1
|
Tang Z, Chowdhury IF, Yang J, Li S, Mondal AK, Wu H. Recent advances in tannic acid-based gels: Design, properties, and applications. Adv Colloid Interface Sci 2025; 339:103425. [PMID: 39970605 DOI: 10.1016/j.cis.2025.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/14/2024] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
With the flourishing of mussel-inspired chemistry, the fast-growing development for environmentally friendly materials, and the need for inexpensive and biocompatible analogues to PDA in gel design, TA has led to its gradual emergence as a research focus due to its remarkable biocompatible, renewable, sustainable and particular physicochemical properties. As a natural building block, TA can be used as a substrate or crosslinker, ensuring versatile functional polymeric networks for various applications. In this review, the design of TA-based gels is summarized in detail (i.e., different interactions such as: metal coordination, electrostatic, hydrophobic, host-guest, cation-π and π-π stacking interactions, hydrogen bonding and various reactions including: phenol-amine Michael and Schiff base, phenol-thiol Michael addition, phenol-epoxy ring opening reaction, etc.). Subsequently, TA-based gels with a variety of functionalities, including mechanical, adhesion, conductive, self-healing, UV-shielding, anti-swelling, anti-freezing, shape memory, antioxidant, antibacterial, anti-inflammatory and responsive properties are introduced in detail. Then, a summary of recent developments in the use of TA-based gels is provided, including bioelectronics, biomedicine, energy, packaging, water treatment and other fields. Finally, the difficulties that TA-based gels are currently facing are outlined, and an original yet realistic viewpoint is provided in an effort to spur future development.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ilnaz Fargul Chowdhury
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shi Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China.
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
2
|
Shi M, Liang Y, Zhang C, Li N, Li Y, Shi X, Qin Z, Jiao T. Cellulose nanofibril enhanced ionic conductive hydrogels with high stretchability, high toughness and self-adhesive ability for flexible strain sensors. Int J Biol Macromol 2025; 293:139297. [PMID: 39736292 DOI: 10.1016/j.ijbiomac.2024.139297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Preparation of ion-conductive hydrogels with excellent mechanics, good conductivity and adhesiveness is promising for flexible sensors, but remains a challenge. Here, we prepare a self-adhesive and ion-conductive hydrogel by introducing cellulose nanofibers (CNF) and ZnSO4 into a covalently-crosslinked poly (acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid) (P(AM-co-AMPS)) network. Owing to the hydrogen bonding and metal coordination interactions among P(AM-co-AMPS) chains, CNF, and Zn2+, the resulting P(AM-co-AMPS)/CNF/ZnSO4 hydrogel exhibits high stretchability (1092 %), high toughness (244 kJ m-3), and skin-like elasticity (3.53 kPa). Moreover, the hydrogel has strong adhesion with different substrates by multiple non-covalent interfacial interactions. The SO3- on AMPS and COO- on CNF largely promptes the ionic migration (Zn2+, SO42-) through electrostatic interaction and hydrogen bonding, thus the hydrogel has high ion conductivity (5.85 S m-1). Finally, this hydrogel has high strain-sensitivity in a wide strain range, exhibiting great potential applications in wearable sensors.
Collapse
Affiliation(s)
- Mengqian Shi
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ya Liang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Chengyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Yunfeng Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Xiaojiao Shi
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhihui Qin
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
3
|
Do TA, Phung Thi AT, Le TH, Do Van D, Nguyen Kim T, Nguyen QV. Cellulose Nanomaterials Functionalized with Carboxylic Group Extracted from Lignocellulosic Agricultural Waste: Isolation and Cu(II) Adsorption for Antimicrobial Application. ACS OMEGA 2025; 10:6234-6243. [PMID: 39989824 PMCID: PMC11840778 DOI: 10.1021/acsomega.4c11464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
In this study, we reported the isolation of COOH-functionalized nanocrystal cellulose from agricultural waste, particularly dragon fruit foliage (DFF), by two methods, the citric acid/HCl acid (CA) method and the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-mediated oxidation method. Chemical component quantification and physiochemical characterization techniques, such as FT-IR spectroscopy, XRD, TGA, XPS, and AFM, were employed to analyze DFF, bleached cellulose, and extracted CNs. We determined the contents of lignin and hemicellulose removed, while the signals for the cellulose contents remain the same for DFF-CA and DFF-TEMPO. The DLS, AFM, and SEM results indicated that the DFF-CA sample has a smaller average particle size (250 ± 50 nm) with a rod-like shape, compared to the DFF-TEMPO sample (600 ± 100 nm) with a fiber-like shape. Importantly, CNs extracted from DFF, including DFF-TEMPO, DFF-CA, and DFF-bleached, exhibited excellent properties for Cu (II) adsorption with a maximum adsorption of 227 mg·g-1 (for DFF-CA samples), and the adsorption is almost independent of the -COOH content. Notably, we were also able to prepare Cu-containing cellulose gels showing promising antimicrobial activity. Our work opens new possibilities for the use of unexplored cellulosic byproducts in the agricultural industry as well as potential applications of Cu-containing cellulose gels as antimicrobials.
Collapse
Affiliation(s)
- Thai Anh Do
- Department
of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,11307 Hanoi, Vietnam
| | - Anh Tuyet Phung Thi
- Institute
of Chemistry, Vietnam Academy of Science
and Technology, 18 Hoang Quoc Viet, Cau Giay,11307 Hanoi, Vietnam
| | - Thi Huong Le
- Department
of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,11307 Hanoi, Vietnam
| | - Dang Do Van
- Faculty
of Chemistry, University of Science, 19 Le Thanh Tong, Hoan Kiem ,11021 Hanoi, Vietnam
| | - Thoa Nguyen Kim
- Institute
of Biotechnology, Vietnam Academy of Science
and Technology, 18 Hoang Quoc Viet, Cau Giay, 11307 Hanoi, Vietnam
| | - Quyen Van Nguyen
- Department
of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi (USTH), Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,11307 Hanoi, Vietnam
| |
Collapse
|
4
|
Dar MA, Xie R, Liu J, Ali S, Pawar KD, Sudiana IM, Sun J. Current Paradigms and Future Challenges in Harnessing Nanocellulose for Advanced Applications in Tissue Engineering: A Critical State-of-the-Art Review for Biomedicine. Int J Mol Sci 2025; 26:1449. [PMID: 40003914 PMCID: PMC11855852 DOI: 10.3390/ijms26041449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Nanocellulose-based biomaterials are at the forefront of biomedicine, presenting innovative solutions to longstanding challenges in tissue engineering and wound repair. These advanced materials demonstrate enhanced mechanical properties and improved biocompatibility while allowing for precise tuning of drug release profiles. Recent progress in the design, fabrication, and characterization of these biomaterials underscores their transformative potential in biomedicine. Researchers are employing strategic methodologies to investigate and characterize the structure and functionality of nanocellulose in tissue engineering and wound repair. In tissue engineering, nanocellulose-based scaffolds offer transformative opportunities to replicate the complexities of native tissues, facilitating the study of drug effects on the metabolism, vascularization, and cellular behavior in engineered liver, adipose, and tumor models. Concurrently, nanocellulose has gained recognition as an advanced wound dressing material, leveraging its ability to deliver therapeutic agents via precise topical, transdermal, and systemic pathways while simultaneously promoting cellular proliferation and tissue regeneration. The inherent transparency of nanocellulose provides a unique advantage, enabling real-time monitoring of wound healing progress. Despite these advancements, significant challenges remain in the large-scale production, reproducibility, and commercial viability of nanocellulose-based biomaterials. This review not only underscores these hurdles but also outlines strategic directions for future research, including the need for bioengineering of nanocellulose-based wound dressings with scalable production and the incorporation of novel functionalities for clinical translation. By addressing these key challenges, nanocellulose has the potential to redefine biomedical material design and offer transformative solutions for unmet clinical needs in tissue engineering and beyond.
