copolymer-Based Polymersomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2079-2090. [PMID: 33534599 DOI: 10.1021/acs.langmuir.0c03044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymersomes made of amphiphilic diblock copolymers are generally regarded as having higher physical and chemical stability than liposomes composed of phospholipids. This enhanced stability arises from the higher molecular weight of polymer constituents. Despite their increased stability, polymer bilayers are solubilized by detergents in a similar manner to lipid bilayers. In this work, we evaluated the stability of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL)-based polymersomes exposed to three different detergents: N-octyl-β-d-glucopyranoside (OG), lauryldimethylamine N-oxide (LDAO), and Triton X-100 (TX-100). Changes in morphology, particle size distribution, and concentrations of the polymersomes were evaluated during the titration of the detergents into the polymersome solutions. Furthermore, we discussed the effect of detergent features on the solubilization of the polymeric bilayer and compared it to the results reported in the literature for liposomes and polymersomes. This information can be used for tuning the properties of PEG-PCL polymersomes for use in applications such as drug delivery or protein reconstitution studies.
Collapse
Affiliation(s)
- Radosław Górecki
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
- Aquaporin A/S, Nymøllevej 78, 2800 Kongens Lyngby, Denmark
| | - Fabio Antenucci
- Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 88, 1870 Frederiksberg C, Denmark
| | - Karolis Norinkevicius
- Aquaporin A/S, Nymøllevej 78, 2800 Kongens Lyngby, Denmark
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, 2800 Kongens Lyngby, Denmark
| | | | | | | | - Claus Hélix-Nielsen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Surfactants: physicochemical interactions with biological macromolecules. Biotechnol Lett 2021; 43:523-535. [PMID: 33534014 PMCID: PMC7872986 DOI: 10.1007/s10529-020-03054-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Macromolecules are essential cellular components in biological systems responsible for performing a large number of functions that are necessary for growth and perseverance of living organisms. Proteins, lipids and carbohydrates are three major classes of biological macromolecules. To predict the structure, function, and behaviour of any cluster of macromolecules, it is necessary to understand the interaction between them and other components through basic principles of chemistry and physics. An important number of macromolecules are present in mixtures with surfactants, where a combination of hydrophobic and electrostatic interactions is responsible for the specific properties of any solution. It has been demonstrated that surfactants can help the formation of helices in some proteins thereby promoting protein structure formation. On the other hand, there is extensive research towards the use of surfactants to solubilize drugs and pharmaceuticals; therefore, it is evident that the interaction between surfactants with macromolecules is important for many applications which includes environmental processes and the pharmaceutical industry. In this review, we describe the properties of different types of surfactants that are relevant for their physicochemical interactions with biological macromolecules, from macromolecules–surfactant complexes to hydrophobic and electrostatic interactions.
Collapse
|
23
|
Myhre S, Amann M, Willner L, Knudsen KD, Lund R. How Detergents Dissolve Polymeric Micelles: Kinetic Pathways of Hybrid Micelle Formation in SDS and Block Copolymer Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12887-12899. [PMID: 32960616 PMCID: PMC7660944 DOI: 10.1021/acs.langmuir.0c02123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Mixtures of amphiphilic polymers and surfactants are used in a wide range of applications, e.g., pharmaceuticals, detergents, cosmetics, and drug delivery systems. Still, many questions remain on how the structure and, in particular, the kinetics of block copolymer micelles are affected in the presence of surfactants and what controls the solubilization kinetics. In this work, we have studied the stability and solubilization kinetics of block copolymer micelles upon the addition of the surfactant sodium dodecyl sulfate (SDS) using small-angle X-ray/neutron scattering. The ability of the surfactant to dissolve polymer micelles or form mixed micelles has been investigated using two types of amphiphilic polymers, poly(ethylene-alt-propylene)-poly(ethylene oxide) (PEP1-PEO20) and n-alkyl-functionalized PEO (C28-PEO5). The exchange kinetics of C28-PEO5 micelles are in the order of hours, while PEP1-PEO20 micelles are known to be frozen on a practical timescale. In this work, we show that the addition of SDS to PEP1-PEO20 provides virtually no solubilization, even after an extended period of time. However, upon adding SDS to C28-PEO5 micelles, we observe micellar dissolution and formation of mixed micelles occurring on the timescale of hours. Using a coexistence model of mixed and neat micelles, the SAXS data were analyzed to provide detailed structural parameters over time. First, we observe a fast fragmentation/fission step followed by a slow reorganization process. The latter process is essentially independent of concentration at low volume fraction but is greatly accelerated at larger concentrations. This might indicate a crossover from a predominance of molecular exchange to fusion/fission processes.
