1
|
Dey S, Das A, Yadav RN, Boruah PJ, Sarkar K, Paul AK, Hossain MF. Electron donor-acceptor complex enabled photocascade strategy for the synthesis of trans-dihydrofuro[3,2- c]chromen-4-one scaffolds via radical conjugate addition of pyridinium ylide. Chem Commun (Camb) 2024. [PMID: 39450510 DOI: 10.1039/d4cc04720f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A visible-light-induced photocascade strategy is disclosed for the synthesis of trans-dihydrofuro[3,2-c]chromen-4-one scaffolds. The photocascade consists of electron donor-acceptor (EDA) complex enabled formation of arylidene coumarinone, followed by 1,4-radical conjugate addition (1,4-RCA) of an in situ generated pyridinium ylide radical (PyYR) towards diastereoselective formation of the trans-dihydrofuro[3,2-c]chromen-4-one scaffold in good to excellent yield. Thorough mechanistic investigations comprising photophysical, spectroscopic, electrochemical and DFT studies provide further insights into the reaction mechanism.
Collapse
Affiliation(s)
- Sovan Dey
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Arindam Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering and Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222003, UP, India
| | | | - Koushik Sarkar
- Department of Chemical Sciences, IISER Kolkata, Mohanpur-741246, Nadia, WB, India
| | - Amit Kumar Paul
- Bose Institute, Unified Academic Campus, EN 80, Sector V, Salt Lake, Kolkata-700091, India
| | - Md Firoj Hossain
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| |
Collapse
|
2
|
Zhang TZ, Shen MQ, Zhang Q, Fu MC. Alcohols as Alkyl Electrophiles for Deoxygenative Heck Reaction Enabled by Excited State Pd Catalysis. Org Lett 2024; 26:8890-8898. [PMID: 39356970 DOI: 10.1021/acs.orglett.4c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Here, we present a general method for the photoinduced Pd-catalyzed deoxygenative Heck reaction of vinyl arenes with ortho-iodophenyl-thionocarbonate derived from alcohols. Mechanistic studies reveal that the deoxygenation involves a 5-endo-trig cyclization and fragmentation process, with radical addition identified as the rate-determining step in this transformation. This one-pot procedure demonstrates excellent selectivity for less hindered hydroxyl groups in diols, facilitating late-stage functionalization of complex molecules and scalability to gram-scale synthesis. The protocol highlights significant synthetic potential and can be extended to the cascade 1,1-difunctionalization of isocyanides and the intermolecular radical cascade cyclization of N-arylacrylamides.
Collapse
Affiliation(s)
- Tian-Zhen Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Meng-Qi Shen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Ming-Chen Fu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Wang XS, Zhang YJ, Cao J, Xu LW. Photoinduced Palladium-Catalyzed Radical Germylative Arylation of Alkenes with Chlorogermanes. J Org Chem 2024; 89:12848-12852. [PMID: 39145490 DOI: 10.1021/acs.joc.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We describe a visible light-induced palladium-catalyzed radical germylative arylation of alkenes with easily accessible chlorogermanes. This protocol provides expedient access to germanium-substituted indolin-2-ones in good to excellent yields under mild reaction conditions. The key step for this strategy lies in the reductive activation of germanium-chloride bonds with an excited palladium complex under visible light irradiation. The involvement of germanium radicals was evidenced by electron paramagnetic resonance spectroscopy experiments.
Collapse
Affiliation(s)
- Xue-Song Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yu-Jie Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, P. R. China
| |
Collapse
|
4
|
Praveen Kumar V, Athira CS, Mohan B, Priya S, Sasidhar BS. A selective photoinduced radical O-alkenylation of phenols and naphthols with terminal alkynes. Chem Commun (Camb) 2024; 60:9813-9816. [PMID: 39163125 DOI: 10.1039/d4cc02555e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The visible light-promoted O-alkenylation of phenols and naphthols with terminal alkynes is achieved using 2,4,6-tris(4-fluorophenyl)pyrylium tetrafluoroborate (T(p-F)PPT) as a photocatalyst at room temperature without the need of any external ligand or additive. Apart from its excellent functional group tolerance, the protocol described herein represents an appealing alternative strategy to classical transition-metal catalysed hydroarylation reactions. Mechanistic investigations revealed that the reaction involves a radical pathway. The utility of the hydroarylated products for the synthesis of fused benzofurans via a one-pot annulation was also demonstrated. Herein, we report the first intermolecular radical hydroarylation of alkynes.
Collapse
Affiliation(s)
- V Praveen Kumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C S Athira
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - B Mohan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Priya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - B S Sasidhar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Jung H, Choi J, Kim D, Lee JH, Ihee H, Kim D, Chang S. Photoinduced Group Transposition via Iridium-Nitrenoid Leading to Amidative Inner-Sphere Aryl Migration. Angew Chem Int Ed Engl 2024; 63:e202408123. [PMID: 38871650 DOI: 10.1002/anie.202408123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
We herein report a fundamental mechanistic investigation into photochemical metal-nitrenoid generation and inner-sphere transposition reactivity using organometallic photoprecursors. By designing Cp*Ir(hydroxamate)(Ar) complexes, we induced photo-initiated ligand activation, allowing us to explore the amidative σ(Ir-aryl) migration reactivity. A combination of experimental mechanistic studies, femtosecond transient absorption spectroscopy, and density functional theory (DFT) calculations revealed that the metal-to-ligand charge transfer enables the σ(N-O) cleavage, followed by Ir-acylnitrenoid generation. The final inner-sphere σ(Ir-aryl) group migration results in a net amidative group transposition.
Collapse
Affiliation(s)
- Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungkweon Choi
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Daniel Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong Hoon Lee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Sheng XX, Qiu CY, Wang LN, Du YJ, Tang LN, Chen JM, Liu GY, Yang S, Zheng PF, Chen M. Transition-Metal-Free Radical Relay Cascade Annulation of Amides: Access to Antitumor Active Benzo[b]azepine and Oxindole Derivatives. Chemistry 2024:e202402402. [PMID: 39186035 DOI: 10.1002/chem.202402402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
Efficient transition-metal-free synthesis of benzo[b]azepines and oxindoles is achieved via a radical relay cascade strategy employing halogen atom transfer (XAT) for aryl radical generation followed by intramolecular hydrogen atom transfer (HAT). Optimization yielded moderate to substantial yields under visible light irradiation. Preliminary biological assessments revealed promising anti-tumor activity for select compounds. This study underscores the potential of XAT-mediated radical relay cascades in medicinal chemistry and anticancer drug discovery.
Collapse
Affiliation(s)
- Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Li-Na Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Peng-Fei Zheng
- College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| |
Collapse
|
7
|
Pinto A, Rodríguez L. Gold(I) complexes as powerful photosensitizers - a visionary frontier perspective. Dalton Trans 2024; 53:13716-13725. [PMID: 39087924 DOI: 10.1039/d4dt01854k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Singlet oxygen production and its reactivity have significant implications in fields ranging from polymer science to photodynamic therapy. Extensive research has focused on the development of organic-based materials and heavy metal complexes, including Ru(II), Rh(III), Ir(III) and Pt(II). However, metal complexes containing Au(I) have been scarcely explored and warrant further investigation. This review provides a comprehensive analysis of reported compounds, classified based on the ligands coordinated to the gold(I) centre. Additionally, future directions in photosensitizer development and singlet oxygen applications are discussed.
