1
|
Uva A, Michailovich S, Hsu NSY, Tran H. Degradable π-Conjugated Polymers. J Am Chem Soc 2024; 146:12271-12287. [PMID: 38656104 DOI: 10.1021/jacs.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The integration of next-generation electronics into society is rapidly reshaping our daily interactions and lifestyles, revolutionizing communication and engagement with the world. Future electronics promise stimuli-responsive features and enhanced biocompatibility, such as skin-like health monitors and sensors embedded in food packaging, transforming healthcare and reducing food waste. Imparting degradability may reduce the adverse environmental impact of next-generation electronics and lead to opportunities for environmental and health monitoring. While advancements have been made in producing degradable materials for encapsulants, substrates, and dielectrics, the availability of degradable conducting and semiconducting materials remains restricted. π-Conjugated polymers are promising candidates for the development of degradable conductors or semiconductors due to the ability to tune their stimuli-responsiveness, biocompatibility, and mechanical durability. This perspective highlights three design considerations: the selection of π-conjugated monomers, synthetic coupling strategies, and degradation of π-conjugated polymers, for generating π-conjugated materials for degradable electronics. We describe the current challenges with monomeric design and present options to circumvent these issues by highlighting biobased π-conjugated compounds with known degradation pathways and stable monomers that allow for chemically recyclable polymers. Next, we present coupling strategies that are compatible for the synthesis of degradable π-conjugated polymers, including direct arylation polymerization and enzymatic polymerization. Lastly, we discuss various modes of depolymerization and characterization techniques to enhance our comprehension of potential degradation byproducts formed during polymer cleavage. Our perspective considers these three design parameters in parallel rather than independently while having a targeted application in mind to accelerate the discovery of next-generation high-performance π-conjugated polymers for degradable organic electronics.
Collapse
Affiliation(s)
- Azalea Uva
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sofia Michailovich
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Nathan Sung Yuan Hsu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Helen Tran
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Acceleration Consortium, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Raj R, Dixit AR. Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:828-854. [PMID: 37609584 PMCID: PMC10440670 DOI: 10.1089/3dp.2021.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Direct Ink Writing (DIW) opens new possibilities in three-dimensional (3D) printing of carbon-based polymeric ink. This is due to its ability in design flexibility, structural complexity, and environmental sustainability. This area requires exhaustive study because of its wide application in different manufacturing sectors. The present article is related to the variant emerging 3D printing techniques and DIW of carbonaceous materials. Carbon-based materials, extensively used for various applications in 3D printing, possess impressive chemical stability, strength, and flexible nanostructure. Fine printable inks consist predominantly of uniform solutions of carbon materials, such as graphene, graphene oxide (GO), carbon fibers (CFs), carbon nanotubes (CNTs), and solvents. It also contains compatible polymers and suitable additives. This review article elaborately discusses the fundamental requirements of DIW in structuring carbon-doped polymeric inks viz. ink formulation, required ink rheology, extrusion parameters, print fidelity prediction, layer bonding examination, substrate selection, and curing method to achieve fine functional composites. A detailed description of its application in the fields of electronics, medical, and mechanical segments have also been focused in this study.
Collapse
Affiliation(s)
- Ratnesh Raj
- Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Amit Rai Dixit
- Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
3
|
Kweon H, Choi KY, Park HW, Lee R, Jeong U, Kim MJ, Hong H, Ha B, Lee S, Kwon JY, Chung KB, Kang MS, Lee H, Kim DH. Silicone engineered anisotropic lithography for ultrahigh-density OLEDs. Nat Commun 2022; 13:6775. [PMID: 36509734 PMCID: PMC9744739 DOI: 10.1038/s41467-022-34531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
Ultrahigh-resolution patterning with high-throughput and high-fidelity is highly in demand for expanding the potential of organic light-emitting diodes (OLEDs) from mobile and TV displays into near-to-eye microdisplays. However, current patterning techniques so far suffer from low resolution, consecutive pattern for RGB pixelation, low pattern fidelity, and throughput issue. Here, we present a silicone engineered anisotropic lithography of the organic light-emitting semiconductor (OLES) that in-situ forms a non-volatile etch-blocking layer during reactive ion etching. This unique feature not only slows the etch rate but also enhances the anisotropy of etch direction, leading to gain delicate control in forming ultrahigh-density multicolor OLES patterns (up to 4500 pixels per inch) through photolithography. This patterning strategy inspired by silicon etching chemistry is expected to provide new insights into ultrahigh-density OLED microdisplays.