Collapse
Affiliation(s)
- Synne Myhre
- Department
of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Matthias Amann
- Department
of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Lutz Willner
- Jülich
Centre for Neutron Science (JCNS-1) and Institute of Biological Information
Processing (IBI-8) Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Kenneth D. Knudsen
- IFE, Institute
for Energy Technology, Instituttveien 18, Kjeller 2007, Norway
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, Oslo 0315, Norway
| |
Collapse
|
24
|
Valério A, Sárria MP, Rodriguez-Lorenzo L, Hotza D, Espiña B, Gómez González SY. Are TiO 2 nanoparticles safe for photocatalysis in aqueous media? NANOSCALE ADVANCES 2020; 2:4951-4960. [PMID: 36132922 PMCID: PMC9419467 DOI: 10.1039/d0na00584c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/14/2020] [Indexed: 06/14/2023]
Abstract
Although environmental and toxicity concerns are inherently linked, catalysis using photoactive nanoparticles and their hazardous potential are usually addressed independently. A toxicological assessment under the application framework is particularly important, given the pristine nanoparticles tend to change characteristics during several processes used to incorporate them into products. Herein, an efficient TiO2-functionalized macroporous structure was developed using widely adopted immobilization procedures. The relationships between photocatalysis, catalyst release and associated potential environmental hazards were assessed using zebrafish embryonic development as a proxy. Immobilized nanoparticles demonstrated the safest approach to the environment, as the process eliminates remnant additives while preventing the release of nanoparticles. However, as acute sublethal effects were recorded in zebrafish embryos at different stages of development, a completely safe release of TiO2 nanoparticles into the aquatic environment cannot be advocated.
Collapse
Affiliation(s)
- Alexsandra Valério
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC) 88010-970 Florianopolis Brazil
| | - Marisa P Sárria
- International Iberian Nanotechnology Laboratory (INL) 4715-330 Braga Portugal
| | | | - Dachamir Hotza
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC) 88010-970 Florianopolis Brazil
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL) 4715-330 Braga Portugal
| | - Sergio Yesid Gómez González
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC) 88010-970 Florianopolis Brazil
| |
Collapse
|
25
|
Wu Z, Kalogirou A, De Nicola A, Milano G, Müller‐Plathe F. Atomistic hybrid
particle‐field
molecular dynamics combined with
slip‐springs
: Restoring entangled dynamics to simulations of polymer melts. J Comput Chem 2020; 42:6-18. [DOI: 10.1002/jcc.26428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Zhenghao Wu
- Eduard‐Zintl‐Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Darmstadt Germany
| | - Andreas Kalogirou
- Eduard‐Zintl‐Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Darmstadt Germany
| | - Antonio De Nicola
- Department of Organic Materials Science Yamagata University Yamagata‐ken Japan
| | - Giuseppe Milano
- Department of Organic Materials Science Yamagata University Yamagata‐ken Japan
| | - Florian Müller‐Plathe
- Eduard‐Zintl‐Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Darmstadt Germany
| |
Collapse
|
26
|
Bore SL, Cascella M. Hamiltonian and alias-free hybrid particle–field molecular dynamics. J Chem Phys 2020; 153:094106. [DOI: 10.1063/5.0020733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sigbjørn Løland Bore
- Department of Chemistry, and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern 0315, Oslo, Norway
| | - Michele Cascella
- Department of Chemistry, and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern 0315, Oslo, Norway
| |
Collapse
|
27
|
Mendozza M, Balestri A, Montis C, Berti D. Controlling the Kinetics of an Enzymatic Reaction through Enzyme or Substrate Confinement into Lipid Mesophases with Tunable Structural Parameters. Int J Mol Sci 2020; 21:ijms21145116. [PMID: 32698376 PMCID: PMC7404178 DOI: 10.3390/ijms21145116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid liquid crystalline mesophases, resulting from the self-assembly of polymorphic lipids in water, have been widely explored as biocompatible drug delivery systems. In this respect, non-lamellar structures are particularly attractive: they are characterized by complex 3D architectures, with the coexistence of hydrophobic and hydrophilic regions that can conveniently host drugs of different polarities. The fine tunability of the structural parameters is nontrivial, but of paramount relevance, in order to