Collapse
Affiliation(s)
- Mudasir A. Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Shehbaz Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| | - Kiran D. Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur 416004, India;
| | - I Made Sudiana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM. 46, KST Soekarno, Cibinong, Bogor 16911, Indonesia;
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.D.); (J.L.); (S.A.)
| |
Collapse
|
5
|
Duan C, Zhang P, Qi M. Recent advances in the extraction of nanocellulose from lignocellulosic waste for wastewater treatment applications. Int J Biol Macromol 2025:140761. [PMID: 39922360 DOI: 10.1016/j.ijbiomac.2025.140761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Nano-cellulose is a sustainable and high-performance nanomaterial which developed as a transformative solution in different fields due to its excellent properties, including large surface area, and biodegradability. This review paper explored the different types of nano-cellulose (NC) that are Cellulose Nanocrystals, Cellulose Nano-fibers, and Bacterial NC and their distinctive characteristics that make a suitable for advanced applications and also focused on lignocellulosic materials, abundant renewable resources composed of cellulose, hemicellulose, lignin, and their complex structure, while challenging to analyze, offers significant potential for the extraction of nano-cellulose via the advanced process. Furthermore, this work emphasizes the methods used to extract the NCfrom lignocellulosic waste (LCW) and enzymatic pretreatment techniques that improve the efficiency of the process and highlight the fabrication of nano-cellulose membranes and their incorporation into wastewater treatment applications. The superior adsorption capacity and ability to remove organic pollutants, and pathogens make these membranes a capable solution to address the global water purification problems and also underscore the dual benefit of environmental sustainability. This comprehensive examination of nano-cellulose, its extraction from lignocellulosic biomass, and its application in wastewater treatment covered the way for innovations in renewable resources and green technologies.
Collapse
Affiliation(s)
- Chenxu Duan
- School of Mechanical Engineering, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China.
| | - Pan Zhang
- School of Mechanical Engineering, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China
| | - Min Qi
- School of Liquor -Brewing Engineering, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China
| |
Collapse
|
6
|
Antu UB, Roy TK, Roshid MM, Mitu PR, Barman MK, Tazry J, Trisha ZF, Bairagi G, Hossain SA, Uddin MR, Islam MS, Mahiddin NA, Al Bakky A, Ismail Z, Idris AM. Perspective of nanocellulose production, processing, and application in sustainable agriculture and soil fertility enhancement: A potential review. Int J Biol Macromol 2025; 303:140570. [PMID: 39904432 DOI: 10.1016/j.ijbiomac.2025.140570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Nanocellulose, a promising green material derived from various bio-sources, has potentiality on and off-site in the agricultural sector. Due to its special qualities, which include high strength, hydrophilicity, and biocompatibility, it is a material that may be used in a variety of industries, especially agriculture. This review explores in this article production processes, post-processing procedures, and uses of nanocellulose in soil fertility increment and sustainable agriculture. A variety of plant materials, agricultural waste, and even microbes can be used to isolate nanocellulose. Nanocellulose is produced using both top-down and bottom-up methods, each of which has benefits and limitations of its own. It can be applied as nano-biofertilizer in agriculture to enhance beneficial microbial activity, increase nutrient availability, and improve soil health. Moreover, nanocellulose can be used in fertilizer and pesticide formulations with controlled releases to increase efficacy and lessen environmental effects. Innovative approaches to sustainable agriculture are provided by nanocellulose technologies, which also support the UN's Sustainable Development Goals (SDGs), especially those pertaining to eradicating hunger and encouraging responsible consumption. Nanocellulose promotes climate action and ecosystem preservation by increasing resource efficiency and decreasing dependency on hazardous chemicals, ultimately leading to the development of a circular bioeconomy. Nonetheless, there are still issues with the high cost of production and the energy-intensive isolation procedures. Despite its various potentialities, challenges such as high production costs, environmental concerns, and regulatory issues must be addressed for nanocellulose to be widely adopted and effectively integrated into farming practices.
Collapse
Affiliation(s)
- Uttam Biswas Antu
- Department of Soil Science, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh.
| | - Tusar Kanti Roy
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna 9100, Bangladesh.
| | - Md Mustaqim Roshid
- Department of Management Studies, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Puja Rani Mitu
- Department of Botany, Khulna Govt., Mahila College, Khulna 0312, Bangladesh
| | - Manoj Kumar Barman
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Jannatun Tazry
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Zannatul Ferdause Trisha
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Goutam Bairagi
- Department of Agronomy, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Sk Arafat Hossain
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Rafiq Uddin
- Department of Soil Science, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh; East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus Terengganu, Malaysia.
| | - Nor Aida Mahiddin
- East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus Terengganu, Malaysia
| | - Abdullah Al Bakky
- Agricultural wing, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
7
|
Panda SR, S VP, Karmakar A, Koner AL. Crafting nature's wonders: nanoarchitectonics developments in bioinspired nanocellulose-based stimuli-responsive supramolecular matrices. J Mater Chem B 2025; 13:1195-1211. [PMID: 39686862 DOI: 10.1039/d4tb01814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Stimuli-responsive supramolecular assemblies have recently gained extensive attention in the biomedical field. Research focusing mainly on bioinspired functional supramolecular materials has shown great promise for potential drug delivery applications. Such materials can be engineered into 'smart' materials by utilizing various external stimuli such as pH, heat, light, and magnetic fields. Combining stimuli-responsive properties with bioinspired and biodegradable nanocellulose as a supramolecular matrix can offer a synergistic strategy for targeted and on-demand delivery of therapeutic drugs. The limitations of traditional drug delivery techniques may be greatly mitigated using this combination. In this review, we aim to provide a comprehensive overview of the recent advances in the development of stimuli-responsive nanocellulose-based drug delivery systems. Finally, we have highlighted the current challenges and future perspectives in the field, emphasizing the need for further research to overcome existing barriers and fully realize the potential of stimuli-responsive nanocellulose in drug-releasing applications. Reviewing the state-of-the-art developments and identifying critical areas for future exploration will provide valuable insights for researchers and practitioners working in nanomedicine and drug delivery, fostering the advancement of innovative and effective drug-releasing technologies.
Collapse
Affiliation(s)
- Soumya Ranjan Panda
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Vaishakh Prasad S
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Abhijit Karmakar
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
8
|
Chen W, Gan L, Xiong J, Liu G, Yang T, Zou Y, Zhang Z, Huang J. Enhancing electromechanical conversion and motion-monitoring application of pore-oriented cellulose nanocrystal/agarose aerogel modified with flexible heterojunction structures. Carbohydr Polym 2025; 348:122828. [PMID: 39562103 DOI: 10.1016/j.carbpol.2024.122828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024]
Abstract
Oriented-porous cellulose nanocrystal (CNC)-based aerogels excel in directional energy conversion but face reduced toughness, and triboelectric performance bottlenecks owing to the absence of electron acceptors. In this work, we crosslinked quaternary ammonium CNC with another flexible carboxymethyl agarose (AG-), via borate dynamic bonds, exploiting the electron-accepting traits of boron and electrophilic modifications to boost the mechanical and triboelectric performance of aerogels. These results demonstrate that the compressive resilience and modulus of CNC/AG aerogel are improved up to 70.79 % (after 10-cycle 20 % strain) and 18.77 kPa attributing to the borate cross-linking network and oriented structure. Furthermore, the electromechanical response sensitivity and output energy density of the CNC/AG aerogel increased by 6.06 times (to 7.51 V/Hz) and 28.3 times (to 1.87 W/m2), respectively. The structure characteristics of the CNC/AG aerogel reveal that the oriented structure and heterojunction of the CNC/AG aerogel with electron transfer pathways reduce dielectric losses. The COMSOL simulation also show that oriented pores increase the polarization and charge density of the CNC/AG aerogel, thereby improving the electromechanical conversion efficiency. This work offers a synergistic approach for toughening aerogels and generating heterojunctions via flexible modification, presenting significant potential for smart devices with energy-collection ability.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, Southwest University, Beibei, Chongqing 400715, China
| | - Lin Gan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, Southwest University, Beibei, Chongqing 400715, China.
| | - Jie Xiong
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Ga Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Tingting Yang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, Southwest University, Beibei, Chongqing 400715, China
| | - Yanrui Zou
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, Southwest University, Beibei, Chongqing 400715, China
| | - Zhicheng Zhang
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Materials Manufacturing, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
9
|
Ma Y, Hu Y, Yang X, Shang Q, Huang Q, Hu L, Jia P, Zhou Y. Fabrication, functionalization and applications of cellulose based aerogels: A review. Int J Biol Macromol 2025; 284:138114. [PMID: 39608549 DOI: 10.1016/j.ijbiomac.2024.138114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Cellulose based aerogels have recently gained a lot of interest in the past few years because of their sustainability, biocompatibility, biodegradability, and biosafety. Cellulose is an excellent raw material for the preparation of aerogels because of its advantages of strong renewability, low cost, good biocompatibility and easy degradation. The nanoscale cellulose can be prepared by physical, chemical and biological enzyme methods for the preparation of nanocellulose based aerogels (NCBAs). As a third-generation aerogels, NCBAs have the advantages of high porosity, large specific surface area, low density, low dielectric constant and high adsorption, which have many potential applications in adsorption, insulation, energy storage, electromagnetics, and biomedical fields. Here, the recent reported preparation technology of nano-cellulose and NCBAs were reviewed, the preparation methods of cellulose nanocrystals, cellulose nanofibers, and bacterial cellulose were highlighted. Furthermore, the research progresses of manufacturing and applications of functional cellulose hydrogels in the field of dye adsorption, oil adsorption, heavy metal ion adsorption, carbon dioxide adsorption, thermal insulation applications, energy storage, electromagnetic interference application, and biomedicine application were reported comprehensively. Further insights into the future research direction of NCBAs were provided.