Collapse
Affiliation(s)
- Andrea Pinto
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Kommoju A, Snehita K, Sowjanya K, Mukkamala SB, Padala K. Recent advances in dual photoredox/nickel catalyzed alkene carbofunctionalised reactions. Chem Commun (Camb) 2024; 60:8946-8977. [PMID: 39086201 DOI: 10.1039/d4cc02914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Alkene carbofunctionalization reactions have great potential for synthesizing complex molecules and constructing complex structures in natural products and medicinal chemistry. Recently, dual photoredox/nickel catalysis has emerged as a novel strategy for alkene carbofunctionalization. Nickel offers numerous advantages over other transition metals, such as cost-effectiveness, abundance, and low toxicity, and moreover, it has many oxidation states. Nickel catalysts exhibit excellent catalytic activity in dual photoredox/transition metal catalysis, facilitating the formation of carbon-carbon or carbon-heteroatom bonds in organic transformations. This review highlights the latest advancements in dual photoredox/nickel-catalyzed alkene carbofunctionalizations and includes the literature published from 2020 to 2024.
Collapse
Affiliation(s)
- Anilkumar Kommoju
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kattamuri Snehita
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kandi Sowjanya
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Saratchandra Babu Mukkamala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| |
Collapse
|
9
|
Peng LY, Jin R, Zhang SR, Liu XY, Fang WH, Cui G. Roles of Nonadiabatic Processes, Reaction Mechanism, and Selectivity in Cu-Catalyzed [2 + 2] Photocycloaddition of Norbornene and Acetone to Oxetane. J Org Chem 2024; 89:11334-11346. [PMID: 39094225 DOI: 10.1021/acs.joc.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Oxetane has been extensively studied for its applications in medicinal chemistry and as a reactive intermediate in synthesis. Experiments report a Cu-catalyzed [2 + 2] photocycloaddition of acetone and norbornene to oxetane, which is proposed to deviate from the conventional Paternò-Büchi reaction. However, its mechanism at the atomic level is not clear. In this study, we used a combination of multistate complete active space second-order perturbation theory (MS-CASPT2) and density functional theory to systematically investigate the reaction mechanism and elucidate the factors contributing to the diastereomeric selectivity. Initially, the formation of the TpCu(Norb) complex is achieved by strong interaction between tris(pyrazolyl)borate Cu(I) (TpCu) and norbornene in the ground state (S0). Upon photoexcitation, TpCu(Norb) eventually decays to the T1 state, in which TpCu(Norb) attacks acetone to initiate subsequent reactions and produces final endo- or exo-oxetane products. All these reactions initially involve the C-C bond formation in the T1 state thereto leading to a ring-opening intermediate. This intermediate then undergoes a nonradiative transition to the S0 state, producing a five-membered ring intermediate, from which the C-O bond is formed, leading to the experimentally dominant exo-product. In contrast, the endo-oxetane formation requires a rearrangement process after the C-C bond is formed because of the large steric effects. As a consequence, the different reaction pathways generating exo- and endo-products exhibit large differences in the free-energy barriers, which results in a diastereomeric selectivity observed experimentally. Additionally, the nonradiative transition is found to play an important role in facilitating these reaction steps. The present computational study provides valuable mechanistic insights into Cu-catalyzed photocycloaddition reactions.
Collapse
Affiliation(s)
- Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Jin
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shi-Ru Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Zhao HT, Lin JN, Shu W. Visible-Light Mediated Nickel-Catalyzed Asymmetric Difunctionalizations of Alkenes. Chemistry 2024:e202402712. [PMID: 39136591 DOI: 10.1002/chem.202402712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Difunctionalizations of alkenes represent one of the most straightforward protocols to build molecular complexity due to the simultaneous construction of two vicinal bonds cross π-bond of alkenes. It is extremely attractive yet challenging to control the stereochemistry outcome of this event. Over the past years, visible-light and Ni-catalyzed asymmetric difunctionalizations of alkenes provide an environmental benign and promising solution for the construction of saturated carbon centers with the control of regio- and enantioselectivity. In this Concept, the initiative and progress of regio- and enantioselective difunctionalizations of alkenes enabled by visible-light and nickel catalysis has been summarized. Moreover, further efforts and directions for the development of visible-light mediated Ni-catalyzed asymmetric difunctionalizations of alkenes has been discussed.
Collapse
Affiliation(s)
- Han-Tong Zhao
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P.R. China
| | - Jia-Ni Lin
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P.R. China
| | - Wei Shu
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P.R. China
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan, P.R. China
| |
Collapse
|
11
|
Velisoju VK, Ramos-Fernández EV, Kancherla R, Ahmad R, Pal K, Mohamed H, Cerrillo JL, Meijerink MJ, Cavallo L, Rueping M, Castaño P. Highly Dispersed Pd@ZIF-8 for Photo-Assisted Cross-Couplings and CO 2 to Methanol: Activity and Selectivity Insights. Angew Chem Int Ed Engl 2024:e202409490. [PMID: 39126183 DOI: 10.1002/anie.202409490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Our study unveils a pioneering methodology that effectively distributes Pd species within a zeolitic imidazolate framework-8 (ZIF-8). We demonstrate that Pd can be encapsulated within ZIF-8 as atomically dispersed Pd species that function as an excited-state transition metal catalyst for promoting carbon-carbon (C-C) cross-couplings at room temperature using visible light as the driving force. Furthermore, the same material can be reduced at 250 °C, forming Pd metal nanoparticles encapsulated in ZIF-8. This catalyst shows high rates and selectivity for carbon dioxide hydrogenation to methanol under industrially relevant conditions (250 °C, 50 bar): 7.46 molmethanol molmetal -1 h-1 and >99 %. Our results demonstrate the correlations of the catalyst structure with the performances at experimental and theoretical levels.
Collapse
Affiliation(s)
- Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuntal Pal
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose L Cerrillo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mark J Meijerink
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Wang X, Peng J, Meng C, Feng F. Recent advances for enhanced photodynamic therapy: from new mechanisms to innovative strategies. Chem Sci 2024; 15:12234-12257. [PMID: 39118629 PMCID: PMC11304552 DOI: 10.1039/d3sc07006a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Photodynamic therapy (PDT) has been developed as a potential cancer treatment approach owing to its non-invasiveness, spatiotemporal control and limited side effects. Currently, great efforts have been made to improve the PDT effect in terms of safety and efficiency. In this review, we highlight recent advances in innovative strategies for enhanced PDT, including (1) the development of novel radicals, (2) design of activatable photosensitizers based on the TME and light, and (3) photocatalytic NADH oxidation to damage the mitochondrial electron transport chain. Additionally, the new mechanisms for PDT are also presented as an inspiration for the design of novel PSs. Finally, we discuss the current challenges and future prospects in the clinical practice of these innovative strategies. It is hoped that this review will provide a new angle for understanding the relationship between the intratumoural redox environment and PDT mechanisms, and new ideas for the future development of smart PDT systems.
Collapse
Affiliation(s)
- Xia Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jinlei Peng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chi Meng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Song C, Bai X, Li B, Dang Y, Yu S. Photoexcited Palladium-Catalyzed Deracemization of Allenes. J Am Chem Soc 2024. [PMID: 39024194 DOI: 10.1021/jacs.4c07126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The different enantiomers of specific chiral molecules frequently exhibit disparate biological, physiological, or pharmacological properties. Therefore, the efficient synthesis of single enantiomers is of particular importance not only to the pharmaceutical sector but also to other industrial sectors, such as agrochemical and fine chemical industries. Deracemization, a process during which a racemic mixture is converted into a nonracemic product with 100% atom economy and theoretical yield, is the most straightforward method to access enantioenriched molecules but a challenging task due to a decrease in entropy and microscopic reversibility. Axially chiral allenes bear a distinctive structure of two orthogonal cumulative π-systems and are acknowledged as synthetically versatile synthons in organic synthesis. The selective creation of axially chiral allenes with high optical purity under mild reaction conditions has always been a very popular and hot topic in organic synthesis but remains challenging. Herein, a photoexcited palladium-catalyzed deracemization of nonprefunctionalized disubstituted allenes is disclosed. This method provides an efficient and economical strategy to accommodate a broad scope of allenes with good enantioselectivities and yields (53 examples, up to 96% yield and 95% ee). The use of a suitable chiral palladium complex with visible light irradiation is an essential factor in achieving this transformation. A metal-to-ligand charge transfer mechanism was proposed based on control experiments and density functional theory calculations. Quantum mechanical studies implicate dual modes of asymmetric induction behind our new protocol: (1) sterically controlled stereoselective binding of one allene enantiomer under the ground-state and (2) facile, noncovalent interaction-driven excited-state isomerization toward the opposite enantiomer. The success of this newly established photochemical deracemization strategy should provide inspiration for expansion to other multisubstituted allenes and will open up a new mode for enantioselective excited-state palladium catalysis.