control the diffusive properties of encapsulated active principles and, ultimately, their pharmacokinetics and release. In this work, we investigate the reaction kinetics of p-nitrophenyl phosphate conversion into p-nitrophenol, catalysed by the enzyme Alkaline Phosphatase, upon alternative confinement of the substrate and of the enzyme into liquid crystalline mesophases of phytantriol/H2O containing variable amounts of an additive, sucrose stearate, able to swell the mesophase. A structural investigation through Small-Angle X-ray Scattering, revealed the possibility to finely control the structure/size of the mesophases with the amount of the included additive. A UV-vis spectroscopy study highlighted that the enzymatic reaction kinetics could be controlled by tuning the structural parameters of the mesophase, opening new perspectives for the exploitation of non-lamellar mesophases for confinement and controlled release of therapeutics.
Collapse
|
28
|
Carrer M, Škrbić T, Bore SL, Milano G, Cascella M, Giacometti A. Can Polarity-Inverted Surfactants Self-Assemble in Nonpolar Solvents? J Phys Chem B 2020; 124:6448-6458. [PMID: 32618191 PMCID: PMC8009519 DOI: 10.1021/acs.jpcb.0c04842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
We investigate the
self-assembly process of a surfactant with inverted
polarity in water and cyclohexane using both all-atom and coarse-grained
hybrid particle-field molecular dynamics simulations. Unlike conventional
surfactants, the molecule under study, proposed in a recent experiment,
is formed by a rigid and compact hydrophobic adamantane moiety, and
a long and floppy triethylene glycol tail. In water, we report the
formation of stable inverted micelles with the adamantane heads grouping
together into a hydrophobic core and the tails forming hydrogen bonds
with water. By contrast, microsecond simulations do not provide evidence
of stable micelle formation in cyclohexane. Validating the computational
results by comparison with experimental diffusion constant and small-angle
X-ray scattering intensity, we show that at laboratory thermodynamic
conditions the mixture resides in the supercritical region of the
phase diagram, where aggregated and free surfactant states coexist
in solution. Our simulations also provide indications as to how to
escape this region to produce thermodynamically stable micellar aggregates.
Collapse
Affiliation(s)
- Manuel Carrer
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Tatjana Škrbić
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, Oregon 97403, United States.,Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia,Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Giuseppe Milano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510 Yamagata-ken, Japan.,Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia,Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy.,European Centre for Living Technology (ECLT) Ca' Bottacin, 3911 Dorsoduro, Calle Crosera, 30123 Venice, Italy
| |
Collapse
|
29
|
Aggregation of Lipid A Variants: A Hybrid Particle-Field Model. Biochim Biophys Acta Gen Subj 2020; 1865:129570. [PMID: 32105775 DOI: 10.1016/j.bbagen.2020.129570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
Lipid A is one of the three components of bacterial lipopolysaccharides constituting the outer membrane of Gram-negative bacteria, and is recognized to have an important biological role in the inflammatory response of mammalians. Its biological activity is modulated by the number of acyl-chains that are present in the lipid and by the dielectric medium, i.e., the type of counter-ions, through electrostatic interactions. In this paper, we report on a coarse-grained model of chemical variants of Lipid A based on the hybrid particle-field/molecular dynamics approach (hPF-MD). In particular, we investigate the stability of Lipid A bilayers for two different hexa- and tetra-acylated structures. Comparing particle density profiles along bilayer cross-sections, we find good agreement between the hPF-MD model and reference all-atom simulation for both chemical variants of Lipid A. hPF-MD models of constituted bilayers composed by hexa-acylated Lipid A in water are stable within the simulation time. We further validate our model by verifying that the phase behavior of Lipid A/counterion/water mixtures is correctly reproduced. In particular, hPF-MD simulations predict the correct self-assembly of different lamellar and micellar phases from an initially random distribution of Lipid A molecules with counterions in water. Finally, it is possible to observe the spontaneous formation and stability of Lipid A vesicles by fusion of micellar aggregates.