Collapse
Affiliation(s)
- Yufeng Ma
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yun Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Xiao Yang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Qianqian Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| |
Collapse
|
10
|
Hang CC, Zhang C, Guan QF, Ye L, Su Y, Yu SH. Cellulose Nanofiber-Supported Electrochemical Percolation of Capacitive Nanomaterials with 0D, 1D, and 2D Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414904. [PMID: 39601230 DOI: 10.1002/adma.202414904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Cellulose nanofiber (CNF) represents a promising support material to strengthen the mechanical property of free-standing supercapacitor electrodes comprised of conducting nanomaterials. Although efforts have been focused on improving the performance of the CNF-supported electrode, the percolation of capacitive nanomaterials within the insulating CNF matrix, and its correlation with the nanomaterial's dimensionality are still underexplored. In this work, membrane supercapacitor electrodes are fabricated by incorporating CNF with 0D, 1D, and 2D capacitive nanocarbons respectively to study the impact of their dimensionality. It is found that the percolation pathway of the nanocarbons is dependent on their dimensionality. By introducing a new definition termed as electrochemical percolation threshold, the threshold weight percentages to realize effective electrochemical percolation are determined to be 60.0, 14.3, and 66.7% for 0D, 1D, and 2D nanocarbons, respectively. Increasing the weight percentage beyond the threshold typically results in improved electrochemical percolation but reduced mechanical strength, and both trends are dependent on the nanocarbon's dimensionality. The results provide guidance to design efficient and robust CNF-supported supercapacitor electrodes by controlling the dimensionality and density of the active material. The insights regarding the electrochemical percolation threshold can be applied to other energy-storage nanomaterials to advance the development of insulator-supported supercapacitors.
Collapse
Affiliation(s)
- Chen-Chen Hang
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Chao Zhang
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Qing-Fang Guan
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liqing Ye
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Yude Su
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
11
|
Wang C, Zhang X, Li Q, Hou Y, Sun M, Sun J, Lou Z, Han X, Li Y. A review of carbohydrate polymer-synthesized nanoparticles in cancer immunotherapy: Past, present and future perspectives. Int J Biol Macromol 2025; 286:138195. [PMID: 39645110 DOI: 10.1016/j.ijbiomac.2024.138195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Cancer continues to be a leading factor in mortality and tackling it has been made difficult by the development of immune escape. Furthermore, alternative treatments like surgery, chemotherapy, and radiation have been unsuccessful in eradicating cancer. Despite being effective, they have not succeeded in providing a full cancer treatment and exhibit several negative effects. The field of immunotherapy has been improved by utilizing cancer vaccines, immune checkpoint inhibitors (ICIs), and adoptive cell transfer to enhance immune responses to tumors. Nevertheless, cancer cells need to adapt and become immune to immune reactions, leading to the need for innovative treatment methods. Carbohydrate polymers and their nanoparticles have been beneficial in improving cancer immunotherapy by being customizable to specifically target the immune system. These nanoparticles can change the tumor microenvironment and accelerate immunotherapy by affecting immune cells such as T cells and dendritic cells. Incorporating both chemotherapy and phototherapy into nanoparticles can improve immunotherapy. Furthermore, besides controlling immune reactions, carbohydrate polymer nanoparticles can also be used for theranostic purposes, where they are used to image tumor cells and activate the immune system to eradicate cancer.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Xueyao Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Qiaobei Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Yuxin Hou
- Department of Ultrasonic Diagnosis, The Benxi Hospital of China Medical University, Benxi, China
| | - Minglu Sun
- Department of Ultrasonic Diagnosis, The Cancer Hospital of China Medical University, Shenyang, China
| | - Jun Sun
- Department of Intervention, the Fourth Hospital of China Medical University, Shenyang, China
| | - Zhe Lou
- Department of Cardiovascular Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Yang HB, Yue X, Liu ZX, Guan QF, Yu SH. Emerging Sustainable Structural Materials by Assembling Cellulose Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413564. [PMID: 39659095 DOI: 10.1002/adma.202413564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Under the guidance of the carbon peaking and carbon neutrality goals, the urgency for green ecological construction and the depletion of nonrenewable resources highlight the importance of the research and development of sustainable new materials. Cellulose nanofiber (CNF) is the most abundant natural nanoscale building block widely existing on Earth. CNF has unique intrinsic physical properties, such as low density, low coefficient of thermal expansion, high strength, and high modulus, which is an ideal candidate with outstanding potential for constructing sustainable materials. In recent years, CNF-based structural material has emerged as a sustainable lightweight material with properties very different from traditional structural materials. Here, to comprehensively introduce the assembly of structural materials based on CNF, it starts with an overview of different forms of CNF-based materials, including fibers, films, hydrogels, aerogels, and structural materials. Next, the challenges that need to be overcome in preparing CNF-based structural materials are discussed, their assembly methods are introduced, and an in-depth analysis of the advantages of the CNF-based hydrogel assembly strategy to fabricate structural materials is conducted. Finally, the unique properties of emerging CNF-based structural materials are summarized and concluded with an outlook on their design and functionalization, potentially paving the way toward new opportunities.
Collapse
Affiliation(s)
- Huai-Bin Yang
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Yue
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhao-Xiang Liu
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Qing-Fang Guan
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Wang H, Guo L, Wu M, Chu G, Zhu W, Song J, Guo J. The Improved Redispersibility of Cellulose Nanocrystals Using Hydroxypropyl Cellulose and Structure Color from Redispersed Cellulose Nanocrystals. Biomacromolecules 2024; 25:8006-8015. [PMID: 39546419 DOI: 10.1021/acs.biomac.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Cellulose nanocrystals (CNC) have been significantly developed as a building block material for the design of novel functional materials in many fields such as biomedicine, nanotechnology, and materials science due to their excellent optical properties, biocompatibility, and sustainability. Improving the redispersibility of CNC in the sustainable processing of nanocellulose has been a challenge because intense hydrogen bond interaction leads to irreversible aggregation, making CNC difficult to redisperse and increasing the cost of storage and transportation of CNC. Hydroxypropyl cellulose (HPC) is an important hydroxy propylated cellulose ether. As a water-soluble cellulose derivative, HPC has a polyhydroxy structure similar to that of CNC, which leads to good compatibility and high affinity between HPC and CNC. In this work, HPC of different molecular weights was comixed with CNC of different contents, which was then dried using different methods, and the dried samples were redispersed in water. The addition of HPC improved the redispersibility of the CNC. Finally, the redispersed suspension was also redried to form a film, which was found to retain its structure color. These results provide an important avenue for the redispersion of dried CNC and for the development of functional materials from redispersed CNC.