Collapse
Affiliation(s)
- Changhua Song
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangbin Bai
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Shu L, Dong X, Sun ZH, Zhao A, Jiang M, Ren X, Yan F, Cao K, Liu Q, Liu H. Photoinduced Pd-Catalyzed Intramolecular 6- endo Heck Reaction of Alkyl Halides. Org Lett 2024; 26:5719-5724. [PMID: 38941533 DOI: 10.1021/acs.orglett.4c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
A novel photocatalytic palladium-induced 6-endo-selective alkyl Heck reaction of unactivated alkyl iodides and alkyl bromides has been described. This strategy facilitates the gentle and efficient synthesis of a variety of 5-phenyl-1,2,3,6-tetrahydropyridine derivatives. It demonstrates a broad substrate tolerance and excellent 6-endo selectivity. Unlike the high-temperature requirements of traditional alkyl Heck reactions, this transformation efficiently proceeds at room temperature and shows significant promise for industrial-scale applications. Mechanistic investigations reveal that this alkyl Heck reaction proceeds via a hybrid palladium-radical process.
Collapse
Affiliation(s)
- Long Shu
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Xu Dong
- School of Pharmacy, Qilu Medical University, 1678 West Renmin Road, Zibo 255300, China
| | - Ze-Hua Sun
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Anxin Zhao
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Mengyao Jiang
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Xiaomin Ren
- Shinva Medical Instrument Co., Ltd., 99 Beixin Road, Sibaoshan Street, Zibo 255000, China
| | - Fachao Yan
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Kai Cao
- Pharmacy Department, Zibo Central Hospital, 54 West Gongqingtuan Road, Zibo 255036, China
| | - Qing Liu
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| | - Hui Liu
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China
| |
Collapse
|
15
|
Yamada K, Cheung KPS, Gevorgyan V. General Regio- and Diastereoselective Allylic C-H Oxygenation of Internal Alkenes. J Am Chem Soc 2024; 146:18218-18223. [PMID: 38922638 DOI: 10.1021/jacs.4c06421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Branched allylic esters and carboxylates are fundamental motifs prevalent in natural products and drug molecules. The direct allylic C-H oxygenation of internal alkenes represents one of the most straightforward approaches, bypassing the requirement for an allylic leaving group as in the classical Tsuji-Trost reaction. However, current methods suffer from limited scope─often accompanied by selectivity issues─thus hampering further development. Herein we report a photocatalytic platform as a general solution to these problems, enabling the coupling of diverse internal alkenes with carboxylic acids, alcohols, and other O-nucleophiles, typically in a highly regio- and diastereoselective manner.
Collapse
Affiliation(s)
- Kyohei Yamada
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| |
Collapse
|
16
|
Zhan X, Nie Z, Li N, Zhou A, Lv H, Liang M, Wu K, Cheng GJ, Yin Q. Catalytic Asymmetric Cascade Dearomatization of Indoles via a Photoinduced Pd-Catalyzed 1,2-Bisfunctionalization of Butadienes. Angew Chem Int Ed Engl 2024; 63:e202404388. [PMID: 38641988 DOI: 10.1002/anie.202404388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Photoinduced Pd-catalyzed bisfunctionalization of butadienes with a readily available organic halide and a nucleophile represents an emerging and attractive method to assemble versatile alkenes bearing various functional groups at the allylic position. However, enantiocontrol and/or diastereocontrol in the C-C or C-X bond-formation step have not been solved due to the open-shell process. Herein, we present a cascade asymmetric dearomatization reaction of indoles via photoexcited Pd-catalyzed 1,2-biscarbonfunctionalization of 1,3-butadienes, wherein asymmetric control on both the nucleophile and electrophile part is achieved for the first time in photoinduced bisfunctionalization of butadienes. This method delivers structurally novel chiral spiroindolenines bearing two contiguous stereogenic centers with high diastereomeric ratios (up to >20 : 1 dr) and good to excellent enantiomeric ratios (up to 97 : 3 er). Experimental and computational studies of the mechanism have confirmed a radical pathway involving excited-state palladium catalysis. The alignment and non-covalent interactions between the substrate and the catalyst were found to be essential for stereocontrol.
Collapse
Affiliation(s)
- Xiaohang Zhan
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Zhiwen Nie
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Na Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, P. R. China
| | - Ao Zhou
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Haotian Lv
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Mingrong Liang
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Keqin Wu
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, P. R. China
| | - Qin Yin
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| |
Collapse
|
17
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
18
|
Buss S, Ketter L, Brünink D, Schwab D, Klenner S, Hepp A, Kösters J, Schmidt TJ, Pöttgen R, Doltsinis NL, Strassert CA. Antiprotozoal Pt(II) Complexes as Luminophores Bearing Monodentate P/As/Sb-Based Donors: An X-ray Diffractometric, Photoluminescence, and 121Sb- Mössbauer Spectroscopic Study with TD-DFT-Guided Interpretation and Predictive Extrapolation toward Bi. Inorg Chem 2024; 63:10114-10126. [PMID: 38780307 DOI: 10.1021/acs.inorgchem.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this study, it is demonstrated that the radiative rate constant of phosphorescent metal complexes can be substantially enhanced using monodentate ancillary ligands containing heavy donor atoms. Thus, the chlorido coligand from a Pt(II) complex bearing a monoanionic tridentate C^N*N luminophore ([PtLCl]) was replaced by triphenylphosphane (PPh3) and its heavier pnictogen congeners (i.e., PnPh3 to yield [PtL(PnPh3)]). Due to the high tridentate-ligand-centered character of the excited states, the P-related radiative rate is rather low while showing a significant boost upon replacement of the P donor by heavier As- and Sb-based units. The syntheses of the three complexes containing PPh3, AsPh3, and SbPh3 were completed by unambiguous characterization of the clean products using exact mass spectrometry, X-ray diffractometry, bidimensional NMR, and 121Sb-Mössbauer spectroscopy (for [PtL(SbPh3)]) as well as steady state and time-resolved photoluminescence spectroscopies. Hence, it was shown that the hybridization defects of the Vth main-group atoms can be overcome by complexation with the Pt center. Notably, the enhancement of the radiative rate constants mediated by heavier coligands was achieved without significantly influencing the character of the excited states. A rationalization of the results was achieved by TD-DFT. Even though the Bi-based homologue was not accessible due to phenylation side reactions, the experimental data allowed a reasonable extrapolation of the structural features whereas the hybridization defects and the excited state properties related to the Bi-species and its phosphorescence rate can be predicted by theory. The three complexes showed an interesting antiprotozoal activity, which was unexpectedly notorious for the P-containing complex. This work could pave the road toward new efficient materials for optoelectronics and novel antiparasitic drugs.
