1
|
Yang F, Chi L, Ye Z, Gong L. Photoinduced Regiodivergent and Enantioselective Cross-Coupling of Glycine Derivatives with Hydrocarbon Feedstocks. J Am Chem Soc 2025; 147:1767-1780. [PMID: 39746931 DOI: 10.1021/jacs.4c13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Regiodivergent asymmetric synthesis represents a transformative strategy for the efficient generation of structurally diverse chiral products from a single set of starting materials, significantly enriching their enantiomeric composition. However, the design of radical-mediated regiodivergent and enantioselective reactions that can accommodate a wide range of functional groups and substrates has posed significant challenges. The obstacles primarily lie in switching the regioselectivity and achieving high enantiodiscrimination, especially when dealing with high-energy intermediates. To address these issues, we have developed a new catalytic system that integrates photoinduced hydrogen atom transfer (HAT) and chiral copper catalysis, involving the fine-tuning of chiral ligands, additives, and other reaction parameters. The strategy facilitates regiodivergent and enantioselective cross-couplings between N-aryl glycine ester/amide derivatives and abundant hydrocarbon feedstocks through strong C(sp3)-H bond activation. This approach allows for the controlled and stereoselective formation of C(sp3)-C(sp3) and C(sp3)-N bonds, yielding a rich variety of C- or N-alkylated glycine esters and amides with commendable yields (up to 92% yield), exclusive regioselectivities (typically >20:1 rr), and high enantioselectivities (up to 96% ee). Our methodology not only provides a promising avenue for the stereoselective incorporation of alkyl functionalities onto specific sites of biologically significant molecules but also offers a practical approach for regioselectivity switching while simultaneously achieving high asymmetric induction within photochemical reactions.
Collapse
Affiliation(s)
- Fuxing Yang
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Longxiao Chi
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Wang H, Ma X, Sun L, Bi T, Yang W. Applications of innovative synthetic strategies in anticancer drug discovery: The driving force of new chemical reactions. Bioorg Med Chem Lett 2025; 119:130096. [PMID: 39798856 DOI: 10.1016/j.bmcl.2025.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity. This review summarizes the latest synthetic strategies employed over the past five years for discovering anticancer agents, focusing on their influence on drug design. Additionally, the role of new chemical reactions in expanding chemical space and overcoming challenges, such as drug resistance and selectivity, is highlighted, further emphasizing the importance of discovering novel reactions as a key trend in future drug development.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
3
|
Xu F, Zhang SY, Li YP, Huo JQ, Zeng FW. Transition metal-catalyzed cascade C-H activation/cyclization with alkynes: an update on sulfur-containing directing groups. Chem Commun (Camb) 2024. [PMID: 39714315 DOI: 10.1039/d4cc05807k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In light of the extensive applications of sulfur-containing heterocyclic compounds in drug discovery, agrochemicals, and advanced materials, the construction of complex sulfur-containing molecular scaffolds has flourished in recent years. There is a profound interest in synthetic methods for forming carbon-sulfur bonds. Regarding this, transition metal (TM)-catalyzed C-H bond activation has emerged as a valuable means for the rapid formation of C-S bonds, although it is comparatively less explored than C-N or C-C bonds. The research significance of sulfur-directed C-H activation chemistry lies in maintaining a balance between activating and poisoning the catalyst as well as in the diversity and novelty of its properties. This review centers on sulfur-directed TM-catalyzed cascade C-H activation/cyclization with alkyne and encompasses the literature mainly from 2012 to 2024. The widely acknowledged reactivity and versatility of rhodium, ruthenium, and cobalt catalysts have given rise to various captivating cascade processes. For most reactions illustrated in this review, reactivity and selectivity are attained through the flexible synergistic combination of different metal catalysts and additives. Further advancements will be accompanied with the discovery of innovative sulfur-directing groups, chiral catalysis, and ground-breaking experimental techniques. This article will also inspire researchers to gain a deeper understanding of the mechanism, thus undoubtedly leading to innovations and more discoveries in the future.
Collapse
Affiliation(s)
- Fen Xu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | - Shi-Yu Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | - Ya-Peng Li
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | - Jia-Qi Huo
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | - Fan-Wang Zeng
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| |
Collapse
|
4
|
Luo Q, Wang H, Zhou J, Wang S, Li J, Sun B. Co(III) or Ru(II)-Catalyzed Selective C-H Alkynylation of 2-Pyridones and Their Derivatives with Bromoalkynes. J Org Chem 2024; 89:18400-18405. [PMID: 39632847 DOI: 10.1021/acs.joc.4c02258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We successfully reported selective C-H alkynylation of 2-pyridones with bromoalkynes under the catalysis of Co(III) or Ru(II). The alkynylation reaction used easily accessible bromoalkynes instead of high-valent iodine alkynes. There is a broad substrate scope of 2-pyridones with good yields. In addition, 2-pyridone can be used as a weakly directing group for C-H alkynylation of the proximal aryl C-H bond. This method offers an efficient approach for synthesizing diverse 2-pyridone derivatives, yielding alkynylated products up to 95% yield (>40 examples).
Collapse
Affiliation(s)
- Quanjian Luo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hanchi Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jierui Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jinheng Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bo Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
5
|
Lin Q, Lv H, Lu Y, Yang C, Yu Y, Liu Z. Redox Active vs Redox Neutral in Ru/Pd-Catalyzed Sulfonylation: Theoretical Insights into Structure-Activity Relationship between Metal Centers and Regio-Selectivity. J Org Chem 2024; 89:18131-18141. [PMID: 39658527 DOI: 10.1021/acs.joc.4c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The structure-activity relationship between the metal center and regio-selectivity is persistently a pivotal scientific issue. To address this, we select the 2-phenylpyridine sulfonylation reactions catalyzed by ruthenium and palladium as research subjects. An extensive theoretical study has been conducted on their reaction mechanisms, the sources of regio-selectivity, and the evolution of electronic structures. The distinct electronic structures lead to completely different catalytic mechanisms and electronic structure evolution processes for ruthenium and palladium. Ruthenium tends to form six-coordinate octahedral complexes, thus undergoing an inner-sphere redox active Ru(II)-Ru(III)-Ru(IV)-Ru(II) catalytic cycle. In contrast, palladium tends to form four-coordinate planar quadrilateral complexes, hence undergoing an outer-sphere redox neutral Pd(II) catalytic cycle. The distinct electronic structure evolution processes fundamentally differentiate the radical attack modes in the sulfonation process, thereby determining the regio-selectivity of the reaction. In the Ru-catalyzed system, the meta-selectivity arises mainly from a more stable Schrock carbene-type meta-intermediate. For the Pd-catalyzed system, the ortho-selectivity mainly comes from the stabilizing effect of the Pd(II) center on the single electron. This study provides novel insights into how the electronic structure of metal centers influences the reaction mechanism and selectivity, making a theoretical contribution to a deeper comprehension of the mechanism and regio-selectivity underlying aromatic functionalization reactions.