Collapse
Affiliation(s)
- Huan Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Lukuan Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mingfeng Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Guang Chu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Zheng ZJ, Ye H, Guo ZP. Bacterial Cellulose Applications in Electrochemical Energy Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412908. [PMID: 39491807 DOI: 10.1002/adma.202412908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Bacterial cellulose (BC) is produced via the fermentation of various microorganisms. It has an interconnected 3D porous network structure, strong water-locking ability, high mechanical strength, chemical stability, anti-shrinkage properties, renewability, biodegradability, and a low cost. BC-based materials and their derivatives have been utilized to fabricate advanced functional materials for electrochemical energy storage devices and flexible electronics. This review summarizes recent progress in the development of BC-related functional materials for electrochemical energy storage devices. The origin, components, and microstructure of BC are discussed, followed by the advantages of using BC in energy storage applications. Then, BC-related material design strategies in terms of solid electrolytes, binders, and separators, as well as BC-derived carbon nanofibers for electroactive materials are discussed. Finally, a short conclusion and outlook regarding current challenges and future research opportunities related to BC-based advanced functional materials for next-generation energy storage devices suggestions are proposed.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Huan Ye
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zai-Ping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
15
|
Qamar Z, Aslam AA, Fatima F, Hassan SU, Nazir MS, Ali Z, Awad SA, Khan AA. Recent development towards the novel applications and future prospects for cellulose-metal organic framework hybrid materials: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63501-63523. [PMID: 39500790 DOI: 10.1007/s11356-024-35449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
The hybrid material created by combining cellulose and MOF is highly promising and possesses a wide range of useful properties. Cellulose-based metal-organic frameworks (CelloMOFs) combine the inherent biocompatibility and sustainability of cellulose with the tunable porosity and diverse metal coordination chemistry of MOFs. Cellulose-MOF hybrids have countless applications in various fields, such as energy storage, water treatment, air filtration, gas adsorption, catalysis, and biomedicine. They are particularly remarkable as adsorbents that can eliminate pollutants from wastewater, including metals, oils, dyes, antibiotics, and drugs, and act as catalysts for oxidation and reduction reactions. Furthermore, they are highly efficient air filters, able to remove carbon dioxide, particulate matter, and volatile organic compounds. When it comes to energy storage, these hybrids have demonstrated exceptional results. They are also highly versatile in the realm of biomedicine, with applications such as antibacterial and drug delivery. This article provides an in-depth look at the fabrication methods, advanced applications of cellulose-MOF hybrids, and existing and future challenges.
Collapse
Affiliation(s)
- Zeenat Qamar
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Awais Ali Aslam
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
- Chemistry Department, University of Education Lahore, Vehari Campus, Vehari, Punjab, Pakistan
| | - Farheen Fatima
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan.
| | - Zulfiqar Ali
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sameer Ahmed Awad
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, 31001, Al-Anbar Governorate, Iraq
- Department of Chemistry, School of Science and Technology, University of New England, Armidale, 2351, NSW, Australia
| | - Aqeel Ahmad Khan
- Department of Chemical Engineering, Brunel University London, London, Uxbridge Middlesex, UB8 3PH, UK
| |
Collapse
|
16
|
Dong Y, Zou F, Vapaavuori J. Variable-transmittance bio-based phase change composites based on the photothermal property of pectin. Carbohydr Polym 2024; 343:122416. [PMID: 39174112 DOI: 10.1016/j.carbpol.2024.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
In this study, the possibility of using a natural polysaccharide, pectin, in a novel function as a photothermal material was investigated by fabricating a Pectin/Polyethylene glycol (PEG)/Poly(methyl methacrylate) (PMMA) composite via the infiltration of PEG/PMMA polymer mixture into freeze-casted pectin cryogel template. The Pectin/PEG/PMMA composite has high latent heat of 48 J/g, excellent UV blocking ability, and tailorable transmittance as well as capacity to energy storage via photothermal heating to the melting point of PEG under sunlight. The photothermal effect can be enhanced with the increase of pectin concentration and irradiation intensity. Furthermore, by using the Pectin/PEG/PMMA composite as a window of a model house could effectively reduce the temperature rise inside the house under irradiation and reduce the temperature drop after turning off the irradiation, as compared to a model house with conventional glass as the window material. Therefore, this work provides a new application of pectin as photothermal material and opens the opportunity to develop novel sustainable bio-based photothermal materials.
Collapse
Affiliation(s)
- Yujiao Dong
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Fangxin Zou
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
17
|
Gorges H, Kovalev A, Gorb SN. Structure, mechanical and adhesive properties of the cellulosic mucilage in Ocimum basilicum seeds. Acta Biomater 2024; 184:286-295. [PMID: 38964526 DOI: 10.1016/j.actbio.2024.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Plant seeds and fruits, like those of Ocimum basilicum, develop a mucilaginous envelope rich in pectins and cellulosic fibers upon hydration. This envelope promotes adhesion for attachment to soils and other substrates for dispersal and protection of the seed for a safe germination. Initially at hydration, the mucilage envelope demonstrates low adhesion and friction, but shows increasing adhesive and frictional properties during dehydration. However, the mechanisms underlying the cellulose fiber arrangement and the mechanical properties, especially the elasticity modulus of the mucilage envelope at different hydration conditions are not fully known. In this study, which is based on scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and light microscopy, the structure of the seed coat and arrangement of the cellulose fibers of basil seeds were characterized. Moreover, we performed pull-off force measurements to estimate adhesive properties and JKR-tests to estimate E-modulus of the mucilage at different hydration levels. Microscopy results demonstrate that cellulose fibers are split at their free ends into smaller fibrils, which might enhance the adhesive properties of the mucilage. Adhesive forces in contact increased during dehydration and reached maximum of 33 mN shortly before complete dehydration. The E-modulus of the mucilage changed from 1.4 KPa in water to up to 2.1 MPa in the mucilage at the maximum of its adhesion performance. Obtained results showed hydrogel-like mechanical properties during dehydration and cellulose fiber structures similar to the nanofibrous systems in other organisms with strong adhesive properties. STATEMENT OF SIGNIFICANCE: This paper reveals the hierarchical cellulose fiber structure in Ocimum basilicum's mucilaginous seed coat, suggesting increased fiber splitting towards the end, potentially enhancing adhesion contact areas. Mechanical tests explore elasticity modulus and adhesion force during various hydration stages, crucial as these properties evolve with mucilage desiccation. A rare focus on mucilaginous seed coat mechanical properties, particularly cellulose-reinforced fibers, provides insight into the hydrogel-like mucilage of plant seeds. Adhesion forces peak just before complete desiccation and then decline rapidly. As mucilage water content decreases, the E-modulus rises, displaying hydrogel-like properties during early dehydration stages with higher water content. This study might bring the focus to plant seeds as inspiration for biodegradable glues and applications for hydrogel research.
Collapse
Affiliation(s)
- Helen Gorges
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany.
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
18
|
Guan Y, Yan L, Liu H, Xu T, Chen J, Xu J, Dai L, Si C. Cellulose-derived raw materials towards advanced functional transparent papers. Carbohydr Polym 2024; 336:122109. [PMID: 38670767 DOI: 10.1016/j.carbpol.2024.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Pulp and paper are gradually transforming from a traditional industry into a new green strategic industry. In parallel, cellulose-derived transparent paper is gaining ground for the development of advanced functional materials for light management with eco-friendly, high performance, and multifunctionality. This review focuses on methods and processes for the preparation of cellulose-derived transparent papers, highlighting the characterization of raw materials linked to responses to different properties, such as optical and mechanical properties. The applications in electronic devices, energy conversion and storage, and eco-friendly packaging are also highlighted with the objective to showcase the untapped potential of cellulose-derived transparent paper, challenging the prevailing notion that paper is merely a daily life product. Finally, the challenges and propose future directions for the development of cellulose-derived transparent paper are identified.
Collapse
Affiliation(s)
- Yanhua Guan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Yan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China; Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jinghuan Chen
- National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co. Ltd., 100102 Beijing, China
| | - Jikun Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China; Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China.
| |
Collapse
|
19
|
Feng Y, Bazzar M, Hernaez M, Barreda D, Mayes AG, González Z, Melendi-Espina S. Unveiling the potential of cellulose, chitosan and polylactic acid as precursors for the production of green carbon nanofibers with controlled morphology and diameter. Int J Biol Macromol 2024; 269:132152. [PMID: 38723811 DOI: 10.1016/j.ijbiomac.2024.132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
Carbon nanofibers (CNFs) are very promising materials with application in many fields, such as sensors, filtration systems, and energy storage devices. This study aims to explore the use of eco-friendly biopolymers for CNF production, finding novel, suitable and sustainable precursors and thus prioritising environmentally conscious processes and ecological compatibility. Polymeric nanofibers (PNFs) using cellulose acetate, polylactic acid, and chitosan as precursors were successfully prepared via electrospinning. Rheological testing was performed to determine suitable solution concentrations for the production of PNFs with controlled diameter and appropriate morphology. Their dimensions and structure were found to be significantly influenced by the solution concentration and electrospinning flow rate. Subsequently, the electrospun green nanofibers were subject to stabilisation and carbonisation to convert them into CNFs. Thermal behaviour and chemical/structural changes of the nanofibers during stabilisation were investigated by means of thermogravimetric analysis and Fourier-transform infrared spectroscopy, while the final morphology of the fibers after stabilisation and carbonisation was examined through scanning electron microscopy to determine the optimal stabilisation parameters. The optimal fabrication parameters for cellulose and chitosan-based CNFs with excellent morphology and thermal stability were successfully established, providing valuable insight and methods for the sustainable and environmentally friendly synthesis of these promising materials.