Collapse
Affiliation(s)
- Hyukmin Kweon
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Keun-Yeong Choi
- grid.263765.30000 0004 0533 3568School of Information Communication Convergence Technology, Soongsil University, Seoul, 06978 Republic of Korea
| | - Han Wool Park
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Ryungyu Lee
- grid.263765.30000 0004 0533 3568School of Information Communication Convergence Technology, Soongsil University, Seoul, 06978 Republic of Korea
| | - Ukjin Jeong
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Min Jung Kim
- grid.255168.d0000 0001 0671 5021Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620 Republic of Korea
| | - Hyunmin Hong
- grid.255168.d0000 0001 0671 5021Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620 Republic of Korea
| | - Borina Ha
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sein Lee
- grid.15444.300000 0004 0470 5454School of Integrated Technology, Yonsei University, Incheon, 21983 Republic of Korea
| | - Jang-Yeon Kwon
- grid.15444.300000 0004 0470 5454School of Integrated Technology, Yonsei University, Incheon, 21983 Republic of Korea
| | - Kwun-Bum Chung
- grid.255168.d0000 0001 0671 5021Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620 Republic of Korea
| | - Moon Sung Kang
- grid.263736.50000 0001 0286 5954Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107 Republic of Korea ,grid.263736.50000 0001 0286 5954Institute of Emergent Materials, Sogang University, Seoul, 04107 Republic of Korea
| | - Hojin Lee
- grid.263765.30000 0004 0533 3568School of Information Communication Convergence Technology, Soongsil University, Seoul, 06978 Republic of Korea ,grid.263765.30000 0004 0533 3568School of Electronic Engineering, Soongsil University, Seoul, 06978 Republic of Korea
| | - Do Hwan Kim
- grid.49606.3d0000 0001 1364 9317Department of Chemical Engineering, Hanyang University, Seoul, 04763 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Institute of Nano Science and Technology, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
4
|
Ashok Kumar S, Periyasamy BK. Exciton Dynamics of MEH‐PPV polymer based Nanocomposites: Effect of Molecular Orbital Energy Levels of Nanoparticles**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sangeetha Ashok Kumar
- CIPET: School for Advanced Research in Petrochemicals (SARP) - ARSTPS Central Institute of Petrochemicals Engineering and Technology (CIPET) Chennai India
| | - Bhuvana K Periyasamy
- CIPET: Institute of Petrochemicals Technology (IPT) Central Institute of Petrochemicals Engineering and Technology (CIPET) Chennai India
| |
Collapse
|
5
|
Grześ G, Wolski K, Uchacz T, Bała J, Louis B, Scheblykin IG, Zapotoczny S. Ladder-like Polymer Brushes Containing Conjugated Poly(Propylenedioxythiophene) Chains. Int J Mol Sci 2022; 23:ijms23115886. [PMID: 35682563 PMCID: PMC9180196 DOI: 10.3390/ijms23115886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023] Open
Abstract
The high stability and conductivity of 3,4-disubstituted polythiophenes such as poly(3,4-ethylenedioxythiophene) (PEDOT) make them attractive candidates for commercial applications. However, next-generation nanoelectronic devices require novel macromolecular strategies for the precise synthesis of advanced polymer structures as well as their arrangement. In this report, we present a synthetic route to make ladder-like polymer brushes with poly(3,4-propylenedioxythiophene) (PProDOT)-conjugated chains. The brushes were prepared via a self-templating surface-initiated technique (ST-SIP) that combines the surface-initiated atom transfer radical polymerization (SI-ATRP) of bifunctional ProDOT-based monomers and subsequent oxidative polymerization of the pendant ProDOT groups in the parent brushes. The brushes prepared in this way were characterized by grazing-angle FTIR, XPS spectroscopy, and AFM. Steady-state and time-resolved photoluminescence measurements were used to extract the information about the structure and effective conjugation length of PProDOT-based chains. Stability tests performed in ambient conditions and under exposure to standardized solar light revealed the remarkable stability of the obtained materials.