Collapse
Affiliation(s)
| | | | - Yu Lu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chengkai Yang
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zheyuan Liu
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
6
|
Jankins TC, Rubel CZ, Ho HC, Martin-Montero R, Engle KM. Tungsten-catalyzed stereodivergent isomerization of terminal olefins. Chem Sci 2024:d4sc07093c. [PMID: 39776659 PMCID: PMC11701836 DOI: 10.1039/d4sc07093c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Catalytic alkene isomerization is a powerful synthetic strategy for preparing valuable internal alkenes from simple feedstocks. The utility of olefin isomerization hinges on the ability to control both positional and stereoisomerism to access a single product among numerous potential isomers. Within base-metal catalysis, relatively little is known about how to modulate reactivity and selectivity with group 6 metal-catalyzed isomerization. Here, we describe a tungsten-catalyzed, positionally selective alkene isomerization reaction in which tuning the ligand environment grants access to either the E- or Z-stereoisomer. The reactions employ simple, commercially available precatalysts and ligands. Preliminary mechanistic studies suggest that the ligand environment around 7-coordinate tungsten is crucial for stereoselectivity, and that substrate directivity prevents over-isomerization to the conjugated alkene. These features allow for exclusive formation of β,γ-unsaturated carbonyl compounds that are otherwise difficult to prepare.
Collapse
Affiliation(s)
- Tanner C Jankins
- Department of Chemistry, The Scripps Research Institute 10550N. Torrey Pines Road, La Jolla CA 92037 USA
| | - Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute 10550N. Torrey Pines Road, La Jolla CA 92037 USA
| | - Hang Chi Ho
- Department of Chemistry, The Scripps Research Institute 10550N. Torrey Pines Road, La Jolla CA 92037 USA
| | - Raul Martin-Montero
- Department of Chemistry, The Scripps Research Institute 10550N. Torrey Pines Road, La Jolla CA 92037 USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute 10550N. Torrey Pines Road, La Jolla CA 92037 USA
| |
Collapse
|
7
|
Jiao M, Fang H, Chen J, Yang H, Fang X. Pd-Catalyzed Hydrocyanation of Methylenecyclopropanes: A Highly Selective Ring-Opening Access to 2-Substituted Allylic Nitriles. Org Lett 2024; 26:9431-9435. [PMID: 39475683 DOI: 10.1021/acs.orglett.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Transition-metal-catalyzed hydrofunctionalization of methylenecyclopropanes presents a useful but challenging transformation due to the complex selectivity and multiple reaction pathways. We describe herein an unprecedented highly efficient and selective palladium-catalyzed hydrocyanation of methylenecyclopropanes to give various 2-substituted allylic nitriles. Mechanistic studies demonstrated that the transformation may undergo Markovnikov-type hydrometalation and β-carbon elimination.
Collapse
Affiliation(s)
- Mingdong Jiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Huizi Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Jianxi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xianjie Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
8
|
Bone KI, Puleo TR, Delost MD, Shimizu Y, Bandar JS. Direct Benzylic C-H Etherification Enabled by Base-Promoted Halogen Transfer. Angew Chem Int Ed Engl 2024; 63:e202408750. [PMID: 38937258 DOI: 10.1002/anie.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
We disclose a benzylic C-H oxidative coupling reaction with alcohols that proceeds through a synergistic deprotonation, halogenation and substitution sequence. The combination of tert-butoxide bases with 2-halothiophene halogen oxidants enables the first general protocol for generating and using benzyl halides through a deprotonative pathway. In contrast to existing radical-based methods for C-H functionalization, this process is guided by C-H acidity trends. This gives rise to new synthetic capabilities, including the ability to functionalize diverse methyl(hetero)arenes, tolerance of oxidizable and nucleophilic functional groups, precision site-selectivity for polyalkylarenes and use of a double C-H etherification process to controllably oxidize methylarenes to benzaldehydes.
Collapse
Affiliation(s)
- Kendelyn I Bone
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Thomas R Puleo
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Michael D Delost
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Yuka Shimizu
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| |
Collapse
|
9
|
Zheng T, Ma J, Chen H, Jiang H, Lu S, Shi Z, Liu F, Houk KN, Liang Y. Computational Design of Ligands for the Ir-Catalyzed C5-Borylation of Indoles through Tuning Dispersion Interactions. J Am Chem Soc 2024; 146:25058-25066. [PMID: 39207888 DOI: 10.1021/jacs.4c08027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The indole moiety is ubiquitous in natural products and pharmaceuticals. C-H borylation of the benzenoid moiety of indoles is a challenging task, especially at the C5 position. We have combined computational and experimental studies to introduce multiple noncovalent interactions, especially dispersion, between the substrate and catalytic ligand to realize C5-borylation of indoles with high reactivity and selectivity. The successful computational predictions of new ligands should be suitable for ligand design in other transition-metal catalyzed reactions.
Collapse
Affiliation(s)
- Tianyu Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haochi Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Jiang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuo Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fang Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Wang H, Luo Q, Li JH, Sun B. Ru(II)-Catalyzed C-H Amination of 1,2,3-Benzotriazinones with Azide Compounds. J Org Chem 2024; 89:12249-12254. [PMID: 39116027 DOI: 10.1021/acs.joc.4c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A Ru(II)-catalyzed directed C-H amination of 1,2,3-benzotriazinones with azide compounds has been reported. The reaction has a wide substrate scope of organic azides with good results and represents a useful pathway to the construction of versatile heterocyclic amino products. In addition, the method can be used for the phthalazinones, highlighting the synthetic practicability of the strategy.
Collapse
Affiliation(s)
- Hanchi Wang
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Quanjian Luo
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jin-Heng Li
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bo Sun
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Kuan JY, Chen JH, Han JL. Switchable Synthesis of Tritylone Alcohols and 2-Benzoylbenzoate Esters from Spiroindane-1,3-diones. J Org Chem 2024; 89:12360-12369. [PMID: 39132851 PMCID: PMC11382160 DOI: 10.1021/acs.joc.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A solvent-controlled regioselective rearrangement reaction of spiroindane-1,3-diones with a leaving group has been developed. In acetonitrile solvent, the spiroindane-1,3-diones 3 were rearranged to provide tritylone alcohols, while 2-benzoylbenzoate ester derivatives were obtained if the reactions were performed in alcohols.