Collapse
Affiliation(s)
- Stefan Buss
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
- CeNTech, CiMIC, SoN - Heisenbergstraße 11, Münster 48149, Germany
| | - Lukas Ketter
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
- CeNTech, CiMIC, SoN - Heisenbergstraße 11, Münster 48149, Germany
| | - Dana Brünink
- Institut für Festkörpertheorie, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
- Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| | - Dominik Schwab
- Institut für Festkörpertheorie, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
- Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| | - Steffen Klenner
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Thomas J Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry, Universität Münster, Corrensstraße 48, Münster 48149, Germany
| | - Rainer Pöttgen
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Nikos L Doltsinis
- Institut für Festkörpertheorie, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
- Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie - Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
- CeNTech, CiMIC, SoN - Heisenbergstraße 11, Münster 48149, Germany
| |
Collapse
|
19
|
Wei Y, Xie XY, Liu J, Liu X, Zhang B, Chen XY, Li SJ, Lan Y, Hong K. Palladium-Catalyzed Cascade Heck Coupling and Allylboration of Iododiboron Compounds via Diboryl Radicals. Angew Chem Int Ed Engl 2024; 63:e202401050. [PMID: 38444397 DOI: 10.1002/anie.202401050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Geminal bis(boronates) are versatile synthetic building blocks in organic chemistry. The fact that they predominantly serve as nucleophiles in the previous reports, however, has restrained their synthetic potential. Herein we disclose the ambiphilic reactivity of α-halogenated geminal bis(boronates), of which the first catalytic utilization was accomplished by merging a formal Heck cross-coupling with a highly diastereoselective allylboration of aldehydes or imines, providing a new avenue for rapid assembly of polyfunctionalized boron-containing compounds. We demonstrated that this cascade reaction is highly efficient and compatible with various functional groups, and a wide range of heterocycles. In contrast to a classical Pd(0/II) scenario, mechanistic experiments and DFT calculations have provided strong evidence for a catalytic cycle involving Pd(I)/diboryl carbon radical intermediates.
Collapse
Affiliation(s)
- Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Yu Xie
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jiabin Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoxiao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bo Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
20
|
Zhou Y, Wang Y, Xu P, Han W, Xiong HY, Zhang G. Synthesis of Indolyl Phenyl Diketones through Visible-Light-Promoted Ni-Catalyzed Intramolecular Cyclization/Oxidation Sequence of Ynones. ACS ORGANIC & INORGANIC AU 2024; 4:241-247. [PMID: 38585509 PMCID: PMC10995934 DOI: 10.1021/acsorginorgau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 04/09/2024]
Abstract
The combination of visible light catalysis and Ni catalysis has enabled the synthesis of indolyl phenyl diketones through the cyclization/oxidation process of ynones. This reaction proceeded under mild and base-free conditions and showed a broad scope and feasibility for gram-scale synthesis. Several natural products and biologically interesting molecules could be readily postfunctionalized by this method.
Collapse
Affiliation(s)
- Yufeng Zhou
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Yaping Wang
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Peidong Xu
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Weiwei Han
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Heng-Ying Xiong
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Guangwu Zhang
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| |
Collapse
|
21
|
Shimosato J, Sawamura M, Masuda Y. Photoinduced Platinum-Catalyzed Reductive Allylation of α-Diketones with Allylic Carbonates. Org Lett 2024; 26:2023-2028. [PMID: 38422050 DOI: 10.1021/acs.orglett.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A unique process for the photoinduced platinum-catalyzed reductive allylation of α-diketones with allylic carbonates has been developed. This allylation reaction was found to proceed selectively at the more electron-deficient carbonyl group of the diketone to afford an α-keto homoallylic alcohol. Such products could be further derivatized by transformation of the remaining carbonyl group. A mechanistic investigation suggests that a ketyl radical generated in response to photoirradiation reacts with a (π-allyl)platinum complex to form a C-C bond.
Collapse
Affiliation(s)
- Junpei Shimosato
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yusuke Masuda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
22
|
Ghosal S, Das A, Roy D, Dasgupta J. Tuning light-driven oxidation of styrene inside water-soluble nanocages. Nat Commun 2024; 15:1810. [PMID: 38418497 PMCID: PMC10902312 DOI: 10.1038/s41467-024-45991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Selective functionalization of innate sp2 C-H bonds under ambient conditions is a grand synthetic challenge in organic chemistry. Here we combine host-guest charge transfer-based photoredox chemistry with supramolecular nano-confinement to achieve selective carbonylation of styrene by tuning the dioxygen concentration. We observe exclusive photocatalytic formation of benzaldehyde under excess O2 (>1 atm) while Markovnikov addition of water produced acetophenone in deoxygenated condition upon photoexcitation of confined styrene molecules inside a water-soluble cationic nanocage. Further by careful tuning of the nanocage size, electronics, and guest preorganization, we demonstrate rate enhancement of benzaldehyde formation and a complete switchover to the anti-Markovnikov product, 2-phenylethan-1-ol, in the absence of O2. Raman spectroscopy, 2D 1H-1H NMR correlation experiments, and transient absorption spectroscopy establish that the site-selective control on the confined photoredox chemistry originates from an optimal preorganization of styrene molecules inside the cavity. We envision that the demonstrated host-guest charge transfer photoredox paradigm in combination with green atom-transfer reagents will enable a broad range of sp2 carbon-site functionalization.
Collapse
Affiliation(s)
- Souvik Ghosal
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai, 400005, India
| | - Ankita Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai, 400005, India
| | - Debojyoti Roy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai, 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai, 400005, India.
| |
Collapse
|
23
|
Sarkar S, Cheung KPS, Gevorgyan V. Recent Advances in Visible Light Induced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311972. [PMID: 37957126 PMCID: PMC10922525 DOI: 10.1002/anie.202311972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Visible light-induced Pd catalysis has emerged as a promising subfield of photocatalysis. The hybrid nature of Pd radical species has enabled a wide array of radical-based transformations otherwise challenging or unknown via conventional Pd chemistry. In parallel to the ongoing pursuit of alternative, readily available radical precursors, notable discoveries have demonstrated that photoexcitation can alter not only oxidative addition but also other elementary steps. This Minireview highlights the recent progress in this area.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| |
Collapse
|
24
|
Azpilcueta-Nicolas CR, Lumb JP. Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters. Beilstein J Org Chem 2024; 20:346-378. [PMID: 38410775 PMCID: PMC10896223 DOI: 10.3762/bjoc.20.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Due to their ease of preparation, stability, and diverse reactivity, N-hydroxyphthalimide (NHPI) esters have found many applications as radical precursors. Mechanistically, NHPI esters undergo a reductive decarboxylative fragmentation to provide a substrate radical capable of engaging in diverse transformations. Their reduction via single-electron transfer (SET) can occur under thermal, photochemical, or electrochemical conditions and can be influenced by a number of factors, including the nature of the electron donor, the use of Brønsted and Lewis acids, and the possibility of forming charge-transfer complexes. Such versatility creates many opportunities to influence the reaction conditions, providing a number of parameters with which to control reactivity. In this perspective, we provide an overview of the different mechanisms for radical reactions involving NHPI esters, with an emphasis on recent applications in radical additions, cyclizations and decarboxylative cross-coupling reactions. Within these reaction classes, we discuss the utility of the NHPI esters, with an eye towards their continued development in complexity-generating transformations.
Collapse
Affiliation(s)
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
25
|
Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Energy transfer photocatalysis: exciting modes of reactivity. Chem Soc Rev 2024; 53:1068-1089. [PMID: 38168974 DOI: 10.1039/d3cs00190c] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Excited (triplet) states offer a myriad of attractive synthetic pathways, including cycloadditions, selective homolytic bond cleavages and strain-release chemistry, isomerizations, deracemizations, or the fusion with metal catalysis. Recent years have seen enormous advantages in enabling these reactivity modes through visible-light-mediated triplet-triplet energy transfer catalysis (TTEnT). This tutorial review provides an overview of this emerging strategy for synthesizing sought-after organic motifs in a mild, selective, and sustainable manner. Building on the photophysical foundations of energy transfer, this review also discusses catalyst design, as well as the challenges and opportunities of energy transfer catalysis.