Collapse
Affiliation(s)
- Gabriela Grześ
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
- Correspondence: (K.W.); (S.Z.)
| | - Tomasz Uchacz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
| | - Justyna Bała
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
| | - Boris Louis
- Division of Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden; (B.L.); (I.G.S.)
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ivan G. Scheblykin
- Division of Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden; (B.L.); (I.G.S.)
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
- Correspondence: (K.W.); (S.Z.)
| |
Collapse
|
6
|
Guo X, Chen J, Eh ALS, Poh WC, Jiang F, Jiang F, Chen J, Lee PS. Heat-Insulating Black Electrochromic Device Enabled by Reversible Nickel-Copper Electrodeposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20237-20246. [PMID: 35467337 DOI: 10.1021/acsami.2c02626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An electrochromic device (ECD), which can switch between black and transmissive states under electrical bias, is a promising candidate for smart windows due to its color neutrality and excellent durability. Most of the black ECDs are achieved through a reversible electrodeposition and dissolution mechanism; however, they typically suffer from relatively poor cycling stability and a slow coloration/bleaching time. Herein, we present a heat-insulating black ECD with a gel electrolyte that operates via reversible Ni-Cu electrodeposition and dissolution. With the adoption of a Cu alloying strategy and a compatible gel electrolyte, this two-electrode ECD (5.0 cm × 2.5 cm) can achieve a cycling stability of 1500 cycles with transmittance modulation up to 55.2% in short coloration (6.2 s) and bleaching times (13.2 s) at a wavelength of 550 nm. Additionally, the ECD can be switched from the transparent state (visible light transmittance: 0.566) to the opaque state (visible light transmittance: 0.003) within 1 min, reaching transmittance less than 5% across the visible-near-infrared spectrum (400-2000 nm) to efficiently block solar heat. Besides, in the voltage-off state, the black Ni-Cu alloy film can be sustained for more than 60 min (at room temperature, λ = 550 nm). Under infrared irradiation (170 W/m2) for 30 min, the black ECD blocks up to 35.0% of infrared radiation, which not only effectively prevents the heat transmission for energy management but also finds potential applications for promoting indoor human health and indoor farming.
Collapse
Affiliation(s)
- Xiaoyu Guo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingwei Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Alice Lee-Sie Eh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Wei Church Poh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Fan Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Feng Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Juntong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| |
Collapse
|
7
|
Menzel VC, Tudela I. Additive manufacturing of polyaniline-based materials: an opportunity for new designs and applications in energy and biotechnology. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Martynov IV, Inasaridze LN, Troshin PA. Resist or Oxidize: Identifying Molecular Structure-Photostability Relationships for Conjugated Polymers Used in Organic Solar Cells. CHEMSUSCHEM 2022; 15:e202101336. [PMID: 34519424 DOI: 10.1002/cssc.202101336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Although organic solar cells have started to demonstrate competitive power conversion efficiencies of >18 %, their operational lifetimes remain insufficient for wide practical use and the factors influencing the photostability of absorber materials and completed devices are still not completely understood. A systematic study of two series of structurally similar [XTBT]n and [XTTBTBTT]n polymers (16 structures in total) reveals the building blocks that enable the highest material stability towards photooxidation: fluorene, silafluorene, carbazole, diketopyrrolopyrrole, and isoindigo. Furthermore, a direct correlation is evident between the electronic properties of the conjugated polymers and their reactivity towards oxygen. The structures with the lowest highest occupied molecular orbital (HOMO) energies show the highest electrochemical oxidation potentials and appear to be the most resistant towards chemical oxidation. These relationships set important guidelines for the further rational design of new absorber materials for efficient and stable organic photovoltaics.