Collapse
Affiliation(s)
- Jen-Yu Kuan
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 40227, Republic of China
| | - Jing-Huei Chen
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 40227, Republic of China
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 40227, Republic of China
| |
Collapse
|
12
|
Zhou P, Liang X, Xu Z, Chen H, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent C-H alkynylation of 2-arylthiazoles switched by Ru II and Pd II catalysis. Chem Commun (Camb) 2024; 60:6679-6682. [PMID: 38860866 DOI: 10.1039/d4cc02254h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Two complementary regiodivergent C-H alkynylations of 2-arylthiazoles are reported. When RuII catalysis is employed, an aryl ortho-alkynylation process is favored. The alkynylated products are gained in good yields. With the use of PdII catalysis, a thiazole C5-alkynylation process is developed, allowing for the construction of C5-alkynylated products. This strategy not only expands the methods for the functionalization of 2-arylthiazoles, but also provides new opportunities for the rapid assembly of complex molecular structures, which may have great potential in organic synthesis, medicinal chemistry, and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xinyao Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zekun Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Honggu Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
13
|
Yuan C, Jia C, Zhang X, Zhang W, You Y, Xu X, Zhu L, Chen Y, Dong Y, Xu L. Ligand-Enabled ortho-Selective C-H Olefination of Tertiary Aniline Derivatives. Org Lett 2024; 26:4877-4881. [PMID: 38836549 DOI: 10.1021/acs.orglett.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A highly ortho-selective CAr-H olefination of tertiary anilines without a directing group was developed. This reaction tolerated various substituted arenes and olefin coupling partners, affording ortho-olefination products in moderate to good yields. Preliminary mechanistic studies showed that N-Ac-d-Ala, Ag2CO3, and BQ were the key factors for tuning the regioselectivity from para to ortho. Density functional theory was used to achieve a theoretical understanding of the ortho selectivity.
Collapse
Affiliation(s)
- Chunchen Yuan
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Changbo Jia
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xinyu Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, 459 Main Street, Shihezi, Xinjiang 832003, China
| | - Wenlong Zhang
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yang'en You
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiaolong Xu
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yiliang Chen
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yongping Dong
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Liang Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, 459 Main Street, Shihezi, Xinjiang 832003, China
| |
Collapse
|
14
|
Zhang T, Feng H. Skeletal Editing of Isatins for Heterocycle Molecular Diversity. CHEM REC 2024; 24:e202400024. [PMID: 38847062 DOI: 10.1002/tcr.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/28/2024]
Abstract
Isatins have been widely used in the preparation of a variety of heterocyclic compounds, where the skeletal editing of isatins has shown significant advantages for the construction of diverse heterocycles. This review highlights the progress made in the last decade (2013-2023) in the skeletal editing of the isatin scaffold. A series of ring expansion reactions for the construction of quinoline skeleton, quinolone skeleton, polycyclic quinazoline skeleton, medium-sized ring skeleton, as well as a series of ring opening reactions for the generation of 2-(azoly)aniline skeleton by the cleavage of C-C bond and C-N bond are highlighted. It is hoped that this review will provide some understanding of the chemical transformations of isatins and contribute to the further realization of its molecular diversity.
Collapse
Affiliation(s)
- Tiantian Zhang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
15
|
Dastari S, Murugappan S, John SE, Shankaraiah N. Microwave-Assisted Ru(II)-Catalyzed Regioselective Methyl Acylation of 2-Arylbenzoazoles: Synthesis of Benzofuran Conjugates via C-H Activation/Annulation. J Org Chem 2024; 89:7027-7035. [PMID: 38688712 DOI: 10.1021/acs.joc.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
An efficient Ru(II)-catalyzed C-H functionalization protocol for 2-arylbenzoazoles as the directing group and sulfoxonium ylide has been developed. Gratifyingly, concomitant annulation was observed when 3-(benzo[d]azol-2-yl) phenol was used, enabling the construction of benzofuran conjugates. Notably, the utilization of water as the solvent and an energy efficient approach makes the reaction greener, contributing to overall sustainability. This protocol exhibits excellent scalability up to the gram scale with a diverse array of substitutions. Furthermore, the mechanism was examined by ESI-MS, and photophysical studies were also performed.
Collapse
Affiliation(s)
- Sowmya Dastari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Solai Murugappan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Stephy Elza John
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
16
|
Deng KZ, Sukowski V, Fernández-Ibáñez MÁ. Non-Directed C-H Arylation of Anisole Derivatives via Pd/S,O-Ligand Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400689. [PMID: 38401127 DOI: 10.1002/anie.202400689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Non-directed C-H arylation is one of the most efficient methods to synthesize biaryl compounds without the need of the prefuctionalization of starting materials, or the installment and removal of directing groups on the substrate. A direct C-H arylation of simple arenes as limiting reactants remains a challenge. Here we disclose a non-directed C-H arylation of anisole derivatives as limiting reagents with aryl iodides under mild reaction conditions. The arylated products are obtained in synthetically useful yields and the arylation of bioactive molecules is also demonstrated. Key to the success of this methodology is the use of a one-step synthesized S,O-ligand.
Collapse
Affiliation(s)
- Ke-Zuan Deng
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Verena Sukowski
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - M Ángeles Fernández-Ibáñez
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Wang B, Shen C, Dong K. Ligand-Controlled Regiodivergent Alkoxycarbonylation of Trifluoromethylthiolated Internal Alkynes. Org Lett 2024; 26:3628-3633. [PMID: 38652586 DOI: 10.1021/acs.orglett.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Controlling the regioselectivity for the alkoxycarbonylation of unsymmetric internal alkynes is challenging. Herein, a palladium-catalyzed ligand-controlled regiodivergent alkoxycarbonylation of internal trifluoromethylthiolated alkynes was achieved. A series of α- or β-SCF3 acrylates from the same trifluoromethylthiolated alkyne were obtained with moderate to high yield and regioselectivity.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chaoren Shen
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiwu Dong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
18
|
Wang L, Song X, Guo F, Xu L, Hu F, Guo FW, Li SS. Diversity-oriented synthesis of indole-fused scaffolds and bis(indolyl)methane from tosyl-protected tryptamine. Org Biomol Chem 2024; 22:2824-2834. [PMID: 38511321 DOI: 10.1039/d4ob00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
An efficient, diversity-oriented synthesis of indole-1,2-fused 1,4-benzodiazepines, tetrahydro-β-carbolines, and 2,2'-bis(indolyl)methanes was established starting from tosyl-protected tryptamine. These diverse privileged skeletons were controllably constructed by adjusting different hydride donors and Brønsted acids. A variety of indole-1,2-fused 1,4-benzodiazepines were facilely accessed using benzaldehydes bearing cyclic amines as hydride donors via a cascade N-alkylation/dehydration/[1,5]-hydride transfer/Friedel-Crafts alkylation sequence. The reaction site could be switched when benzaldehydes bearing an alkoxy moiety as hydride donors were used for the generation of tetrahydro-β-carbolines. On the other hand, the switchable synthesis of 2,2'-bis(indolyl)methanes could be achieved as well by applying p-TsOH·H2O as a catalyst. The reactions feature mild conditions, simple and practical operation, excellent efficiency and the use of EtOH as a green solvent. Using the concept of diversity-oriented, reagent-based synthesis, the inexpensive feedstock tryptamine was efficiently converted to three different types of privileged scaffolds, which facilitates rapid compound library synthesis for accelerating drug discovery.