Collapse
Affiliation(s)
- Yifan Feng
- School of Engineering, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Masoomeh Bazzar
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Miguel Hernaez
- School of Engineering, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Daniel Barreda
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Andrew G Mayes
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Zoraida González
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Sonia Melendi-Espina
- School of Engineering, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK.
| |
Collapse
|
20
|
Yu K, Yang L, Zhang N, Wang S, Liu H. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review. Int J Biol Macromol 2024; 272:132668. [PMID: 38821305 DOI: 10.1016/j.ijbiomac.2024.132668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
As the most abundant and renewable natural resource, cellulose has attracted significant attention and research interest for the production of hydrogels (HGs). To address environmental issues and emerging demands, the benefits of naturally produced HGs include excellent mechanical properties and superior biocompatibility. HGs are three-dimensional networks created by chemical or physical cross-linking of linear or branched hydrophilic polymers and have high capacity for absorption of water and biological fluids. Although widely used in the food and biomedical fields, most HGs are not biodegradable. Nanocellulose hydrogels (NC-HGs) have been extensively applied in the food industry for detection of freshness, chemical additives, and substitutes, as well as the biomedical field for use as bioengineering scaffolds and drug delivery systems owing to structural interchangeability and stimuli-responsive properties. In this review article, the sources, structures, and preparation methods of NC-HGs are described, applications in the food and biomedical industries are summarized, and current limitations and future trends are discussed.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China.
| | - Ning Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| |
Collapse
|
21
|
Liu H, Zhang X, Liao Y, Yu J, Liu YT, Ding B. Building-Envelope-Inspired, Thermomechanically Robust All-Fiber Ceramic Meta-Aerogel for Temperature-Controlled Dominant Infrared Camouflage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313720. [PMID: 38489784 DOI: 10.1002/adma.202313720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Indexed: 03/17/2024]
Abstract
The unsatisfactory properties of ceramic aerogels when subjected to thermal shock, such as strength degradation and structural collapse, render them unsuitable for use at large thermal gradients or prolonged exposure to extreme temperatures. Here, a building-envelope-inspired design for fabricating a thermomechanically robust all-fiber ceramic meta-aerogel with interlocked fibrous interfaces and an interwoven cellular structure in the orthogonal directions is presented, which is achieved through a two-stage physical and chemical process. Inspired by the reinforced concrete building envelope, a solid foundation composed of fibrous frames is constructed and enhanced through supramolecular in situ self-assembly to achieve high compressibility, retaining over 90% of maximum stress under a considerable compressive strain of 50% for 10 000 cycles, and showing temperature-invariance when compressed at 60% strain within the range of -100 to 500 °C. As a result of its distinct response to oscillation tolerance coupled with elastic recovery, the all-fiber ceramic meta-aerogel exhibits exceptional suitability for thermal shock resistance and infrared camouflage performance in cold (-196 °C) and hot (1300 °C) fields. This study provides an opportunity for developing ceramic aerogels for effective thermal management under extreme conditions.
Collapse
Affiliation(s)
- Hualei Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinxin Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yalong Liao
- Aerospace Institute of Advanced Material & Processing Technology, China Aerospace Science and Industry Corporation Limited, Beijing, 100074, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
22
|
Zheng D, Sun X, Sun H, Zhu Y, Zhu J, Zhu P, Yu Z, Ye Y, Zhang Y, Jiang F. Effect of hornification on the isolation of anionic cellulose nanofibrils from Kraft pulp via maleic anhydride esterification. Carbohydr Polym 2024; 333:121961. [PMID: 38494205 DOI: 10.1016/j.carbpol.2024.121961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Cellulose nanofibrils (CNF) isolation based on a catalyst-free maleic anhydride esterification has proven to be effective, however, the effects of pulp hornification on CNF isolation by this strategy have yet to be explored, which could present significant impacts for CNF isolation. Herein, dried northern bleached softwood Kraft pulp (D-NBSK) and never-dried northern bleached softwood Kraft pulp (ND-NBSK) were selected as the substrates. After esterification with maleic anhydride (MA), the esterified ND-NBSK pulp (E-ND) shows a significantly smaller size and more fragmented structure than the esterified D-NBSK pulp (E-D). Meanwhile, higher degree of esterification can be realized for the never dried pulp as compared to the dried pulp, which is corroborated by the significantly stronger characteristic peaks of CO (1720 cm-1) and -COO- (1575 cm-1) from the FTIR spectra and the higher surface charge content (0.86 ± 0.04 mmol/g vs. 0.55 ± 0.05 mmol/g). A comparison of the characteristics of the resulting CNF similarly demonstrated the negative impact of hornification. Overall, this work indicates that hornification tends to reduce the accessibility of chemical reagents to the pulp, leading to insufficient deconstruction. Such negative impact of hornification should be considered when performing nanocellulose isolation, especially when using pulp as feedstock.
Collapse
Affiliation(s)
- Dingyuan Zheng
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China; Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Hao Sun
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China; Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Penghui Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yuhang Ye
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
23
|
Wang W, Wang B, Li Y, Wang N, Xu Y, Wang C, Sun Y, Hu H. Hard Carbon Derived From Different Precursors for Sodium Storage. Chem Asian J 2024; 19:e202301146. [PMID: 38445813 DOI: 10.1002/asia.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Due to the almost unlimited resource and acceptable performance, Sodium-ion batteries (SIBs) have been regarded as a promising alternative for lithium-ion batteries (LIBs) for grid-scale energy storage. As the key material of SIBs, hard carbon (HC) plays a decisive role in determining the batteries' performance. Nevertheless, the micro-structure of HCs is quite complex and the random organization of turbostratically stacked graphene layers, closed pores, and defects make the structure-performance relationship insufficiently revealed. On the other hand, the impending large-scale deployment of SIBs leads to producing HCs with low-cost and abundant precursors actively pursued. In this work, the recent progress of preparing HCs from different precursors including biomass, polymers, and fossil fuels is summarized with close attention to the influences of precursors on the structural evolution of HCs. After a brief introduction of the structural features of HCs, the recent understanding of the structure-performance relationship of HCs for sodium storage is summarized. Then, the main focus is concentrated on the progress of producing HCs from distinct precursors. After that, the pros and cons of HCs derived from different precursors are comprehensively compared to conclude the selection rules of precursors. Finally, the further directions of HCs are deeply discussed to end this review.
Collapse
Affiliation(s)
- Wanli Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Bin Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuqi Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ning Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yujie Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chongze Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
24
|
Worku LA, Tadesse MG, Bachheti RK, Bachheti A, Husen A. Synthesis of carboxylated cellulose nanocrystal/ZnO nanohybrids using Oxytenanthera abyssinica cellulose and zinc nitrate hexahydrate for radical scavenging, photocatalytic, and antibacterial activities. Int J Biol Macromol 2024; 267:131228. [PMID: 38554923 DOI: 10.1016/j.ijbiomac.2024.131228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The extremely low antioxidant, photocatalytic, and antibacterial properties of cellulose limit its application in the biomedical and environmental sectors. To improve these properties, nanohybrides were prepared by mixing carboxylated cellulose nanocrystals (CCNCs) and zinc nitrate hexahydrate. Data from FTIR, XRD, DLS, and SEM spectra showed that, ZnO nanoparticles, with a size ranging from 94 to 351 nm and the smallest nanoparticle size of 164.18 nm, were loaded onto CCNCs. CCNCs/ZnO1 nanohybrids demonstrated superior antibacterial, photocatalytic, and antioxidant performance. More considerable antibacterial activity was shown with a zone of inhibition ranging from 26.00 ± 1.00 to 40.33 ± 2.08 mm and from 31.66 ± 3.51 to 41.33 ± 1.15 mm against Gram-positive and Gram-negative bacteria, respectively. Regarding photodegradation properties, the maximum value (∼91.52 %) of photocatalytic methylene blue degradation was observed after 75 min exposure to a UV lamp. At a concentration of 125.00 μm/ml of the CCNC/ZnO1 nanohybrids sample, 53.15 ± 1.03 % DPPH scavenging activity was obtained with an IC50 value of 117.66 μm/ml. A facile, cost-effective, one-step synthesis technique was applied to fabricate CCNCs/ZnO nanohybrids at mild temperature using Oxytenanthera abyssinica carboxylated cellulose nanocrystals as biotemplate. The result showed that CCNCs/ZnO nanohybrids possess potential applications in developing advanced functional materials for dye removal and antibacterial and antioxidant applications.