Collapse
Affiliation(s)
- Ilya V Martynov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow Region, 142432, Russian Federation
| | - Liana N Inasaridze
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow Region, 142432, Russian Federation
| | - Pavel A Troshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow Region, 142432, Russian Federation
- Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
9
|
Kumar SA, Shankar JS, Periyasamy BK, Nayak SK. Role of defective states in MgO nanoparticles on the photophysical properties and photostability of MEH-PPV/MgO nanocomposite. Phys Chem Chem Phys 2021; 23:22804-22816. [PMID: 34610057 DOI: 10.1039/d1cp03035c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid organic-inorganic nanocomposites employ metal oxides to improve the charge transport properties and stability of the conjugated polymer. They are considered one of the most interesting candidates for optoelectronic applications. This article presents a detailed investigation on the influence of defective electronic states of MgO nanoparticles on the photophysical properties and photostability of a conjugated polymer, poly[2-methoxy-5-(2-ethylhyxyloxy)-1,4-phenylene vinylene] (MEH-PPV). Since MgO is an insulator (Eg - 7.8 eV), defect states were induced to improve the delocalization of electrons and conductivity. These defect-induced MgO nanoparticles accounted for the enhanced absorbance in the hybrid polymer nanocomposites. The nanocomposites demonstrated photoluminescence (PL) quenching owing to the transfer of electrons from MEH-PPV to the defective energy levels (oxygen vacancies) of MgO. The photoinduced electron transfer was confirmed through solvent and temperature-dependent PL analysis, and also through electrochemical analysis. The MEH-PPV/MgO nanocomposite displayed 23% PL quantum efficiency. An improvement in photostability was observed due to the reduction in the polymer chain defects, prevention of oxygen diffusion by MgO nanoparticles, inhibition of moisture intervention by improving the hydrophobicity of nanocomposites, and most importantly, transfer of electrons from the polymer to oxygen vacancies, which prohibited superoxide formation. Hence, this work validates the role of oxygen vacancies of MgO nanoparticles in the PL quenching and photostability enhancement of MEH-PPV.
Collapse
Affiliation(s)
- Sangeetha Ashok Kumar
- Central Institute of Petrochemical Engineering and Technology (CIPET), Chennai, India.
| | - Jaya Seeli Shankar
- Central Institute of Petrochemical Engineering and Technology (CIPET), Chennai, India.
| | - Bhuvana K Periyasamy
- Central Institute of Petrochemical Engineering and Technology (CIPET), Chennai, India.
| | - Sanjay K Nayak
- Central Institute of Petrochemical Engineering and Technology (CIPET), Chennai, India.
| |
Collapse
|
10
|
Raicoski ML, Vivas MG. Photobleaching Kinetics of MEH-PPV in Solution: The Role of Conformational Disorder. J Phys Chem B 2021; 125:9887-9894. [PMID: 34415151 DOI: 10.1021/acs.jpcb.1c05498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Semiconductor polymers are the foundation of organic electronics due to their remarkable optical features, ability to form a thin film, and low cost compared to silicon. However, some of them have intense photobleaching under UV-blue radiation, compromising several applications. In this context, we have investigated the conformational disorder effect on the real-time photobleaching kinetics of a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)/chloroform solution under deep-blue radiation. Our results pointed out that a 405 nm diode laser initially causes a significant conformational disorder in the π-conjugated backbone of MEH-PPV as revealed by the Huang-Rhys factor. As a result, a new vibrational mode arises with an energy separation of 230 meV, indicating the substitution of the vinyl (C═C) by carbonyl (C═O) bonds. Then, the conformational disorder reaches a maximum value at some tens of minutes, which is inversely proportional to the polymer concentration, and after that, a random chain scission occurs. Consequently, the effective conjugation length of MEH-PPV in chloroform decreases from nine to three coplanar repetitive units after 1 h of excitation, producing a drastic drop in photoluminescence. Finally, we show that the photobleaching steps are mapped through the conformational disorder.