Collapse
Affiliation(s)
- Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaopei Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fengxia Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Feng-Wei Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
19
|
Zhang Z, Chen X, Niu ZJ, Li ZM, Li Q, Shi WY, Ding T, Liu XY, Liang YM. A Practical and Regioselective Strategy for Aromatic C-H Difunctionalization via Site-Selective C-H Thianthrenation. Org Lett 2024; 26:1813-1818. [PMID: 38386925 DOI: 10.1021/acs.orglett.3c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Herein, we present a novel Catellani-type reaction that employed aryl-thianthrenium salts as aryl substrates to trigger the subsequent palladium/norbornene cooperatively catalyzed progress. This strategy can achieve site-selective C-H difunctionalization of aryl compounds without directing groups or a known initiating reagent. A series of functionalized syntheses of bioactive molecules further demonstrated the potential of this strategy.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhuo-Mei Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiao Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Tian Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Liang SY, Zhang TY, Chen ZC, Du W, Chen YC. Functional-Group-Directed Regiodivergent (3 + 2) Annulations of Electronically Distinct 1,3-Dienes and 2-Formyl Arylboronic Acids. Org Lett 2024; 26:1483-1488. [PMID: 38345825 DOI: 10.1021/acs.orglett.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Presented herein is a palladium-catalyzed asymmetric (3 + 2) annulation reaction between 1,3-dienes and 2-formylarylboronic acids, proceeding in a cascade vinylogous addition and Suzuki coupling process. Both electron-neutral and electron-deficient 1,3-dienes are compatible under similar catalytic conditions, and distinct regioselectivity is observed via functional-group control of 1,3-diene substrates. A collection of 1-indanols with dense functionalities is constructed stereoselectively.
Collapse
Affiliation(s)
- Shu-Yuan Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tian-Ying Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China
| |
Collapse
|
21
|
Han X, Chen F, Li H, Ge R, Shen Q, Duan P, Sheng X, Zhang W. Reaction engineering blocks ether cleavage for synthesizing chiral cyclic hemiacetals catalyzed by unspecific peroxygenase. Nat Commun 2024; 15:1235. [PMID: 38336996 PMCID: PMC10858125 DOI: 10.1038/s41467-024-45545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Hemiacetal compounds are valuable building blocks in synthetic chemistry, but their enzymatic synthesis is limited and often hindered by the instability of hemiacetals in aqueous environments. Here, we show that this challenge can be addressed through reaction engineering by using immobilized peroxygenase from Agrocybe aegerita (AaeUPO) under neat reaction conditions, which allows for the selective C-H bond oxyfunctionalization of environmentally significant cyclic ethers to cyclic hemiacetals. A wide range of chiral cyclic hemiacetal products are prepared in >99% enantiomeric excess and 95170 turnover numbers of AaeUPO. Furthermore, by changing the reaction medium from pure organic solvent to alkaline aqueous conditions, cyclic hemiacetals are in situ transformed into lactones. Lactams are obtained under the applied conditions, albeit with low enzyme activity. These findings showcase the synthetic potential of AaeUPO and offer a practical enzymatic approach to produce chiral cyclic hemiacetals through C-H oxyfunctionalization under mild conditions.
Collapse
Affiliation(s)
- Xiaofeng Han
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Fuqiang Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Huanhuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Ge
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Qianqian Shen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| |
Collapse
|
22
|
Chen S, Su X, Dong Y, Liu J, Yang F, Guo H, Zhang C. Cu-Catalyzed Divergent Transformations of Allenylethylene Carbonates with Diboron Reagents. Org Lett 2024; 26:960-965. [PMID: 38240566 DOI: 10.1021/acs.orglett.3c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Divergent transformations of allenylethylene carbonates with diboron reagents catalyzed by copper are disclosed. By using CuCl/IPr·HCl as the catalyst, the allenylethylene carbonates react with B2hex2 to afford 2,4-dien-1-ols as the product in the presence of Cs2CO3 as the base, iPrOH as the additive, and 1,4-dioxane as the solvent. And they react with B2pin2 to form boronic half acids in the presence of NaOtBu as the base, water as the additive, and THF as the solvent. The reactions afford corresponding products in good stereoselectivities and yields, and further derivatizations of boronic half acids and study of the mechanism are also demonstrated.
Collapse
Affiliation(s)
- Sijie Chen
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Xiaojie Su
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yujie Dong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jun Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Fazhou Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Cheng Zhang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
23
|
Sakakibara Y, Itami K, Murakami K. Switchable Decarboxylation by Energy- or Electron-Transfer Photocatalysis. J Am Chem Soc 2024; 146:1554-1562. [PMID: 38103176 DOI: 10.1021/jacs.3c11588] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Kolbe dimerization and Hofer-Moest reactions are well-investigated carboxylic acid transformations, wherein new carbon-carbon and carbon-heteroatom bonds are constructed via electrochemical decarboxylation. These transformations can be switched by choosing an electrode that allows control of the reactive intermediate, such as carbon radical or carbocation. However, the requirement of a high current density diminishes the functional group compatibility with these electrochemical reactions. Here, we demonstrate the photocatalytic decarboxylative transformation of activated carboxylic acids in a switchable and functional group-compatible manner. We discovered that switching between Kolbe-type or Hofer-Moest-type reactions can be accomplished with suitable photocatalysts by controlling the reaction pathways: energy transfer (EnT) and single-electron transfer (SET). The EnT pathway promoted by an organo-photocatalyst yielded 1,2-diarylethane from arylacetic acids, whereas the ruthenium photoredox catalyst allows the construction of an ester scaffold with two arylmethyl moieties via the SET pathway. The resulting radical intermediates were coupled to olefins to realize multicomponent reactions. Consequently, four different products were selectively obtained from a simple carboxylic acid. This discovery offers new opportunities for selectively synthesizing multiple products via switchable reactions using identical substrates with minimal cost and effort.
Collapse
Affiliation(s)
- Yota Sakakibara
- Graduate School of Science, Nagoya University, Chikusa 464-8602, Nagoya, Japan
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda 102-0076, Tokyo, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa 464-8602, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa 464-8602, Nagoya, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda 102-0076, Tokyo, Japan
| |
Collapse
|
24
|
Kanta Das K, Kumar Ghosh A, Hajra A. One-Pot Manganese (I)-Catalyzed Oxidant-Controlled Divergent Functionalization of 2-Arylindazoles. Chemistry 2024; 30:e202302849. [PMID: 37870380 DOI: 10.1002/chem.202302849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
The oxidant-controlled divergent synthesis of C-2' formyl 2H-indazoles and indazoloindazolediones has been developed through Mn(I)- catalyzed ortho C-H functionalization of 2H-indazoles with para-formaldehyde to afford C-2' hydroxymethylated 2H-indazoles and subsequently oxidation with varying the amount of DDQ in one-pot. By employing selectfluor as the oxidant instead of DDQ, this reaction exclusively provided indazolebenzoxazine derivatives. This strategy delivered unsymmetrical indazoloindazoledione and indazolobenzoxazine with varied functional group tolerance in moderate to good yields.