Collapse
|
30
|
Clark ST, Arras MML, Sarles SA, Frymier PD. Lipid shape determination of detergent solubilization in mixed-lipid liposomes. Colloids Surf B Biointerfaces 2019; 187:110609. [PMID: 31806354 DOI: 10.1016/j.colsurfb.2019.110609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022]
Abstract
The effects of lipid charge and head group size on liposome partitioning by detergents is an important consideration for applications such as liposomal drug delivery or proteoliposome formation. Yet, the solubilization of mixed-lipid liposomes, those containing multiple types of lipids, by detergents has received insufficient attention. This study examines the incorporation into and subsequent dissolution of mixed-lipid liposomes comprised of both egg phosphatidylcholine (ePC) and egg phosphatidic acid (ePA) by the detergent Triton-X100 (TX). Liposomes were prepared with mixtures of the two lipids, ePC and ePA, at molar ratios from 0 to 1, then step-wise solubilized with TX. Changes in turbidity, size distribution, and molar heat power at constant temperature throughout the solubilization process were assessed. The data suggest that the difference in lipid shapes (shape factors = 0.74 and 1.4 [1,2]) affects packing in membranes, and hence influences how much TX can be incorporated before disruption. As such, liposomes containing the observed ratios of ePA incorporated higher concentrations of TX before initiating dissolution into detergent and lipid mixed-micelles. The cause was concluded to be increased mismatching in the bilayer from the conical shape of ePA compared to the cylindrical shape of ePC. Additionally, the degree to which ePA is approximated as conical versus cylindrical was modulated with pH. It was confirmed that less conical ePA behaved more similarly to ePC than more conical ePA. The understanding gained here on lipid shape in liposome incorporation of TX enables research to use in vitro liposomes that more closely mimic native membranes.
Collapse
Affiliation(s)
- Samantha T Clark
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA
| | - Matthias M L Arras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, 414 Dougherty Engineering Building, Knoxville, TN 37996, USA
| | - Paul D Frymier
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA.
| |
Collapse
|
31
|
Zhao Y, Ma SM, Li B, De Nicola A, Yu NS, Dong B. Micellization of Pluronic P123 in Water/Ethanol/Turpentine Oil Mixed Solvents: Hybrid Particle-Field Molecular Dynamic Simulation. Polymers (Basel) 2019; 11:E1806. [PMID: 31684204 PMCID: PMC6918437 DOI: 10.3390/polym11111806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 01/30/2023] Open
Abstract
The hybrid particle-field molecular dynamics simulation method (MD-SCF) was applied to study the self-assembly of Pluronic PEO20-PPO70-PEO20 (P123) in water/ethanol/turpentine oil- mixed solvents. In particular, the micellization process of P123 at low concentration (less than 20%) in water/ethanol/turpentine oil-mixed solvents was investigated. The aggregation number, radius of gyration, and radial density profiles were calculated and compared with experimental data to characterize the structures of the micelles self-assembled from P123 in the mixed solvent. This study confirms that the larger-sized micelles are formed in the presence of ethanol, in addition to the turpentine oil-swollen micelles. Furthermore, the spherical micelles and vesicles were both observed in the self-assembly of P123 in the water/ethanol/turpentine oil-mixed solvent. The results of this work aid the understanding of the influence of ethanol and oil on P123 micellization, which will help with the design of effective copolymer-based formulations.
Collapse
Affiliation(s)
- Ying Zhao
- Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
| | - Su-Min Ma
- Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
- Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Antonio De Nicola
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata-ken 992-8510, Japan.
| | - Nai-Sen Yu
- Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
| | - Bin Dong
- Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
32
|
Dalgarno PA, Juan-Colás J, Hedley GJ, Piñeiro L, Novo M, Perez-Gonzalez C, Samuel IDW, Leake MC, Johnson S, Al-Soufi W, Penedo JC, Quinn SD. Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents. Sci Rep 2019; 9:12897. [PMID: 31501469 PMCID: PMC6733941 DOI: 10.1038/s41598-019-49210-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022] Open
Abstract
The solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions.