Collapse
Affiliation(s)
- Subhabrata Dutta
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Johannes E Erchinger
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Felix Strieth-Kalthoff
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Roman Kleinmans
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
26
|
Kancherla R, Muralirajan K, Dutta S, Pal K, Li B, Maity B, Cavallo L, Rueping M. Photoexcitation of Distinct Divalent Palladium Complexes in Cross-Coupling Amination Under Air. Angew Chem Int Ed Engl 2024; 63:e202314508. [PMID: 37956272 DOI: 10.1002/anie.202314508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The development of metal complexes that function as both photocatalyst and cross-coupling catalyst remains a challenging research topic. So far, progress has been shown in palladium(0) excited-state transition metal catalysis for the construction of carbon-carbon bonds where the oxidative addition of alkyl/aryl halides to zero-valent palladium (Pd0 ) is achievable at room temperature. In contrast, the analogous process with divalent palladium (PdII ) is uphill and endothermic. For the first time, we report that divalent palladium can act as a light-absorbing species that undergoes double excitation to realize carbon-nitrogen (C-N) cross-couplings under air. Differently substituted aryl halides can be applied in the mild, and selective cross-coupling amination using palladium acetate as both photocatalyst and cross-coupling catalyst at room temperature. Density functional theory studies supported by mechanistic investigations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuntal Pal
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bo Li
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
27
|
Paul S, Panja S, Hazra N, Gayen K, Banerjee A. Carbon Dot as Visible-Light Photoredox Catalysts for a Myriad of Organic Transformations. J Org Chem 2024; 89:91-100. [PMID: 38113131 DOI: 10.1021/acs.joc.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Metal-free catalysts for various organic transformations are of high demand now. In this study, we present a new carbon dot as an efficient metal-free nanophotocatalyst for carrying out a series of organic bond formation reactions. Using a single photocatalyst carbon dot, Csp2-Csp2, Csp2-B, Csp2-S, Csp2-Se, and C-P bond formation reactions were performed with a high yield of the corresponding products. Moreover, Csp2-H activation of the aromatic ring was achieved by merging the carbon dot photocatalyst with a transition metal. Interestingly, these carbon nanodot-based catalysts show good recyclability a few times without any significant loss of catalytic activity. The development of catalytic systems based on carbon dots has its merits vested in the advantageous properties of this nanomaterial, such as a robust chemical nature and cheap cost of preparation. This report demonstrates that a carbon dot indeed holds the potential to replace expensive metal-based catalysts as well as organic dyes in five different photoredox reactions.
Collapse
Affiliation(s)
- Subir Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subir Panja
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Niladri Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kousik Gayen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
28
|
Waddell PM, Tian L, Scavuzzo AR, Venigalla L, Scholes GD, Carrow BP. Visible light-induced palladium-carbon bond weakening in catalytically relevant T-shaped complexes. Chem Sci 2023; 14:14217-14228. [PMID: 38098701 PMCID: PMC10717500 DOI: 10.1039/d3sc02588h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Triggering one-electron redox processes during palladium catalysis holds the potential to unlock new reaction mechanisms and synthetic methods not previously accessible in the typical two-electron reaction manifolds that dominate palladium catalysis. We report that T-shaped organopalladium(ii) complexes coordinated by a bulky monophosphine, a class of organometallic intermediate featured in a range of contemporary catalytic reactions, undergo blue light-promoted bond weakening leading to mild and efficient homolytic cleavage of strong Pd(ii)-C(sp3) bonds under ambient conditions. The origin of light-triggered radical formation in these systems, which lack an obvious ligand-based chromophore (i.e., π-systems), was investigated using a combination of DFT calculations, photoactinometry, and transient absorption spectroscopy. The available data suggest T-shaped organopalladium(ii) complexes manifest unusual blue light-accessible Pd-to-C(sp3) transition. The quantum efficiency and excited state lifetime of this process were unexpectedly superior compared to a prototypical (α-diimine)Pd(ii) complex featuring a low-lying, ligand-centered LUMO (π*). These results suggest coordinatively-unsaturated organopalladium(ii) compounds, catalysts in myriad catalytic processes, have untapped potential for one-electron reactivity under visible light excitation.
Collapse
Affiliation(s)
- Peter M Waddell
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Lei Tian
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | - Lalu Venigalla
- Department of Chemistry, University of Houston Houston TX 77204 USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Brad P Carrow
- Department of Chemistry, University of Houston Houston TX 77204 USA
| |
Collapse
|
29
|
Peng LY, Pan GN, Chen WK, Liu XY, Fang WH, Cui G. Photocatalytic Reduction of CO 2 to HCOOH and CO by a Phosphine-Bipyridine-Phosphine Ir(III) Catalyst: Photophysics, Nonadiabatic Effects, Mechanism, and Selectivity. Angew Chem Int Ed Engl 2023:e202315300. [PMID: 38085965 DOI: 10.1002/anie.202315300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 12/23/2023]
Abstract
Photocatalytic CO2 reduction is one of the best solutions to solve the global energy crisis and to realize carbon neutralization. The tetradentate phosphine-bipyridine (bpy)-phosphine (PNNP)-type Ir(III) photocatalyst, Mes-IrPCY2, was reported with a high HCOOH selectivity but the photocatalytic mechanism remains elusive. Herein, we employ electronic structure methods in combination with radiative, nonradiative, and electron transfer rate calculations, to explore the entire photocatalytic cycle to either HCOOH or CO, based on which a new mechanistic scenario is proposed. The catalytic reduction reaction starts from the generation of the precursor metal-to-ligand charge transfer (3 MLCT) state. Subsequently, the divergence happens from the 3 MLCT state, the single electron transfer (SET) and deprotonation process lead to the formation of one-electron-reduced species and Ir(I) species, which initiate the reduction reaction to HCOOH and CO, respectively. Interestingly, the efficient occurrence of proton or electron transfer reduces barriers of critical steps. In addition, nonadiabatic transitions play a nonnegligible role in the cycle. We suggest a lower free-energy barrier in the reaction-limiting step and the very efficient SET in 3 MLCT are cooperatively responsible for a high HCOOH selectivity. The gained mechanistic insights could help chemists to understand, regulate, and design photocatalytic CO2 reduction reaction of similar function-integrated molecular photocatalyst.
Collapse
Affiliation(s)
- Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guang-Ning Pan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
30
|
Jordan R, Maisuls I, Nair SS, Dietzek-Ivanšić B, Strassert CA, Klein A. Enhanced luminescence properties through heavy ancillary ligands in [Pt(C^N^C)(L)] complexes, L = AsPh 3 and SbPh 3. Dalton Trans 2023. [PMID: 38013458 DOI: 10.1039/d3dt03225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In the frame of our research aiming to develop efficient triplet-emitting materials, we are exploring the concept of introducing additional heavy atoms into cyclometalated transition metal complexes to enhance intersystem-crossing (ISC) and thus triplet emission through increased spin-orbit coupling (SOC). In an in-depth proof-of-principle study we investigated the double cyclometalated Pt(II) complexes [Pt(C^N^C)(PnPh3)] (HC^N^CH = 2,6-diphenyl-pyridine (H2dpp) or dibenzoacridine (H2dba); Pn = pnictogen atoms P, As, Sb, or Bi) through a combined experimental and theoretical approach. The derivatives containing Pn = P, As, and Sb were synthesised and characterised comprehensively using single crystal X-ray diffraction (scXRD), UV-vis absorption and emission spectroscopy, transient absorption (TA) spectroscopy and cyclic voltammetry (CV). Across the series P < As < Sb, a red-shift is observed concerning absorption and emission maxima as well as optical and electrochemical HOMO-LUMO gaps. Increased photoluminescence quantum yields ΦL and radiative rates kr from mixed metal-to-ligand charge transfer (MLCT)/ligand centred (LC) triplet states are observed for the heavier homologues. Transient absorption spectroscopy showed processes in the ps range that were assigned to the population of the T1 state by ISC. The heavy PnPh3 ancillary ligands are found to enhance the emission efficiency due to both higher Pt-Pn bond strength and stronger SOC related to increased MLCT character of the excited states. The experimental findings are mirrored in hybrid (TD-)DFT calculations. This allowed for extrapolation to the rather elusive Bi derivatives, which were synthetically not accessible. This shortcoming is attributed to the transmetalation of phenyl groups from BiPh3 to Pt, as supported by experimental NMR/MS as well as DFT studies.