Collapse
Affiliation(s)
- Krishna Kanta Das
- Department of Chemistry, Visva-Bharati, A Central University), 731235, Santiniketanm, West Bengal, India
| | - Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati, A Central University), 731235, Santiniketanm, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati, A Central University), 731235, Santiniketanm, West Bengal, India
| |
Collapse
|
25
|
Abstract
A mild approach to the visible-light-mediated bimetal-catalyzed meta-alkylation of arenes has been accomplished. The regioselective meta-alkylation is realized by a bimetallic ruthenium-palladium system. Ruthenium acts as a catalyst for the directing effect and as a photosensitizer, while the cocatalyst palladium behaves as a catalyst for the generation of fluoroalkyl radicals. This reaction not only is suitable for two-component meta-fluoroalkylation of arenes but can also be extended to three-component reactions to achieve bifunctionalization of olefins.
Collapse
Affiliation(s)
- Peng-Cheng Cui
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
26
|
Ibáñez-Ibáñez L, Mollar-Cuni A, Apaloo-Messan E, Sharma AK, Mata JA, Maseras F, Vicent C. Ion mobility mass spectrometry uncovers regioselectivity in the carboxylate-assisted C-H activation of palladium N-heterocyclic carbene complexes. Dalton Trans 2024; 53:656-665. [PMID: 38073605 DOI: 10.1039/d3dt02793g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Carboxylate-assisted Pd-catalyzed C-H bond activation constitutes a mild and versatile synthetic tool to efficiently and selectively cleave inert C-H bonds. Herein, we demonstrate a simple method to experimentally evaluate both reactivity and selectivity in such systems using mass spectrometry (MS) methods. The N-heterocyclic carbene (NHC) cations [(NHC)PdX]+, bearing as X- ligand bases commonly used to promote the C-H activation (carboxylates and bicarbonate), are generated in the gas-phase by ESI-MS. Their C-H bond activation at the N-bound groups of the NHC is then studied using Collision Induced Dissociation (CID) experiments. Ion Mobility Spectrometry (IM)-MS is exploited to identify a number of regioisomers associated with the distinctive site selective C-H activations. It is demonstrated that such C-H activation concomitant with acetic acid release occurs from a mixture of activated [(NHC-H)Pd(CH3CO2H)]+ and non-activated [(NHC)Pd(CH3CO2)]+ complexes. The identity of the X-type ligands (X = Cl-, carboxylates and bicarbonate) has a significant impact on the regioisomer branching ratio upon CID conditions. IM-MS in conjunction with a DFT mechanistic study is presented for the acetate-assisted C-H activation of the [(NHC)Pd(CH3CO2)]+ cation featuring butyl and aryl as N-donor groups.
Collapse
Affiliation(s)
- Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Andres Mollar-Cuni
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Edmond Apaloo-Messan
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Cristian Vicent
- Serveis Centrals d'Instrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
27
|
Tyagi S, Mishra R, Mazumder R, Mazumder A. Current Market Potential and Prospects of Copper-based Pyridine Derivatives: A Review. Curr Mol Med 2024; 24:1111-1123. [PMID: 37496249 DOI: 10.2174/1566524023666230726160056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 07/28/2023]
Abstract
Nicotine, minodronic acid, nicotinamide (niacin), zolpidem, zolimidine, and other pyridine-based chemicals play vital roles in medicine and biology. Pyridinecontaining drugs are widely available on the market to treat a wide range of human ailments. As a result of these advances, pyridine research is continually expanding, and there are now higher expectations for how it may aid in the treatment of numerous ailments. This evaluation incorporates data acquired from sources, like PubMed, to provide a thorough summary of the approved drugs and bioactivity data for compounds containing pyridine. Most of the reactions discussed in this article will provide readers with a deeper understanding of various pyridine-related examples, which is necessary for the creation of copper catalysis-based synthetic processes that are more accessible, secure, environmentally friendly, and practical, and that also have higher accuracy and selectivity. This paper also discusses significant innovations in the multi-component copper-catalyzed synthesis of N-heterocycles (pyridine), with the aim of developing precise, cost-effective, and environmentally friendly oxygenation and oxidation synthetic methods for the future synthesis of additional novel pyridine base analogs. Therefore, the review article will serve as a novel platform for researchers investigating copperbased pyridine compounds.
Collapse
Affiliation(s)
- Shivani Tyagi
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| |
Collapse
|
28
|
Fang C, Li L, Yang H, Kong C, Zhang J, Xie M, Wu J. Rh(III)-catalyzed selective C2 C-H acyloxylation of indoles. Chem Commun (Camb) 2023; 60:216-219. [PMID: 38050725 DOI: 10.1039/d3cc05799b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we present the first highly regio- and chemoselective C2 C-H acyloxylation of indole under rhodium catalysis and an N-quinolinyl auxiliary. This strategy accommodates a wide range of indoles and structurally diverse carboxylic acids with good reaction efficiencies to yield functionalized indoles. The utility of this logic was demonstrated by the concise synthesis of the functionalized 2-oxindole derivatives. Preliminary mechanistic studies indicate that catalyst turnover of RhIII-RhIV/V-RhII/III-RhIII might be involved in this catalytic C-H transformation.
Collapse
Affiliation(s)
- Chaoying Fang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Li Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Caiyang Kong
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
29
|
Naulin E, Lombard M, Gandon V, Retailleau P, Elslande EV, Neuville L, Masson G. Enantioselective and Regiodivergent Synthesis of Dihydro-1,2-oxazines from Triene-Carbamates via Chiral Phosphoric Acid-Catalysis. J Am Chem Soc 2023; 145:26504-26515. [PMID: 38011838 DOI: 10.1021/jacs.3c12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Conjugated trienes are fascinating building blocks for the rapid construction of complex polycyclic compounds. However, limited success has been achieved due to the challenging regioselectivity control. Herein, we report an enantio- and diastereoselective process allowing to regioselectively control the functionalization of NH-triene-carbamates. Synthesis of chiral cis-3,6-dihydro-2H-1,2-oxazines is achieved by a chiral phosphoric acid catalyzed Nitroso-Diels-Alder cycloaddition involving [(1E,3E,5E)-hexa-1,3,5-trien-1-yl]carbamates. Moreover, modular access to three different regioisomers with excellent diastereoselectivities and high to excellent enantioselectivities is obtained by a careful choice of the reaction conditions. A computational study reveals that the regioselectivity is influenced by the steric demand of the substituents at the 6-position of the triene, as well as noncovalent interactions between the two cycloaddition partners. Utility of each regioisomeric cycloadduct is highlighted by a variety of synthetic transformations.