Collapse
Affiliation(s)
- Limenew Abate Worku
- Debre Tabor University, College of Natural and Computational Science, Department of Chemistry, Debre Tabor, Ethiopia
| | - Mesfin Getachew Tadesse
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box: 16417, Addis Ababa, Ethiopia
| | - Rakesh Kumar Bachheti
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box: 16417, Addis Ababa, Ethiopia; Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun 248002, Uttarakhand, India.
| | - Archana Bachheti
- Department of Environment Science, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Azamal Husen
- Department of Biotechnology, Smt. S. S. Patel Nootan Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India; Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia
| |
Collapse
|
25
|
Tang Z, Lin X, Yu M, Yang J, Li S, Mondal AK, Wu H. A review of cellulose-based catechol-containing functional materials for advanced applications. Int J Biol Macromol 2024; 266:131243. [PMID: 38554917 DOI: 10.1016/j.ijbiomac.2024.131243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shiqian Li
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
26
|
Ding J, Yang Y, Poisson J, He Y, Zhang H, Zhang Y, Bao Y, Chen S, Chen YM, Zhang K. Recent Advances in Biopolymer-Based Hydrogel Electrolytes for Flexible Supercapacitors. ACS ENERGY LETTERS 2024; 9:1803-1825. [PMID: 38633997 PMCID: PMC11019642 DOI: 10.1021/acsenergylett.3c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
Growing concern regarding the impact of fossil fuels has led to demands for the development of green and renewable materials for advanced electrochemical energy storage devices. Biopolymers with unique hierarchical structures and physicochemical properties, serving as an appealing platform for the advancement of sustainable energy, have found widespread application in the gel electrolytes of supercapacitors. In this Review, we outline the structure and characteristics of various biopolymers, discuss the proposed mechanisms and assess the evaluation metrics of gel electrolytes in supercapacitor devices, and further analyze the roles of biopolymer materials in this context. The state-of-the-art electrochemical performance of biopolymer-based hydrogel electrolytes for supercapacitors and their multiple functionalities are summarized, while underscoring the current technical challenges and potential solutions. This Review is intended to offer a thorough overview of recent developments in biopolymer-based hydrogel electrolytes, highlighting research concerning green and sustainable energy storage devices and potential avenues for further development.
Collapse
Affiliation(s)
- Jiansen Ding
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Yang Yang
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jade Poisson
- Sustainable
Materials and Chemistry, University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany
| | - Yuan He
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Hua Zhang
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Nanchang 330022, P. R. China
| | - Ying Zhang
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Yulan Bao
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Nanchang 330022, P. R. China
| | - Shuiliang Chen
- College
of Chemistry and Chemical Engineering, Jiangxi
Normal University, Nanchang 330022, P. R. China
| | - Yong Mei Chen
- College
of Bioresources Chemical and Materials Engineering, National Demonstration
Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Kai Zhang
- Sustainable
Materials and Chemistry, University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Ren N, Ai Y, Yue N, Cui M, Huang R, Qi W, Su R. Shear-Induced Fabrication of Cellulose Nanofibril/Liquid Metal Nanocomposite Films for Flexible Electromagnetic Interference Shielding and Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17904-17917. [PMID: 38511485 DOI: 10.1021/acsami.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To address electromagnetic interference (EMI) pollution in modern society, the development of ultrathin, high-performance, and highly stable EMI shielding materials is highly desired. Liquid metal (LM) based conductive materials have received enormous amounts of attention. However, the processing approach of LM/polymer composites represents great challenges due to the high surface tension and cohesive energy of LMs. In this study, we develop a universal one-step fabrication strategy to directly process composites containing LMs and cellulose nanofibrils (CNFs) and successfully fabricate the ultrathin, flexible, and stable EMI shielding films with an average specific EMI shielding efficiency (EMI SE) value of 429 dB/mm and small thickness of only 70 μm in the wide frequency range of 8.2-18 GHz. In addition, the resulting films also exhibit excellent mechanical performance and flexibility, which endow the film with the ability to withstand repeated folding, bending, and folding into complex shapes without producing cracks or fractures. Besides, the resulting films display excellent thermal conductivity with a λ of 4.90 W/(m K) and an α of 3.17 mm2/s. Thus, the presented approach shows great potential in fabricating advanced materials for EMI shielding applications.
Collapse
Affiliation(s)
- Ning Ren
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yusen Ai
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ning Yue
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
28
|
Huang X, Huang R, Zhang Q, Fan J, Zhang Z, Huang J. Preparation of sustainable oxidized nanocellulose films with high UV shielding effect, high transparency and high strength. Int J Biol Macromol 2024; 263:130087. [PMID: 38342262 DOI: 10.1016/j.ijbiomac.2024.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
UV protection has become crucial as increasing environmental pollution has led to the destruction of the ozone layer, which has a weakened ability to block UV rays. In this paper, we successfully prepared cellulose-based biomass films with high UV shielding effect, high transparency and high tensile strength by graft-modifying oxidized cellulose nanocellulose (TOCN) with folic acid (FA) and borrowing vacuum-assisted filtration. The films had tunable UV shielding properties depending on the amount of FA added. When the FA addition was 20 % (V/V), the film showed 0 % transmittance in the UV region (200-400 nm) and 90.61 % transmittance in the visible region (600 nm), while the tensile strength was up to 150.04 MPa. This study provides a new integrated process for the value-added utilization of nanocellulose and a new route for the production of functional biomass packaging materials. The film is expected to be applied in the field of food packaging with UV shielding.
Collapse
Affiliation(s)
- Xuanxuan Huang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rui Huang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qian Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinlong Fan
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhaohong Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jintian Huang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
29
|
Dong X, Dai GW, Xie L, Li DL, Sun Z, Liu S. Heat-triggered shape recovery, EMI shielding and flame retardant: A novel cellulose/M(OH)(OCH 3)@dopamine@Ag (M=Co, Ni) nanopaper for early fire alarm. Int J Biol Macromol 2024; 264:130270. [PMID: 38423423 DOI: 10.1016/j.ijbiomac.2024.130270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Fire alarm systems are essential for protecting lives and properties from fire hazards. However, most of the existing fire alarm nanopapers rely on the resistance reduction after heating, which requires direct contact with the flame. In this study, we present a novel fire alarm nanopaper (CMPA) based on heat-triggered shape recovery. The CMPA is composed of hydroxypropyl methyl cellulose (HPMC) as the matrix and 2D nanomaterials M(OH)(OCH3) as fillers. When the temperature of CMPA exceeded the glass transition, the thrice-folded CMPA-1.0 flattened in 30s and connected to the alarm circuit based on its conductive surface. According to the results, the CMPA-1.0 with a thickness of about 0.2 mm had an efficient electromagnetic shielding of 42.1 dB. Moreover, the CMPA-1.0 self-extinguished rapidly after being ignited with its original shape preserved. The peak heat release rate of CMPA-1.0 was 108.9 W/g, which was 61.9 % lower than that of HPMC. Furthermore, the thermal conductivity of CMPA-1.0 reached to 0.317 W m-1 K-1, which was 40.8 % higher than that of HPMC, reducing the heat accumulation effectively. This work shows that CMPA is an ideal material for sensitive and safe early fire alarm, and the strategy based on heat-triggered shape recovery is promising in fire alarm application.
Collapse
Affiliation(s)
- Xiang Dong
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Guo-Wei Dai
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Le Xie
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - De-Long Li
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Zhiyu Sun
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Song Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
30
|
Liu P, Kong XY, Jiang L, Wen L. Ion transport in nanofluidics under external fields. Chem Soc Rev 2024; 53:2972-3001. [PMID: 38345093 DOI: 10.1039/d3cs00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.