Collapse
Affiliation(s)
- Rose Jordan
- University of Cologne, Faculty for Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, D-50939 Köln, Germany.
| | - Iván Maisuls
- Universität Münster, Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech, Heisenbergstraße 11, D-48149 Münster, Germany.
| | - Shruthi S Nair
- Friedrich Schiller University Jena, Institute for Physical Chemistry (IPC), Helmholtzweg 4, 07743 Jena, Germany.
- Leibniz Institute for Photonic Technologies Jena (IPHT), Research Department Functional Interfaces, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Benjamin Dietzek-Ivanšić
- Friedrich Schiller University Jena, Institute for Physical Chemistry (IPC), Helmholtzweg 4, 07743 Jena, Germany.
- Leibniz Institute for Photonic Technologies Jena (IPHT), Research Department Functional Interfaces, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Cristian A Strassert
- Universität Münster, Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech, Heisenbergstraße 11, D-48149 Münster, Germany.
| | - Axel Klein
- University of Cologne, Faculty for Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, D-50939 Köln, Germany.
| |
Collapse
|
31
|
Huang J, Li X, Wei Y, Lei Z, Xu L. Organoboron/iodide-catalyzed photoredox N-functionalization of NH-sulfoximines/sulfonimidamides. Chem Commun (Camb) 2023; 59:13643-13646. [PMID: 37905454 DOI: 10.1039/d3cc04351g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An aminoquinolate diarylboron (AQDAB) and tetrabutylammonium iodide (TBAI) co-catalyzed photoredox process for N-functionalization of NH-sulfoximines/sulfonimidamides has been successfully developed. This protocol can afford the corresponding N-sulfenylated and N-phosphonylated products in good to excellent yields under conditions without metallic (photo)catalysts, external oxidants, or acidic/basic additives. A wide range of functional groups are tolerated, and the N-phosphonylated products of NH-sulfonimidamides have been reported for the first time.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
| | - Xiaoman Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
| | - Zhigang Lei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 266, Beijing 100029, China.
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
| |
Collapse
|
32
|
Wang ZY, Cai XE, Zhang CC, Yang WH, Wang LT, Xu Q, Liu H, Wei WT. Photoredox and Copper Dual-Catalyzed Cyclization of Alkyne-tethered α-Bromocarbonyls. Chem Asian J 2023; 18:e202300606. [PMID: 37500593 DOI: 10.1002/asia.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The synergistic systems of photoredox and copper catalyst have already appeared as a novel formation of green synthetic chemistry, which open new avenues for chemical synthesis applications. We describe a novel strategy for the cyclization of alkyne-tethered α-bromocarbonyls initiated by the cleavage of C(sp3 )-Br bond via the collaboration of photoredox and copper catalyst. The present protocol exhibits mildness using economical copper catalyst and visible-light at room temperature. The gram-scale and sunlight irradiation experiments proceeded smoothly to show the practicality of the methodology. It is notable that the newly generated oxygen in the product originates from H2 O.
Collapse
Affiliation(s)
- Zi-Ying Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Can-Can Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wen-Hui Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Qing Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
33
|
Rivas M, Debnath S, Giri S, Noffel YM, Sun X, Gevorgyan V. One-Pot Formal Carboradiofluorination of Alkenes: A Toolkit for Positron Emission Tomography Imaging Probe Development. J Am Chem Soc 2023; 145:19265-19273. [PMID: 37625118 PMCID: PMC10760797 DOI: 10.1021/jacs.3c04548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
We report the first one-pot formal alkene carboradiofluorination reaction employing easily accessible alkenes as both prosthetic group precursors and coupling partners. The methodology features rapid sequential Markovnikov-selective iodofluorination and photoinduced Pd(0/I/II)-catalyzed alkyl Heck reaction as a mild and robust fluorine-18 (18F) radiochemical approach for positron emission tomography (PET) imaging probe development. A new class of prosthetic groups for PET imaging probe synthesis was isolated as iodofluorinated intermediates in moderate to excellent yields. The one-pot formal alkenylfluorination reaction was carried out to produce over 30 analogues of a wide range of bioactive molecules. Further application of the Pd(0/I/II) manifold in PET probe development was illustrated by the direct carbo(radio)fluorination of electron-rich alkenes. The methods were successfully translated to radiolabel a broad scope of medicinally relevant small molecules in generally good radiochemical conversion. The protocol was further optimized to accommodate no-carrier-added conditions with similar efficiency for future (pre)clinical translation. Moreover, the radiosynthesis of prosthetic groups was automated in a radiochemistry module to facilitate its practical use in multistep radiochemical reactions.
Collapse
Affiliation(s)
- Mónica Rivas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sashi Debnath
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sachin Giri
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yusuf M Noffel
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xiankai Sun
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
34
|
Zhang CC, Wu HL, Yu XC, Wang LT, Zhou Y, Sun YB, Wei WT. Photoinduced Copper-Catalyzed Aminoalkylation of Amino-Pendant Olefins. Org Lett 2023; 25:5862-5868. [PMID: 37534703 DOI: 10.1021/acs.orglett.3c02119] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The combination of photo and copper catalysts has emerged as a novel paradigm in organic catalysis, which provides access to the acceleration of chemical synthesis. Herein, we describe an aminoalkylation of amino-dependent olefins with maleimides through a cooperative photo/copper catalytic system. In this report, the strategy allows the generation of a broad complex of functionalized nitrogenous molecules including oxazolidinones, 2-pyrrolidones, imidazolidinones, thiazolidinones, pyridines, and piperidines in the absence of an external photosensitizer and base. The approach is achieved through a photoinduced Cu(I)/Cu(II)/Cu(III) complex species of nitrogen nucleophiles, intermolecular radical addition, and hydrogen atom transfer (HAT) processes. The plausible mechanism is investigated by a series of control experiments and theoretical tests, including radical scavenging experiments, deuterium labeling experiments, ultraviolet-visible absorption, and cyclic voltammetry (CV) tests.
Collapse
Affiliation(s)
- Can-Can Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xuan-Chi Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Ling-Tao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, P. R. China
| |
Collapse
|
35
|
Ali W, Saha A, Ge H, Maiti D. Photoinduced meta-Selective C-H Oxygenation of Arenes. JACS AU 2023; 3:1790-1799. [PMID: 37388693 PMCID: PMC10301684 DOI: 10.1021/jacsau.3c00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
The merger of photocatalysis and transition-metal catalysis has recently emerged as an adaptable platform for the development of innovative and environmentally benign synthetic methodologies. In contrast to classical transformation by Pd complexes, photoredox Pd catalysis operates through a radical pathway in the absence of a radical initiator. Using the synergistic merger of photoredox and Pd catalysis, we have developed a highly efficient, regioselective, and general meta-oxygenation protocol for diverse arenes under mild reaction conditions. The protocol showcases the meta-oxygenation of phenylacetic acids and biphenyl carboxylic acids/alcohols and is also amenable for a series of sulfonyls and phosphonyl-tethered arenes, irrespective of the nature and position of the substituents. Unlike thermal C-H acetoxylation which operates through the PdII/PdIV catalytic cycle, this metallaphotocatalytic C-H activation involves PdII/PdIII/PdIV intermediacy. The radical nature of the protocol is established through radical quenching experiments and EPR analysis of the reaction mixture. Furthermore, the catalytic path of this photoinduced transformation is established through control reactions, absorption spectroscopy, luminescence quenching, and kinetic studies.
