1
|
Ozon M, Tumashevich K, Lin JJ, Prisle NL. Inversion model for extracting chemically resolved depth profiles across liquid interfaces of various configurations from XPS data: PROPHESY. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:941-961. [PMID: 37610342 PMCID: PMC10481271 DOI: 10.1107/s1600577523006124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023]
Abstract
PROPHESY, a technique for the reconstruction of surface-depth profiles from X-ray photoelectron spectroscopy data, is introduced. The inversion methodology is based on a Bayesian framework and primal-dual convex optimization. The acquisition model is developed for several geometries representing different sample types: plane (bulk sample), cylinder (liquid microjet) and sphere (droplet). The methodology is tested and characterized with respect to simulated data as a proof of concept. Possible limitations of the method due to uncertainty in the attenuation length of the photo-emitted electron are illustrated.
Collapse
Affiliation(s)
- Matthew Ozon
- Center for Atmospheric Research, University of Oulu, PO Box 4500, Finland
| | | | - Jack J. Lin
- Center for Atmospheric Research, University of Oulu, PO Box 4500, Finland
| | - Nønne L. Prisle
- Center for Atmospheric Research, University of Oulu, PO Box 4500, Finland
| |
Collapse
|
2
|
Rissler J, Preger C, Eriksson AC, Lin JJ, Prisle NL, Svenningsson B. Missed Evaporation from Atmospherically Relevant Inorganic Mixtures Confounds Experimental Aerosol Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2706-2714. [PMID: 36758144 PMCID: PMC9948290 DOI: 10.1021/acs.est.2c06545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Sea salt aerosol particles are highly abundant in the atmosphere and play important roles in the global radiative balance. After influence from continental air, they are typically composed of Na+, Cl-, NH4+, and SO42- and organics. Analogous particle systems are often studied in laboratory settings by atomizing and drying particles from a solution. Here, we present evidence that such laboratory studies may be consistently biased in that they neglect losses of solutes to the gas phase. We present experimental evidence from a hygroscopic tandem differential mobility analyzer and an aerosol mass spectrometer, further supported by thermodynamic modeling. We show that, at normally prevailing laboratory aerosol mass concentrations, for mixtures of NaCl and (NH4)2SO4, a significant portion of the Cl- and NH4+ ions are lost to the gas phase, in some cases, leaving mainly Na2SO4 in the dry particles. Not considering losses of solutes to the gas phase during experimental studies will likely result in misinterpretation of the data. One example of such data is that from particle water uptake experiments. This may bias the explanatory models constructed from the data and introduce errors inte predictions made by air quality or climate models.
Collapse
Affiliation(s)
- Jenny Rissler
- Ergonomics
and Aerosol Technology, Lund University, Box 118, 221 00 Lund, Sweden
- Bioeconomy
and Health, Research Institutes of Sweden
(RISE), Scheelevägen
17, 223 70 Lund, Sweden
| | - Calle Preger
- Ergonomics
and Aerosol Technology, Lund University, Box 118, 221 00 Lund, Sweden
- MAX
IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| | - Axel C. Eriksson
- Ergonomics
and Aerosol Technology, Lund University, Box 118, 221 00 Lund, Sweden
| | - Jack J. Lin
- Center
for Atmospheric Research, University of
Oulu, P.O. Box 4500, 90014 Oulu, Finland
| | - Nønne L. Prisle
- Center
for Atmospheric Research, University of
Oulu, P.O. Box 4500, 90014 Oulu, Finland
| | | |
Collapse
|
3
|
Pelimanni E, Hautala L, Hans A, Kivimäki A, Kook M, Küstner-Wetekam C, Marder L, Patanen M, Huttula M. Core and Valence Level Photoelectron Spectroscopy of Nanosolvated KCl. J Phys Chem A 2021; 125:4750-4759. [PMID: 34034483 PMCID: PMC8279652 DOI: 10.1021/acs.jpca.1c01539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/22/2021] [Indexed: 01/04/2023]
Abstract
The solvation of alkali and halide ions in the aqueous environment has been a subject of intense experimental and theoretical research with multidisciplinary interests; yet, a comprehensive molecular-level understanding has still not been obtained. In recent years, electron spectroscopy has been increasingly applied to study the electronic and structural properties of aqueous ions with implications, especially in atmospheric chemistry. In this work, we report core and valence level (Cl 2p, Cl 3p, and K 3p) photoelectron spectra of the common alkali halide, KCl, doped in gas-phase water clusters in the size range of a few hundred water molecules. The results indicate that the electronic structure of these nanosolutions shows a distinct character from that observed at the liquid-vapor interface in liquid microjets and ambient pressure setups. Insights are provided into the unique solvation properties of ions in a nanoaqueous environment, emerging properties of bulk electrolyte solutions with growing cluster size, and sensitivity of the electronic structure to varying solvation configurations.
Collapse
Affiliation(s)
- Eetu Pelimanni
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Lauri Hautala
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Andreas Hans
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
- Universität
Kassel, Institut für Physik und CINSaT, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Antti Kivimäki
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
- MAX
IV Laboratory, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Mati Kook
- Institute
of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Catmarna Küstner-Wetekam
- Universität
Kassel, Institut für Physik und CINSaT, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Lutz Marder
- Universität
Kassel, Institut für Physik und CINSaT, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Minna Patanen
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Marko Huttula
- Nano
and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
4
|
Fárník M, Fedor J, Kočišek J, Lengyel J, Pluhařová E, Poterya V, Pysanenko A. Pickup and reactions of molecules on clusters relevant for atmospheric and interstellar processes. Phys Chem Chem Phys 2021; 23:3195-3213. [PMID: 33524089 DOI: 10.1039/d0cp06127a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this perspective, we review experiments with molecules picked up on large clusters in molecular beams with the focus on the processes in atmospheric and interstellar chemistry. First, we concentrate on the pickup itself, and we discuss the pickup cross sections. We measure the uptake of different atmospheric molecules on mixed nitric acid-water clusters and determine the accommodation coefficients relevant for aerosol formation in the Earth's atmosphere. Then the coagulation of the adsorbed molecules on the clusters is investigated. In the second part of this perspective, we review examples of different processes triggered by UV-photons or electrons in the clusters with embedded molecules. We start with the photodissociation of hydrogen halides and Freon CF2Cl2 on ice nanoparticles in connection with the polar stratospheric ozone depletion. Next, we mention reactions following the excitation and ionization of the molecules adsorbed on clusters. The first ionization-triggered reaction observed between two different molecules picked up on the cluster was the proton transfer between methanol and formic acid deposited on large argon clusters. Finally, negative ion reactions after slow electron attachment are illustrated by two examples: mixed nitric acid-water clusters, and hydrogen peroxide deposited on large ArN and (H2O)N clusters. The selected examples are discussed from the perspective of the atmospheric and interstellar chemistry, and several future directions are proposed.
Collapse
Affiliation(s)
- Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|