Collapse
Affiliation(s)
- Emma Naulin
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Marine Lombard
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, Orsay 91400, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, Porcheville 78440, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, Porcheville 78440, France
| |
Collapse
|
30
|
Li H, Zhang Y, Huang Y, Duan P, Ge R, Han X, Zhang W. A Simple Access to γ- and ε-Keto Arenes via Enzymatic Divergent C─H Bond Oxyfunctionalization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304605. [PMID: 37870171 PMCID: PMC10700168 DOI: 10.1002/advs.202304605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Performing divergent C─H bond functionalization on molecules with multiple reaction sites is a significant challenge in organic chemistry. Biocatalytic oxyfunctionalization reactions of these compounds to the corresponding ketones/aldehydes are typically hindered by selectivity issues. To address these challenges, the catalytic performance of oxidoreductases is explored. The results show that combining the peroxygenase-catalyzed propargylic C─H bond oxidation with the Old Yellow Enzyme-catalyzed reduction of conjugated C─C triple bonds in one-pot enables the regio- and chemoselective oxyfunctionalization of sp3 C─H bonds that are distant from benzylic sites. This enzymatic approach yielded a variety of γ-keto arenes with diverse structural and electronic properties in yields of up to 99% and regioselectivity of 100%, which are difficult to achieve using other chemocatalysis and enzymes. By adjusting the C─C triple bond, the carbonyl group's position can be further tuned to yield ε-keto arenes. This enzymatic approach can be combined with other biocatalysts to establish new synthetic pathways for accessing various challenging divergent C─H bond functionalization reactions.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yalan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Peigao Duan
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Ran Ge
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Xiaofeng Han
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
- National Innovation Center for Synthetic Biotechnology32 West 7th AvenueTianjin300308China
| |
Collapse
|
31
|
Huang BW, Han JL. Regioselectivity Switch between Enantioselective 1,2- and 1,4-Addition of Allyl Aryl Ketones with 2,3-Dioxopyrrolidines. J Org Chem 2023; 88:16376-16390. [PMID: 37948045 DOI: 10.1021/acs.joc.3c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A vinylogous addition reaction of allyl aryl ketones with good yields and excellent regioselectivity catalyzed by squaramide catalysts has been developed. A series of chiral tertiary alcohols and bicyclic pyrrolidones could be synthesized in good to excellent yields, enantioselectivities, and diaseteroselectivities. Both experimental results and DFT calculations indicate that 1,2-addition reaction is favorable when the reaction is employed at a lower temperature, while the 1,4-addition/cyclization pathway is favorable when the reaction is employed at a higher temperature. Furthermore, the formation of compound 4 can potentially arise from either the 1,4-addition/cyclization pathway or retro-aldol reaction of compound 3, followed by subsequent 1,4-addition/cyclization.
Collapse
Affiliation(s)
- Bo-Wei Huang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227 Taiwan, R.O.C
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, Taichung City 40227 Taiwan, R.O.C
| |
Collapse
|
32
|
Jiang W, Yang X, Lin L, Yan C, Zhao Y, Wang M, Shi Z. Merging Visible Light Photocatalysis and P(III)-Directed C-H Activation by a Single Catalyst: Modular Assembly of P-Alkyne Hybrid Ligands. Angew Chem Int Ed Engl 2023; 62:e202309709. [PMID: 37814137 DOI: 10.1002/anie.202309709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Metal-catalyzed C-H activation strategies provide an efficient approach for synthesis by minimizing atom, step, and redox economy. Developing milder, greener, and more effective protocols for these strategies is always highly desirable to the scientific community. In this study, the utilization of a single rhodium complex enabled the visible-light-induced late-stage C-H activation of biaryl-type phosphines with alkynyl bromides, employing inherent phosphorus atoms as directing groups. This chemistry combines P(III)-directed C-H activation with visible light photocatalysis, under exogenous photosensitizer-free conditions, offering a unique platform for ligand design and preparation. Furthermore, this study also explores the asymmetric catalysis and coordination chemistry of the resulting P-alkyne hybrid ligands with specific transition metals. Experimental results and density functional theory calculations demonstrate the mechanistic intricacies of this transformation.
Collapse
Affiliation(s)
- Wang Jiang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiuxiu Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chaoguo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
33
|
Zhang J, Xu W, Zhuang W, Chen X, Zhang X, Huang Q. Rhodaelectro-Catalyzed Decarboxylative Cross-Dehydrogenative Coupling of Indole-3-carboxylic Acids and Olefins via Weakly Coordinating Carboxyl Groups. J Org Chem 2023; 88:15198-15208. [PMID: 37863844 DOI: 10.1021/acs.joc.3c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
A rhodaelectro-catalyzed C2-H selectively decarboxylative alkenylation of 3-carboxy-1H-indoles employing electricity as the traceless terminal oxidant has been accomplished. The weakly coordinating carboxyl group serves as the traceless directing groups. External oxidant-free in an undivided cell with constant current in aqueous solution ensures the decarboxylative C-H alkenylation to be viable and sustainable.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Weijie Xu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Weihui Zhuang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
34
|
Wu WQ, Shi H. Transition-Metal-Catalyzed Dehydrogenative (3 + 2) Annulation of Aromatic Compounds: Synthesis of Indenes and Indanes via Dual Functionalization of Benzylic and ortho C-H Bonds. J Org Chem 2023; 88:14264-14273. [PMID: 37811870 DOI: 10.1021/acs.joc.3c01877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Intermolecular (3 + 2) annulation emerges as a potent approach for constructing 5-membered carbocycles through the fusion of two distinct components. This synopsis encapsulates recent strides in the realm of transition-metal-catalyzed dehydrogenative (3 + 2) annulation of aromatic hydrocarbons, achieved through the dual functionalization of benzylic and ortho C-H bonds. Encompassing three pivotal strategies, namely, (i) C-H bond activation, (ii) benzylic oxidation, and (iii) π-coordination activation, this review offers an overview of the field's recent developments.
Collapse
Affiliation(s)
- Wen-Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
35
|
Geraci A, Stojiljković U, Antien K, Salameh N, Baudoin O. Iridium(III)-Catalyzed Intermolecular C(sp 3 )-H Amidation for the Synthesis of Chiral 1,2-Diamines. Angew Chem Int Ed Engl 2023; 62:e202309263. [PMID: 37493209 DOI: 10.1002/anie.202309263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
Chiral 1,2-diamines are privileged scaffolds among bioactive natural products, active pharmaceutical ingredients, ligands for transition-metal-based asymmetric catalysis and organocatalysts. Despite this interest, the construction of chiral 1,2-diamine motifs still remains a challenge. To address this, an iridium(III)-catalyzed intermolecular C(sp3 )-H amidation reaction was developed. This method relies on the design of a new, cheap and cleavable exo-protecting/directing group derived from camphorsulfonic acid, which is directly installed from easily accessible precursors, and furnishes scalemic free 1,2-diamines upon cleavage of both nitrogen substituents. It was found applicable to both α-secondary and α-tertiary-1,2-diamines, for which a two-step protocol involving intermolecular olefin hydroamination and C(sp3 )-H amidation was developed. Kinetic and computational studies provided insights into the observed reactivity difference between pairs of diastereoisomeric substrates.