Collapse
Affiliation(s)
- Michelle Leifeld Raicoski
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, Poços de Caldas, MG 37715-400, Brazil
| | - Marcelo Gonçalves Vivas
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, Poços de Caldas, MG 37715-400, Brazil
| |
Collapse
|
11
|
Foyle LDP, Hicks GEJ, Pollit AA, Seferos DS. Polyacetylene Revisited: A Computational Study of the Molecular Engineering of N-type Polyacetylene. J Phys Chem Lett 2021; 12:7745-7751. [PMID: 34369780 DOI: 10.1021/acs.jpclett.1c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of stable and highly conductive polymers, particularly n-type materials, remains an outstanding challenge in organic electronics. N-doped polyacetylene has long been studied as a highly conductive organic n-type material but suffers from extremely poor stability. Herein, we use DFT to model a series of n-doped polyacetylene derivatives, which have been functionalized with a range of electron-withdrawing substituents, with the goal of identifying attractive candidates for synthesis. We analyze the predicted molecular orbital energies, polymer planarity, and delocalization of charge carriers along the polymer backbone. In so doing, we develop key insights about the ideal substituents for both stable and highly conductive polyacetylene derivatives. This work will inform the modern synthesis and development of new polyacetylene derivatives. Beyond this, the work identifies a variety of new materials that have not yet been synthesized and should be good candidates for emerging optoelectronic applications including soft thermoelectrics, bioelectronics, and flexible device technologies.
Collapse
Affiliation(s)
- Liam D P Foyle
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Garion E J Hicks
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Adam A Pollit
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
12
|
Xie M, Hua Y, Hong D, Wan S, Tian Y. Physical insights into protection effect of conjugated polymers by natural antioxidants. RSC Adv 2021; 11:1614-1622. [PMID: 35424094 PMCID: PMC8693752 DOI: 10.1039/d0ra09657a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
Conjugated polymers (CPs) known as organic semiconductors have been broadly applied in photovoltaic and light emitting devices due to their easy fabrication and flexibility. However, one of the bottlenecks limiting the application of CPs is their poor photostability upon continuous excitation which is one of the crucial parameters of CPs. How to improve the photostability of CPs is always one of the key questions in this field. In this work, we found that the photostability of poly(3-hexylthiophene-2,5-diyl) (P3HT) molecules can be largely improved by addition of vitamin E (VE) in bulk solution, solid films and single molecules. In solution and films, VE can not only significantly retard the photodegradation of P3HT but also enhance the fluorescence intensity. For individual P3HT molecules, with increasing VE concentrations, the on-time duration increases and the off-time duration becomes shorter. VE as natural antioxidants can not only donate electrons to the long-lived charged species but also quench the triplet states of CPs via energy transfer accelerating the depopulation process back to the ground state. The short duration time of the charged species and the triplet states provides higher fluorescence intensity. Furthermore, VE can also directly react with singlet oxygen or other reactive oxygen species (ROS) preventing them from reacting with CPs. These results not only provide an efficient strategy for improving the photostability of conjugated polymers in solution and films, but also shed light on better understanding the photophysics of conjugated polymers at single-molecule level.