Collapse
Affiliation(s)
- Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
31
|
Li Q, Wang F, Zhang Y, Shi M, Zhang Y, Yu H, Liu S, Li J, Tan SC, Chen W. Biopolymers for Hygroscopic Material Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209479. [PMID: 36652538 DOI: 10.1002/adma.202209479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The effective management of atmospheric water will create huge value for mankind. Diversified and sustainable biopolymers that are derived from organisms provide rich building blocks for various hygroscopic materials. Here, a comprehensive review of recent advances in developing biopolymers for hygroscopic materials is provided. It is begun with a brief introduction of species diversity and the processes of obtaining various biopolymer materials from organisms. The fabrication of hygroscopic materials is then illustrated, with a specific focus on the use of biopolymer-derived materials as substrates to produce composites and the use of biopolymers as building blocks to fabricate composite gels. Next, the representative applications of biopolymer-derived hygroscopic materials for dehumidification, atmospheric water harvesting, and power generation are systematically presented. An outlook on future challenges and key issues worthy of attention are finally provided.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Fei Wang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yaoxin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Mengjiao Shi
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
32
|
Bi J, Liu Y, Du Z, Wang K, Guan W, Wu H, Ai W, Huang W. Bottom-Up Magnesium Deposition Induced by Paper-Based Triple-Gradient Scaffolds toward Flexible Magnesium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309339. [PMID: 37918968 DOI: 10.1002/adma.202309339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Indexed: 11/04/2023]
Abstract
The development of advanced magnesium metal batteries (MMBs) has been hindered by longstanding challenges, such as the inability to induce uniform magnesium (Mg) nucleation and the inefficient utilization of Mg foil. This study introduces a novel solution in the form of a flexible, lightweight, paper-based scaffold that incorporates gradient conductivity, magnesiophilicity, and pore size. This design is achieved through an industrially adaptable papermaking process in which the ratio of carboxylated multi-walled carbon nanotubes to softwood cellulose fibers is meticulously adjusted. The triple-gradient structure of the scaffold enables the regulation of Mg ion flux, promoting bottom-up Mg deposition. Owing to its high flexibility, low thickness, and reduced density, the scaffold has potential applications in flexible and wearable electronics. Accordingly, the triple-gradient electrodes exhibit stable operation for over 1200 h at 3 mA cm-2 /3 mAh cm-2 in symmetrical cells, markedly outperforming the non-gradient and metallic Mg alternatives. Notably, this study marks the first successful fabrication of a flexible MMB pouch full cell, achieving an impressive volumetric energy density of 244 Wh L-1 . The simplicity and scalability of the triple-gradient design, which uses readily available materials through an industrially compatible papermaking process, open new doors for the production of flexible, high-energy-density metal batteries.
Collapse
Affiliation(s)
- Jingxuan Bi
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuhang Liu
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhuzhu Du
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wanqing Guan
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haiwei Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
33
|
Guo Y, Chang J, Hu L, Lu Y, Yao S, Su X, Zhang X, Zhang H, Feng J. Hollow Bowl NiS 2 @polyaniline Conductive Linker/Graphene Conductive Network: A Triple Composite for High-Performance Supercapacitor Applications. CHEMSUSCHEM 2024; 17:e202301148. [PMID: 37814172 DOI: 10.1002/cssc.202301148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The achievement of the outstanding theoretical capacitance of nickel sulfide (NiS2 ) is challenging due to its low conductivity, slow electrochemical kinetics, and poor structural stability. In this study, we utilize polyaniline (PANI) as a linker to anchor the NiS2 with a hollow bowl-like structure, uniformly dispersed at the surface of graphene oxide (GO)(NiS2 @15PG). The presence of PANI provides growth sites, resulting in a uniform and dense arrangement of NiS2 . This morphological modulation of NiS2 increases the contact area between the active material to electrolyte. Additionally, PANI effectively connects NiS2 with the conductive network of GO, which advances the electrical conductivity and ion diffusion properties. As a result, the Rct (charge transfer resistance) and Zw (Warburg impedance) of NiS2 @15PG decrease by 82.61 % and 66.76 % respectively. This unique structure confers NiS2 @15PG with high specific capacitance (536.13 C g-1 at 1 A g-1 ) and excellent multiplicative property of 60.93 % at 20 A g-1 . The assembled NiS2 @15PG//YP-50 supercapacitors (HSC) demonstrates an energy density (13.09 Wh kg-1 ) at a high-power density (16 kW kg-1 ). The capacity retention after 10,000 cycles at 5 A g-1 is 86.59 %, indicating its significant potential for practical applications.
Collapse
Affiliation(s)
- Yanming Guo
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jin Chang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Liangqing Hu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yinpeng Lu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shipeng Yao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xiaojiang Su
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Hexin Zhang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jing Feng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
34
|
Tang Z, Lin X, Yu M, Mondal AK, Wu H. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. Int J Biol Macromol 2024; 259:129081. [PMID: 38161007 DOI: 10.1016/j.ijbiomac.2023.129081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Cellulose is the richest renewable polymer source on the earth. TEMPO-mediated oxidized cellulose nanofibers are deduced from enormously available wood biomass and functionalized with carboxyl groups. The preparation procedure of TOCNFs is more environmentally friendly compared to other cellulose, for example, MFC and CNCs. Due to the presence of functional carboxyl groups, TOCNF-based materials have been studied widely in different fields, including biomedicine, wastewater treatment, bioelectronics and others. In this review, the TEMPO oxidation mechanism, the properties and applications of TOCNFs are elaborated. Most importantly, the recent advanced applications and the beneficial role of TOCNFs in the various abovementioned fields are discussed. Furthermore, the performances and research progress on the fabrication of TOCNFs are summarized. It is expected that this timely review will help further research on the invention of novel material from TOCNFs and its applications in different advanced fields, including biomedicine, bioelectronics, wastewater treatment, and the energy sector.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
35
|
Du K, Zhang D, Zhang S, Tam KC. Advanced Functionalized Materials Based on Layer-by-Layer Assembled Natural Cellulose Nanofiber for Electrodes: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304739. [PMID: 37726489 DOI: 10.1002/smll.202304739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Indexed: 09/21/2023]
Abstract
The depletion of fossil fuel resources and its impact on the environment provide a compelling motivation for the development of sustainable energy sources to meet the increasing demand for energy. Accordingly, research and development of energy storage devices have emerged as a critical area of focus. The electrode materials are critical in the electrochemical performance of energy storage devices, such as energy storage capacity and cycle life. Cellulose nanofiber (CNF) represents an important substrate with potentials in the applications of green electrode materials due to their environmental sustainability and excellent compatibility. By utilizing the layer-by layer (LbL) process, well-defined nanoscale multilayer structure is prepared on a variety of substrates. In recent years, increasing attention has focused on electrode materials produced from LbL process on CNFs to yield electrodes with exceptional properties, such as high specific surface area, outstanding electrical conductivity, superior electrochemical activity, and exceptional mechanical stability. This review provides a comprehensive overview on the development of functional CNF via the LbL approach as electrode materials.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
36
|
Xu J, Wang P, Yuan B, Zhang H. Rheology of cellulose nanocrystal and nanofibril suspensions. Carbohydr Polym 2024; 324:121527. [PMID: 37985059 DOI: 10.1016/j.carbpol.2023.121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Nanocellulose is a sustainable nanomaterial and a versatile green platform that has attracted increasing attention. Although the wide applications of its aqueous suspensions are closely related to rheology, comprehensive studies of their rheological behavior, especially the yielding behavior, are still limited. Herein, to investigate the relationship between structure and rheological properties, the viscoelasticity, thixotropy and yielding behavior of two commonly used nanocelluloses, rod-shaped cellulose nanocrystals (CNCs) and filamentous cellulose nanofibrils (CNFs), were systematically investigated. The viscosity, viscoelasticity and thixotropic behavior of the suspensions were analyzed by steady-state shear, frequency sweep, creep-recovery, hysteresis loop, and three-interval thixotropic recovery tests. The yielding behaviors were evaluated through creep, steady-state shear, step shear rate, stress ramps, amplitude sweep, and large amplitude oscillatory shear tests. The rheological properties of the two typical suspensions showed a strong dependence on concentration and time. However, compared to CNC suspensions, CNF suspensions exhibited stronger thixotropy and higher yield stress due to the higher aspect ratio of CNF and the stronger structural skeleton of the suspensions as supported by Simha's equation and micromorphology analysis. This work provides a theoretical rheology basis for the practical applications of nanocellulose suspensions in various fields.