Collapse
Affiliation(s)
- Wajid Ali
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Argha Saha
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Haibo Ge
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409-1061, United States
| | - Debabrata Maiti
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
36
|
Sarkar S, Ghosh S, Kurandina D, Noffel Y, Gevorgyan V. Enhanced Excited-State Hydricity of Pd-H Allows for Unusual Head-to-Tail Hydroalkenylation of Alkenes. J Am Chem Soc 2023; 145:12224-12232. [PMID: 37224263 PMCID: PMC10750326 DOI: 10.1021/jacs.3c02410] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photoinduced enhancement of hydricity of palladium hydride species enables unprecedented hydride addition-like ("hydridic") hydropalladation of electron-deficient alkenes, which allows for chemoselective head-to-tail cross-hydroalkenylation of electron-deficient and electron-rich alkenes. This mild and general protocol works with a wide range of densely functionalized and complex alkenes. Notably, this approach also allows for highly challenging cross-dimerization of electronically diverse vinyl arenes and heteroarenes.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Soumen Ghosh
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Daria Kurandina
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Yusuf Noffel
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
37
|
Tang H, Xu S, Li M, Wu L, Duan C, Luo H, Zhou B, Rao M, Qiu Y, Chen G, Yan K. Photodehydration of Ethanol Mediated by CuCl 2-Ethanol Complex. J Phys Chem Lett 2023; 14:2750-2757. [PMID: 36897319 DOI: 10.1021/acs.jpclett.2c03836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biomass ethanol is regarded as a renewable resource but it is not economically viable to transform it to high-value industrial chemicals at present. Herein, a simple, green, and low-cost CuCl2-ethanol complex is reported for ethanol dehydration to produce ethylene and acetal simultaneously with high selectivity under sunlight irradiation. Under N2 atmosphere, the generation rates of ethylene and acetal were 165 and 3672 μmol g-1 h-1, accounting for 100% in gas products and 97% in liquid products, respectively. An outstanding apparent quantum yield of 13.2% (365 nm) and the maximum conversion rate of 32% were achieved. The dehydration reactions start from the photoexcited CuCl2-ethanol complex, and then go through the energy transfer (EnT) and ligand to metal charge transfer (LMCT) mechanisms to produce ethylene and acetal, respectively. The formation energies of the CuCl2-ethanol complex and the key intermediate radicals (e.g., ·OH, CH3CH2·, and CH3CH2O·) were validated to clarify the mechanisms. Different from previous CuCl2-based oxidation and addition reactions, this work is anticipated to supply new insights into the dehydration reaction of ethanol to produce useful chemical feedstocks.
Collapse
Affiliation(s)
- Huiling Tang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Shuang Xu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Mingjie Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Liqin Wu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Chenghao Duan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Huiming Luo
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Biao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Mumin Rao
- Guangdong Energy Group Science and Technology Research Institute of Co., Ltd., Guangzhou, 510630, China
| | - Yongcai Qiu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Guangxu Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Keyou Yan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| |
Collapse
|
38
|
Upreti GC, Singh T, Khanna K, Singh A. Pd-Catalyzed Photochemical Alkylative Functionalization of C═C and C═N Bonds. J Org Chem 2023; 88:4422-4433. [PMID: 36930049 DOI: 10.1021/acs.joc.2c03028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The development of excited-state palladium-catalyzed alkylative cyclization of acrylamides and the alkylation of quinoxalinones is described. The application of a variety of primary, secondary, and tertiary unactivated alkyl halides as alkyl radical precursors and the use of a simple catalyst system are the highlights of this reactivity manifold. The reactions exhibit wide scope, occur under mild conditions, and furnish the products in excellent yields.
Collapse
Affiliation(s)
| | - Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kirti Khanna
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India.,Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
39
|
Jiang H, He XK, Jiang X, Zhao W, Lu LQ, Cheng Y, Xiao WJ. Photoinduced Cobalt-Catalyzed Desymmetrization of Dialdehydes to Access Axial Chirality. J Am Chem Soc 2023; 145:6944-6952. [PMID: 36920031 DOI: 10.1021/jacs.3c00462] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Enantioselective metallaphotoredox catalysis, which combines photoredox catalysis and asymmetric transition-metal catalysis, has become an effective approach to achieve stereoconvergence under mild conditions. Although many impressive synthetic approaches have been developed to access central chirality, the construction of axial chirality by metallaphotoredox catalysis still remains underexplored. Herein, we report two visible light-induced cobalt-catalyzed asymmetric reductive couplings of biaryl dialdehydes to synthesize axially chiral aldehydes (60 examples, up to 98% yield, >19:1 dr, and >99% ee). This protocol shows good functional group tolerance, broad substrate scope, and excellent diastereo- and enantioselectivity.
Collapse
Affiliation(s)
- Hao Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Xiang-Kui He
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wei Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430083, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430083, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430083, P. R. China
| |
Collapse
|
40
|
Zhang H, He X, Yuan XA, Yu S. Kinetic Resolution of 2-Cinnamylpyrrolines Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E → Z Isomerization. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xian He
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Dhara HN, Rakshit A, Alam T, Sahoo AK, Patel BK. Visible-Light-Mediated Solvent-Switched Photosensitizer-Free Synthesis of Polyfunctionalized Quinolines and Pyridines. Org Lett 2023; 25:471-476. [PMID: 36637219 DOI: 10.1021/acs.orglett.2c04027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A solvent (2,2,2-trifluoroethanol (TFE) vs ethyl alcohol (EtOH)) switched synthesis of quinolines and pyridines is illustrated from (E)-2-(1,3-diphenylallylidene)malononitriles via a Pd(II)-catalyzed photochemical process. The active catalyst [L2Pd(0)] generated serves as an exogenous photosensitizer. The process offers predominantly Z-alkenylated quinolines and pyridines in TFE and EtOH, respectively. Furthermore, large-scale synthesis and a few interesting post-synthetic modifications have been demonstrated.
Collapse
Affiliation(s)
- Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
42
|
Wang G, Zhang J, Hu L, Wang J, Zhu C. Polydentate hydrazones as multitasking catalysts in visible-light-induced coupling reactions of amines. Org Biomol Chem 2023; 21:754-760. [PMID: 36598776 DOI: 10.1039/d2ob02092k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Cu/hydrazone catalyst has been applied in the coupling reactions of anilines for the synthesis of diarylamines and azobenzenes. The copper complex that is formed in situ plays a double duty by harnessing photon energy as a photocatalyst and then by catalysing organometallic elementary steps as a transition metal catalyst. By the selection of hydrazones and bases, the reaction selectivity of aniline can be tuned between homo-coupling and its cross-coupling with arylboronic acid, exhibiting the great potential of such hydrazones in organic synthesis.
Collapse
Affiliation(s)
- Ganghu Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jianhua Zhang
- N.O.D topia (Guangzhou) Biotechnology Co. Ltd., Guangzhou, Guangdong 510599, PR China
| | - Legen Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jiaquan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Chunyin Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
43
|
Wang K, Bao X. Computational Understanding of Dual Gold and Photoredox-Catalyzed Regioselective Thiosulfonylation of Alkenes. J Org Chem 2023; 88:1107-1112. [PMID: 36604340 DOI: 10.1021/acs.joc.2c02565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, a computational work was carried out to gain mechanistic insights into dual gold and photoredox-catalyzed regioselective thiosulfonylation of alkenes with PhSO2SCF3. Computational results suggest that it is more favorable for the complex of Au(I) with PhSO2SCF3 (INT1), instead of an Au(I) catalyst or individual substrates, to quench the excited *[Ru]II photocatalyst in a single-electron oxidative manner to afford [Ru]III. The complexation of the Au(I) catalyst with PhSO2SCF3 could lead to a substantially lowered energy level of the lowest unoccupied molecular orbital, which may be mainly responsible for the feasibility of INT1 in quenching the excited photocatalyst. The resultant single-electron reduced complex, subsequently, is ready to undergo a S-S bond cleavage to form an Au(I)-SCF3 species and a benzenesulfonyl radical. Next, the yielded Au(I)-SCF3 species could undergo single-electron oxidation by [Ru]III to afford an Au(II) intermediate. Subsequently, the binding with an alkyl radical for the formed Au(II) species could occur to further convert to an Au(III) species, from which the final product can be furnished by a reductive elimination step and the Au(I) catalyst is regenerated. Thus, an Au(I)/Au(II)/Au(III)/Au(I) catalytic cycle is suggested to mainly account for the regioselective thiosulfonylation of alkenes.