Collapse
Affiliation(s)
- Mingcai Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| | - Yan Hua
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| | - Daocheng Hong
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| | - Sushu Wan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing China
| |
Collapse
|
13
|
Mansoor HS, Alsayed R, Abdallh M, Ahmed DS, Bufaroosha M, Salihe N, Yousif E. Polystyrene dopped with Schiff base to reduce outdoor plastic degradation for sustainable environment. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2020.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Mukhopadhyaya T, Wagner JS, Fan H, Katz HE. Design and Synthesis of Air-Stable p-Channel-Conjugated Polymers for High Signal-to-Drift Nitrogen Dioxide and Ammonia Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21974-21984. [PMID: 32315154 DOI: 10.1021/acsami.0c04810] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of high-performance-conjugated polymer-based gas sensors involves detailed structural tailoring such that high sensitivities are achieved without compromising the stability of the fabricated devices. In this work, we systematically developed a series of diketopyrrolopyrrole (DPP)-based polymer semiconductors by modifying the polymer backbone to achieve and rationalize enhancements in gas sensitivities and electronic stability in air. NO2- and NH3-responsive polymer-based organic field-effect transistors (OFETs) are described with improved air stability compared to all-thiophene conjugated polymers. Five DPP-fluorene-based polymers were synthesized and compared to two control polymers and used as active layers to detect a concentration of NO2 at least as low as 0.5 ppm. The hypothesis that the less electron-donating fluorene main-chain subunit would lead to increased signal/drift compared to thiophene and carbazole subunits was tested. The sensitivities exhibited a bias voltage-dependent behavior. The proportional on-current change of OFETs using a dithienyl DPP-fluorene polymer reached ∼614% for an exposure to 20 ppm of NO2 for 5 min, testing at a bias voltage of -33 V, among the higher reported NO2 sensitivities for conjugated polymers. Electronic and morphological studies reveal that introduction of the fluorene unit in the DPP backbone decreases the ease of backbone oxidation and induces traps in the thin films. The combination of thin-film morphology and oxidation potentials governs the gas-absorbing properties of these materials. The ratio of responses on exposure to NO2 and NH3 compared to drifts while taking the device through repeated gate voltage sweeps is the highest for two polymers incorporating electron-donating linkers connecting the DPP and thiophene units in the backbone, in this category of organic semiconductors. The responses to NO2 were much larger than that to NH3, indicating increased susceptibility to oxidizing vs reducing gases, and that the capability of oxidizing gases to induce additional charge density has a more dramatic electronic effect than when reducing gases create traps. This work demonstrates the capability of achieving improved stability with the retention of high sensitivity in conjugated polymer-based OFET sensors by modulating redox and morphological properties of polymer semiconductors by structural control.
Collapse
Affiliation(s)
- Tushita Mukhopadhyaya
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Justine S Wagner
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Huidong Fan
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Howard E Katz
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
15
|
Affiliation(s)
- Robert S. Jordan
- Department of Materials Science and EngineeringUniversity of California, Merced Merced California 95343
| | - Yue Wang
- Department of Materials Science and EngineeringUniversity of California, Merced Merced California 95343
| |
Collapse
|
16
|
Yongcong F, Zhang T, Liverani L, Boccaccini AR, Sun W. Novel biomimetic fiber incorporated scaffolds for tissue engineering. J Biomed Mater Res A 2019; 107:2694-2705. [DOI: 10.1002/jbm.a.36773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 07/29/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Fang Yongcong
- Department of Mechanical Engineering, Biomanufacturing CenterTsinghua University Beijing China
- Biomanufacturing and Rapid Forming Technology, Key Laboratory of Beijing Beijing China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base) Beijing China
| | - Ting Zhang
- Department of Mechanical Engineering, Biomanufacturing CenterTsinghua University Beijing China
- Biomanufacturing and Rapid Forming Technology, Key Laboratory of Beijing Beijing China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base) Beijing China
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen‐Nuremberg Erlangen Germany
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen‐Nuremberg Erlangen Germany
| | - Wei Sun
- Department of Mechanical Engineering, Biomanufacturing CenterTsinghua University Beijing China
- Biomanufacturing and Rapid Forming Technology, Key Laboratory of Beijing Beijing China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base) Beijing China
| |
Collapse
|