Collapse
Affiliation(s)
- Paul A Dalgarno
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK.,Institute of Biological Physics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - José Juan-Colás
- Department of Electronic Engineering, University of York, Heslington, York, YO10 5DD, UK
| | - Gordon J Hedley
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK.,School of Chemistry, University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Lucas Piñeiro
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, E-27002, Spain
| | - Mercedes Novo
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, E-27002, Spain
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK
| | - Ifor D W Samuel
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York, England, YO10 5DD, UK.,Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Steven Johnson
- Department of Electronic Engineering, University of York, Heslington, York, YO10 5DD, UK
| | - Wajih Al-Soufi
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, Lugo, E-27002, Spain
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK.
| | - Steven D Quinn
- SUPA School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK. .,Department of Physics, University of York, Heslington, York, England, YO10 5DD, UK. .,Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
33
|
Ćirin D, Poša M. Synergism in cationic surfactant and triton X-100 mixtures: Role of enthalpic interactions and conformation changes. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Duša F, Chen W, Witos J, Wiedmer SK. Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5889-5900. [PMID: 29715032 PMCID: PMC6150717 DOI: 10.1021/acs.langmuir.8b01074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Nanoplasmonic sensing (NPS), based on localized surface plasmon resonance, with sensors composed of glass covered with golden nanodisks and overlaid with a SiO2 coating was applied in this study. Egg phosphatidylcholine (eggPC), being an easily accessible membrane-forming lipid, was used for preparation of biomimicking membranes. Small unilamellar vesicles with an approximate hydrodynamic diameter of 30 nm, formed by sonication in 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid buffer, were adsorbed within 10 min on the sensor surface either as intact vesicles or as a planar bilayer. The adsorbed biomembrane systems were further utilized for interaction studies with four different well-known surfactants (negatively and positively charged, zwitterionic, and nonionic) and each surfactant was tested at concentrations below and above the critical micelle concentration (CMC). Our results allowed the evaluation of different NPS patterns for every particular supported membrane system, surfactant, and its concentration. The most significant effect on the membrane was achieved upon the introduction of zwitterionic surfactant micelles, which in fact completely solubilized and removed the lipid membranes from the sensor surface. Other surfactant micelles interacted with the membranes and formed mixed structures remaining on the sensor surface. The studies performed at the concentrations below the CMCs of the surfactants showed that different mixed systems were formed. Depending on the supported membrane system and the type of surfactant, the mixed systems indicated different formation kinetics. Additionally, the final water rinse revealed the stability of the formed systems. To investigate the effect of the studied surfactants on the overall surface charge of the biomembrane, capillary electrophoresis (CE) experiments were carried out in parallel with the NPS analysis. The electroosmotic flow mobility of an eggPC-coated fused silica capillary was used to measure the total surface charge of the biomembrane after its treatment with the surfactants. Our results indicated in general good correlation between CE and NPS data. However, some discrepancies were seen while applying either zwitterionic or positively charged surfactants. This confirmed that CE analysis was able to provide additional data about the investigated systems. Taken together, the combination of NPS and CE proved to be an efficient way to describe the nature of interactions between biomimicking membranes and amphiphilic molecules.
Collapse
Affiliation(s)
- Filip Duša
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech
Republic
| | - Wen Chen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Joanna Witos
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Susanne K. Wiedmer
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Bore SL, Milano G, Cascella M. Hybrid Particle-Field Model for Conformational Dynamics of Peptide Chains. J Chem Theory Comput 2018; 14:1120-1130. [DOI: 10.1021/acs.jctc.7b01160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sigbjørn Løland Bore
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033 Blindern, 0315 Oslo, Norway
| | - Giuseppe Milano
- Department
of Organic Materials Science, University of Yamagata, 4-3-16 Jonan
Yonezawa, Yamagata-ken 992-8510, Japan
| | - Michele Cascella
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O.
Box 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|