Collapse
Affiliation(s)
- Kaifeng Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
44
|
Storozhenko OA, Festa AA, Zolotareva VA, Rybakov VB, Varlamov AV, Voskressensky LG. Photoredox-Catalyzed Chlorotrifluoromethylation of Arylallenes: Synthesis of a Trifluoromethyl Building Block. Org Lett 2023; 25:438-442. [PMID: 36625635 DOI: 10.1021/acs.orglett.2c04214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new class of trifluoromethyl building blocks─2-trifluoromethyl allyl chlorides─have been obtained through a photoredox-catalyzed chlorotrifluoromethylation of aryl allenes. The reaction proceeded in a regio- and stereoselective manner. A trifluoromethylated analog of the flunarizine drug was synthesized.
Collapse
Affiliation(s)
- Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Valeria A Zolotareva
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Victor B Rybakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
45
|
Kayanuma M. Theoretical Study of Atom-Transfer Radical Addition Reactions between Perfluoroalkyl Iodides and Styrene Using a Copper Photoredox Catalyst. J Phys Chem A 2023; 127:153-159. [PMID: 36538492 DOI: 10.1021/acs.jpca.2c07519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The reaction mechanism of atom-transfer radical addition (ATRA) reactions of perfluoroalkyl iodides with styrene using a Cu(I) photoredox catalyst was analyzed using density functional theory calculations. From among four previously mentioned mechanisms, the ligand-transfer mechanism (ligand abstraction by the radical intermediate) was shown to be most plausible. It was also suggested that the ATRA product would also be reduced by the photoexcited Cu(I) complex.
Collapse
Affiliation(s)
- Megumi Kayanuma
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
46
|
Leon F, Li C, Reynes JF, Singh VK, Lian X, Ong HC, Hum G, Sun H, García F. Mechanosynthesis and photophysics of colour-tunable photoluminescent group 13 metal complexes with sterically demanding salen and salophen ligands. Faraday Discuss 2023; 241:63-78. [PMID: 36218327 DOI: 10.1039/d2fd00117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of four photoluminescent Al and In complexes were synthesised using an environmentally-benign mechanosynthesis strategy. Sterically crowded 3,5-di-tert-butyl functionalised salophen and salen ligands and their respective complexes have been synthesised in the solid-state and fully characterised. Subsequent photophysics and electrochemistry studies of the resulting complexes suggest that these new group 13 complexes can be viable alternatives to traditional photoluminescent complexes based on expensive and low abundant noble metals. The herein-reported strategy avoids the use of organic solvents and provides a process with low environmental impact and enhanced energy efficiency.
Collapse
Affiliation(s)
- Felix Leon
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Chenfei Li
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain.
| | - Varun K Singh
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Xiao Lian
- School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Gavin Hum
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Handong Sun
- School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain.
| |
Collapse
|
47
|
Shing Cheung KP, Fang J, Mukherjee K, Mihranyan A, Gevorgyan V. Asymmetric intermolecular allylic C-H amination of alkenes with aliphatic amines. Science 2022; 378:1207-1213. [PMID: 36520916 PMCID: PMC10111612 DOI: 10.1126/science.abq1274] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aliphatic allylic amines are found in a great variety of complex and biorelevant molecules. The direct allylic C-H amination of alkenes serves as the most straightforward method toward these motifs. However, use of widely available internal alkenes with aliphatic amines in this transformation remains a synthetic challenge. In particular, palladium catalysis faces the twin challenges of inefficient coordination of Pd(II) to internal alkenes but excessively tight and therefore inhibitory coordination of Pd(II) by basic aliphatic amines. We report a general solution to these problems. The developed protocol, in contrast to a classical Pd(II/0) scenario, operates through a blue light-induced Pd(0/I/II) manifold with mild aryl bromide oxidant. This open-shell approach also enables enantio- and diastereoselective allylic C-H amination.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Jian Fang
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Kallol Mukherjee
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Andranik Mihranyan
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
- Department of Biochemistry, The University of Texas
Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
48
|
Hou L, Zhou Y, Yu H, Zhan T, Cao W, Feng X. Enantioselective Radical Addition to Ketones through Lewis Acid-Enabled Photoredox Catalysis. J Am Chem Soc 2022; 144:22140-22149. [PMID: 36414018 DOI: 10.1021/jacs.2c09691] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photocatalysis opens up a new window for carbonyl chemistry. Despite a multitude of photochemical reactions of carbonyl compounds, visible light-induced catalytic asymmetric transformations remain elusive and pose a formidable challenge. Accordingly, the development of simple, efficient, and economic catalytic systems is the ideal pursuit for chemists. Herein, we report an enantioselective radical photoaddition to ketones through a Lewis acid-enabled photoredox catalysis wherein the in situ formed chiral N,N'-dioxide/Sc(III)-ketone complex serves as a temporary photocatalyst to trigger single-electron transfer oxidation of silanes for the generation of nucleophilic radical species, including primary, secondary, and tertiary alkyl radicals, giving various enantioenriched aza-heterocycle-based tertiary alcohols in good to excellent yields and enantioselectivities. The results of electron paramagnetic resonance (EPR) and high-resolution mass spectrum (HRMS) measurements provided favorable evidence for the stereocontrolled radical addition process involved in this reaction.
Collapse
Affiliation(s)
- Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Han Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
49
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
50
|
Triplet Emitting C^N^C Cyclometalated Dibenzo[c,h]Acridine Pt(II) Complexes. Molecules 2022; 27:molecules27228054. [PMID: 36432153 PMCID: PMC9697690 DOI: 10.3390/molecules27228054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
In a series of Pt(II) complexes [Pt(dba)(L)] containing the very rigid, dianionic, bis-cyclometalating, tridentate C^N^C2− heterocyclic ligand dba2− (H2dba = dibenzo[c,h]acridine), the coligand (ancillary ligand) L = dmso, PPh3, CNtBu and Me2Imd (N,N’-dimethylimidazolydene) was varied in order to improve its luminescence properties. Beginning with the previously reported dmso complex, we synthesized the PPh3, CNtBu and Me2Imd derivatives and characterized them by elemental analysis, 1H (and 31P) NMR spectroscopy and MS. Cyclic voltammetry showed partially reversible reduction waves ranging between −1.89 and −2.10 V and increasing along the series Me2Imd < dmso ≈ PPh3 < CNtBu. With irreversible oxidation waves ranging between 0.55 (L = Me2Imd) and 1.00 V (dmso), the electrochemical gaps range between 2.65 and 2.91 eV while increasing along the series Me2Imd < CNtBu < PPh3 < dmso. All four complexes show in part vibrationally structured long-wavelength absorption bands peaking at around 530 nm. TD-DFT calculated spectra agree quite well with the experimental spectra, with only a slight redshift. The photoluminescence spectra of all four compounds are very similar. In fluid solution at 298 K, they show broad, only partially structured bands, with maxima at around 590 nm, while in frozen glassy matrices at 77 K, slightly blue-shifted (~580 nm) bands with clear vibronic progressions were found. The photoluminescence quantum yields ΦL ranged between 0.04 and 0.24, at 298 K, and between 0.80 and 0.90 at 77 K. The lifetimes τ at 298 K ranged between 60 and 14040 ns in Ar-purged solutions and increased from 17 to 43 µs at 77 K. The TD-DFT calculated emission spectra are in excellent agreement with the experimental findings. In terms of high ΦL and long τ, the dmso and PPh3 complexes outperform the CNtBu and Me2Imd derivatives. This is remarkable in view of the higher ligand strength of Me2Imd, compared with all other coligands, as concluded from the electrochemical data.
Collapse
|