Collapse
Affiliation(s)
- Andrea Geraci
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Uros Stojiljković
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Kevin Antien
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Nihad Salameh
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
36
|
Romero AH. C-H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Top Curr Chem (Cham) 2023; 381:29. [PMID: 37736818 DOI: 10.1007/s41061-023-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
37
|
Mohite SB, Mane MV, Bera M, Karpoormath R. Palladium-Catalyzed Regiodivergent C-H Olefination of Imidazo[1,2a]pyridine Carboxamide and Unactivated Alkenes. Chemistry 2023:e202302759. [PMID: 37735937 DOI: 10.1002/chem.202302759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Despite remarkable successes in linear and branched vinyl (hetero) arene synthesis, regiodivergent C-H olefination with a single catalytic system has remained underdeveloped. Overcoming this limitation, a Pd/MPAA-catalyzed regiodivergent C-H olefination of imidazo[1,2a] pyridine carboxamides with unactivated terminal alkenes to generate branched and linear olefinated products depending upon the electronic nature of alkenes is reported herein. Moreover, this protocol can be applied for C-H deuteriation of the corresponding heteroarenes with D2 O as deuterium source. Preliminary experimental studies combined with computational investigations (DFT studies) suggest that regiodivergent olefination can be controlled by olefin insertion and β-hydride elimination steps.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Milan Bera
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| |
Collapse
|
38
|
Cui J, Wang T. B(C 6F 5) 3-mediated direct intramolecular C7-alkenylation of N-propargylindoles. Chem Commun (Camb) 2023; 59:10279-10282. [PMID: 37539546 DOI: 10.1039/d3cc02599c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
B(C6F5)3-mediated direct C7-alkenylation of N-propargylindoles without directing groups was developed. This reaction proceeds via the π-activation of the alkynyl group with B(C6F5)3/Friedel-Crafts alkenylation/proton transfer reaction sequence. Interestingly, C7-alkenylation products could further convert into the fused indoles by deprotonation and finally polyaromatic N-heterocycles by the hydride abstraction.
Collapse
Affiliation(s)
- Jie Cui
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Tongdao Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
39
|
Niu RH, Zhang J, Zhao RY, Luo QJ, Li JH, Sun B. Cobalt(III)-Catalyzed Directed C-7 Selective C-H Alkynylation of Indolines with Bromoalkynes. Org Lett 2023; 25:5411-5415. [PMID: 37458331 DOI: 10.1021/acs.orglett.3c01584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A cobalt(III)-catalyzed directed C-7 alkynylation of indolines with easily accessible bromoalkynes has been developed. The reaction has a broad substrate scope with excellent yields and represents a powerful route to the synthesis of 7-alkynyl-substituted indolines. In addition, the reaction can be extended to the coupling of N-aryl 7-azaindoles, highlighting the synthetic practicability of the strategy.
Collapse
Affiliation(s)
- Rui-Han Niu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jing Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ru-Yuan Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Quan-Jian Luo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
40
|
Zhang Q, Zhou P, Zhao Y, Liu Y, Liang T, Jiang J, Zhang Z. Catalyst-controlled regiodivergent C-H bond alkenylation of 2-pyridylthiophenes. Chem Commun (Camb) 2023. [PMID: 37366584 DOI: 10.1039/d3cc02411c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A novel and effective RhIII- and PdII-controlled switchable C-H alkenylation of 2-pyridylthiophenes with alkenes is realized. The alkenylation reactions proceeded smoothly in a highly regio- and stereo-selective manner to afford a broad range of C3- and C5-alkenylated products. Depending on the catalyst employed, the reactions involve two typical approaches: C3-alkenylation via chelation-assisted rhodation and C5-alkenylation via electrophilic palladation. This regiodivergent synthetic protocol was successfully applied for the straightforward building of π-conjugated difunctionalized 2-pyridylthiophenes, which may show great potential in organic electronic materials.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Pengfei Zhou
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Yaokun Zhao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Yeran Liu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Jun Jiang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
41
|
Liu S, Kumar N, Robert F, Landais Y. Thiochromane Formation via Visible-Light-Mediated Intramolecular δ-C(sp 3)-H Bond Arylation of Sulfonamides. Org Lett 2023; 25:3072-3077. [PMID: 37092716 DOI: 10.1021/acs.orglett.3c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Visible-light-mediated intramolecular site-selective δ-C(sp3)-H bond arylation of aliphatic trifluoromethanesulfonamides was developed. The reaction proceeds through a radical cascade, including the generation of a sulfonamidyl radical, which triggers a 1,5-hydrogen atom transfer, affording a δ-C-centered radical, which finally cyclized onto a neighboring thiopolyfluoroaryl moiety to deliver a range of synthetically useful thiochromanes. The cyclization process occurs through two distinct pathways depending upon the nature of the substituent X ortho to the native C-S bond.
Collapse
Affiliation(s)
- Shuai Liu
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Nivesh Kumar
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Frédéric Robert
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Yannick Landais
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| |
Collapse
|
42
|
Kathiravan S, Zhang T, Nicholls IA. Iridium catalysed C2 site-selective methylation of indoles using a pivaloyl directing group through weak chelation-assistance. RSC Adv 2023; 13:11291-11295. [PMID: 37057266 PMCID: PMC10088075 DOI: 10.1039/d3ra02031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Here we present an iridium catalysed C2-selective methylation of indoles using methyltrifluoroborate as a source of methyl group. The iridium catalyst selectively discriminates the indole C2 and C4 C-H bonds by coordination with a pivaloyl directing group.
Collapse
Affiliation(s)
| | - Tianshu Zhang
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University Kalmar SE-39182 Sweden
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University Kalmar SE-39182 Sweden
| |
Collapse
|
43
|
Wu Y, Ao Y, Li Z, Liu C, Zhao J, Gao W, Li X, Wang H, Liu Y, Liu Y. Modulation of metal species as control point for Ni-catalyzed stereodivergent semihydrogenation of alkynes with water. Nat Commun 2023; 14:1655. [PMID: 36964163 PMCID: PMC10039052 DOI: 10.1038/s41467-023-37022-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/23/2023] [Indexed: 03/26/2023] Open
Abstract
A base-assisted metal species modulation mechanism enables Ni-catalyzed stereodivergent transfer semihydrogenation of alkynes with water, delivering both olefinic isomers smoothly using cheap and nontoxic catalysts and additives. Different from most precedents, in which E-alkenes derive from the isomerization of Z-alkene products, the isomers were formed in orthogonal catalytic pathways. Mechanistic studies suggest base as a key early element in modulation of the reaction pathways: by adding different bases, nickel species with disparate valence states could be accessed to initiate two catalytic cycles toward different stereoisomers. The practicability of the method is showcased with nearly 70 examples, including internal and terminal triple bonds, enynes and diynes, affording semi-hydrogenated products in high yields and selectivity.
Collapse
Affiliation(s)
- Yuanqi Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yuhui Ao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 200438, Shanghai, PR China.
| | - Chunhui Liu
- College of Chemical and Materials Engineering, Xuchang University, 461000, Xuchang, PR China
| | - Jinbo Zhao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Wenyu Gao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Xuemeng Li
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Hui Wang
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yongsheng Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yu Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China.
| |
Collapse
|
44
|
Zhang Q, Huang X, Gui Y, He Y, Liao S, Huang G, Liang T, Zhang Z. Unlocking Regiodivergence in Pd II- and Rh III-Mediated Site-Selective C-H Bond Alkynylation of Imidazopyridines. Org Lett 2023; 25:1447-1452. [PMID: 36826371 DOI: 10.1021/acs.orglett.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An efficient PdII- and RhIII-controlled site-selective C-H bond alkynylation of imidazopyridines using (bromoethynyl)triisopropylsilane is disclosed. The divergent methodology allows straightforward access to a wide range of products alkynylated at the C3 and ortho positions. This strategy is suggestive of a practical platform that can be suitable for late-stage diversification and may assist in the design of more selective and complementary catalytic systems.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuecong Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuting Gui
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Youyuan He
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyang Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
45
|
Rabha M, Sheet SK, Sen B, Konthoujam I, Aguan K, Khatua S. Ruthenium(II) Complex‐based Highly Specific Luminescence Light‐up Probe for Detecting HOCl via C(sp
2
)‐H Chlorination. ChemistrySelect 2023. [DOI: 10.1002/slct.202204643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Monosh Rabha
- Centre for Advanced Studies Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Sanjoy Kumar Sheet
- Centre for Advanced Studies Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Bhaskar Sen
- Centre for Advanced Studies Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Ibemhanbi Konthoujam
- Department of Biotechnology and Bioinformatics North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| |
Collapse
|
46
|
Zhang J, Yao L, Su JY, Liu YZ, Wang Q, Deng WP. Transition-metal-catalyzed aromatic C–H functionalization assisted by the phosphorus-containing directing groups. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
47
|
Lin L, Zhang XJ, Xu X, Zhao Y, Shi Z. Ru 3 (CO) 12 -Catalyzed Modular Assembly of Hemilabile Ligands by C-H Activation of Phosphines with Isocyanates. Angew Chem Int Ed Engl 2023; 62:e202214584. [PMID: 36479789 DOI: 10.1002/anie.202214584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Hemilabile ligands have been applied extensively in transition metal catalysis, but preparations of these molecules typically require multistep synthesis. Here, modular assembly of diverse phosphine-amide ligands, including related axially chiral compounds, is first reported through ruthenium-catalyzed C-H activation of phosphines with isocyanate directed by phosphorus(III) atoms. High reactivity and regioselectivity can be obtained by using a Ru3 (CO)12 catalyst with a mono-N-protected amino acid ligand. This transformation significantly expands the pool of phosphine-amide ligands, some of which have shown excellent efficiency for asymmetric catalysis. More broadly, the discovery constitutes a proof of principle for facile construction of hemilabile ligands directly from the parent monodentate phosphines by C-H activation with ideal atom, step and redox economy. Several dinuclear ruthenium complexes were characterized by single-crystal X-ray diffraction analysis revealing the key mechanistic features of this transformation.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xue-Jun Zhang
- Department of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
48
|
Marcos-Atanes D, Vidal C, Navo CD, Peccati F, Jiménez-Osés G, Mascareñas JL. Iridium-Catalyzed ortho-Selective Borylation of Aromatic Amides Enabled by 5-Trifluoromethylated Bipyridine Ligands. Angew Chem Int Ed Engl 2023; 62:e202214510. [PMID: 36602092 DOI: 10.1002/anie.202214510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Iridium-catalyzed borylations of aromatic C-H bonds are highly attractive transformations because of the diversification possibilities offered by the resulting boronates. These transformations are best carried out using bidentate bipyridine or phenanthroline ligands, and tend to be governed by steric factors, therefore resulting in the competitive functionalization of meta and/or para positions. We have now discovered that a subtle change in the bipyridine ligand, namely, the introduction of a CF3 substituent at position 5, enables a complete change of regioselectivity in the borylation of aromatic amides, allowing the synthesis of a wide variety of ortho-borylated derivatives. Importantly, thorough computational studies suggest that the exquisite regio- and chemoselectivity stems from unusual outer-sphere interactions between the amide group of the substrate and the CF3 -substituted aryl ring of the bipyridine ligand.
Collapse
Affiliation(s)
- Daniel Marcos-Atanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - Claudio D Navo
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162, Derio, Spain
| | - Francesca Peccati
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162, Derio, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162, Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
49
|
Mondal A, Díaz-Ruiz M, Deufel F, Maseras F, van Gemmeren M. Charge-controlled Pd catalysis enables the meta-C–H activation and olefination of arenes. Chem 2023; 9:1004-1016. [PMID: 37125236 PMCID: PMC10127283 DOI: 10.1016/j.chempr.2022.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
The regioselective C-H activation of arenes remains one of the most promising techniques for accessing highly important functionalized motifs. Such functionalizations can generally be achieved through directed and non-directed processes. The directed approach requires a covalently attached directing group (DG) on the substrate to induce reactivity and selectivity and therefore intrinsically leaves a functional group at the point of attachment within the molecule, even after the tailored DG has been removed. Conversely, non-directed methods typically suffer from regioselectivity issues, especially for unbiased substrates. Herein, we report a unique approach that employs weak charge-charge and charge-dipole interactions to enable the meta-selective activation and olefination of arenes to address these challenges in Pd catalysis. The charged moiety can easily be converted to uncharged simple arenes by hydrogenation or cross-coupling. In-depth mechanistic studies prove that the charge is responsible for the observed selectivity. We expect our studies to be generalizable and thereby enable further regioselective transformations.
Collapse
|
50
|
Sarkar A, Saha M, Das AR, Banerjee A, Majumder R, Bandyopadhyay D. Hypervalent iodine mediated Pd(II)‐catalyzed
ortho
‐C(
sp
2
−H) functionalization of azoles deciphering Hantzsch ester and malononitrile as the functional group surrogates. ChemistrySelect 2022. [DOI: 10.1002/slct.202203959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anindita Sarkar
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Moumita Saha
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Asish R. Das
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Adrita Banerjee
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | - Romit Majumder
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | | |
Collapse
|