Collapse
Affiliation(s)
- Jiatong Xu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengguang Wang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baihua Yuan
- Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
37
|
De Mol ML, Vandamme EJ. Arts, cultural heritage, sciences, and micro-/bio-/technology: Impact of biomaterials and biocolorants from antiquity till today! J Ind Microbiol Biotechnol 2024; 51:kuae049. [PMID: 39656876 DOI: 10.1093/jimb/kuae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Nature has inspired and provided humans with ideas, concepts, and thoughts on design, art, and performance for millennia. From early societies when humankind often took shelter in caves, until today, many materials and colorants to express feelings or communicate with one another were derived from plants, animals, or microbes. In this manuscript, an overview of these natural products used in the creation of art is given, from paintings on rocks to fashionable dresses made from bacterial cellulose. Besides offering many examples of art works, the origin and application of various biomaterials and colorants are discussed. While many facets of our daily lives have changed over millennia, one certainty has been that humans have an intrinsic need to conceptualize and create to express themselves. Driven by technological advances in the past decades and in the light of global warming, new and often more sustainable materials and colorants have been discovered and implemented. The impact of art on human societies remains relevant and powerful. ONE-SENTENCE SUMMARY This manuscript discusses the use of biomaterials and biocolorants in art from a historical perspective, spanning 37,000 bc until today.
Collapse
Affiliation(s)
- Maarten L De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Erick J Vandamme
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
38
|
Yusuf J, Sapuan SM, Ansari MA, Siddiqui VU, Jamal T, Ilyas RA, Hassan MR. Exploring nanocellulose frontiers: A comprehensive review of its extraction, properties, and pioneering applications in the automotive and biomedical industries. Int J Biol Macromol 2024; 255:128121. [PMID: 37984579 DOI: 10.1016/j.ijbiomac.2023.128121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.
Collapse
Affiliation(s)
- J Yusuf
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Mubashshir Ahmad Ansari
- Department of Mechanical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202001, India.
| | - Vasi Uddin Siddiqui
- Advanced Engineering Materials and Composites (AEMC) Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Tarique Jamal
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - R A Ilyas
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - M R Hassan
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
39
|
Sharma R, Nath PC, Mohanta YK, Bhunia B, Mishra B, Sharma M, Suri S, Bhaswant M, Nayak PK, Sridhar K. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview. Int J Biol Macromol 2024; 256:128517. [PMID: 38040157 DOI: 10.1016/j.ijbiomac.2023.128517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Minaxi Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Shweta Suri
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
40
|
Zhu W, Chen M, Jang J, Han M, Moon Y, Kim J, You J, Li S, Park T, Kim J. Amino-functionalized nanocellulose aerogels for the superior adsorption of CO 2 and separation of CO 2/CH 4 mixture gas. Carbohydr Polym 2024; 323:121393. [PMID: 37940286 DOI: 10.1016/j.carbpol.2023.121393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Nanocellulose-based aerogels have been considered as one of the ideal candidates for CO2 capture in practical applications owing to their lightweight and porous properties. Additionally, various adsorbents with amine groups have been widely used as effective CO2 capture and storage strategies. Herein, amino-functionalized aerogels were prepared by sol-gel and freeze-drying methods using two typical nanocelluloses (cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs)) as substrates. In addition, the reaction parameters for grafting and amino functionalization were optimized. The CNC and CNF aerogels could be easily modified by the hydrothermal growth of the amino group, and they exhibited attractive properties in terms of CO2 adsorption, recyclability, thermal stability, hydrophobicity, and CO2/CH4 mixture separation. The amino-functionalized CNF aerogel exhibited superior performance to the CNC aerogel, which was attributed to the increased cross-linking binding sites for hydrogen bonding in the CNF aerogel. The results of this study indicated that amino-functionalized nanocellulose aerogels can be considered a promising biodegradable, sustainable, and environmentally friendly material for CO2 capture and removal of CO2 from CH4.
Collapse
Affiliation(s)
- Wenkai Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meiling Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jieun Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Minsu Han
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yeonggyun Moon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Junghwan Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jungmok You
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Song Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| | - Teahoon Park
- Carbon Composite Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea.
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
41
|
Ansari MZ, Hussain I, Mohapatra D, Ansari SA, Rahighi R, Nandi DK, Song W, Kim S. Atomic Layer Deposition-A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303055. [PMID: 37937382 PMCID: PMC10767429 DOI: 10.1002/advs.202303055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Indexed: 11/09/2023]
Abstract
Atomic layer deposition (ALD) has become the most widely used thin-film deposition technique in various fields due to its unique advantages, such as self-terminating growth, precise thickness control, and excellent deposition quality. In the energy storage domain, ALD has shown great potential for supercapacitors (SCs) by enabling the construction and surface engineering of novel electrode materials. This review aims to present a comprehensive outlook on the development, achievements, and design of advanced electrodes involving the application of ALD for realizing high-performance SCs to date, as organized in several sections of this paper. Specifically, this review focuses on understanding the influence of ALD parameters on the electrochemical performance and discusses the ALD of nanostructured electrochemically active electrode materials on various templates for SCs. It examines the influence of ALD parameters on electrochemical performance and highlights ALD's role in passivating electrodes and creating 3D nanoarchitectures. The relationship between synthesis procedures and SC properties is analyzed to guide future research in preparing materials for various applications. Finally, it is concluded by suggesting the directions and scope of future research and development to further leverage the unique advantages of ALD for fabricating new materials and harness the unexplored opportunities in the fabrication of advanced-generation SCs.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School of Materials Science and EngineeringYeungnam University280 Daehak‐RoGyeongsanGyeongbuk38541Republic of Korea
| | - Iftikhar Hussain
- Department of Mechanical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowoonHong Kong
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| | - Sajid Ali Ansari
- Department of PhysicsCollege of ScienceKing Faisal UniversityP.O. Box 400HofufAl‐Ahsa31982Saudi Arabia
| | - Reza Rahighi
- SKKU Advanced Institute of Nano‐Technology (SAINT)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Dip K Nandi
- Plessey Semiconductors LtdTamerton Road RoboroughPlymouthDevonPL6 7BQUK
| | - Wooseok Song
- Thin Film Materials Research CenterKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Soo‐Hyun Kim
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
- Department of Materials Science and EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| |
Collapse
|
42
|
Sozcu S, Venkataraman M, Wiener J, Tomkova B, Militky J, Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 17:27. [PMID: 38203881 PMCID: PMC10779952 DOI: 10.3390/ma17010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Given their exceptional attributes, aerogels are viewed as a material with immense potential. Being a natural polymer, cellulose offers the advantage of being both replenishable and capable of breaking down naturally. Cellulose-derived aerogels encompass the replenish ability, biocompatible nature, and ability to degrade naturally inherent in cellulose, along with additional benefits like minimal weight, extensive porosity, and expansive specific surface area. Even with increasing appreciation and acceptance, the undiscovered possibilities of aerogels within the textiles sphere continue to be predominantly uninvestigated. In this context, we outline the latest advancements in the study of cellulose aerogels' formulation and their diverse impacts on textile formations. Drawing from the latest studies, we reviewed the materials used for the creation of various kinds of cellulose-focused aerogels and their properties, analytical techniques, and multiple functionalities in relation to textiles. This comprehensive analysis extensively covers the diverse strategies employed to enhance the multifunctionality of cellulose-based aerogels in the textiles industry. Additionally, we focused on the global market size of bio-derivative aerogels, companies in the industry producing goods, and prospects moving forward.
Collapse
Affiliation(s)
- Sebnem Sozcu
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | | | | | | | | |
Collapse
|
43
|
Song X, Zhu Z, Tang S, Chi X, Han G, Cheng W. Efficient extraction of nanocellulose from lignocellulose using aqueous butanediol fractionation to improve the performance of waterborne wood coating. Carbohydr Polym 2023; 322:121347. [PMID: 37839849 DOI: 10.1016/j.carbpol.2023.121347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
The highly efficient extraction of cellulose from lignocellulose with an excellent yield of 95.2 % and purity of 96.7 % was demonstrated using acid-catalyzed fractionation with aqueous butanediol. This cellulose was subsequently transformed into cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs) with specific dimensions and surface functional groups through various chemomechanical treatments. The average diameters of CNFs and CNCs produced by sulfuric acid hydrolysis-ultrasonication and deep eutectic solvent treatment-ultrasonication (DES-CNCs) were 29.7, 21.9 and 17.3 nm, respectively. The DES-CNCs were obtained in a good yield of 71 ± 1.27 wt% and exhibited a high zeta potential of -33.5 ± 2.51 mV following posthydrolysis and esterification during the DES treatment. These CNFs and CNCs were used as nanofillers in a waterborne wood coating (WWC), which significantly improved its dynamic viscosity and storage modulus. The addition of these materials also enhanced the mechanical strength of the WWC but had little effect on transmittance. Glossiness, hardness, abrasion resistance and adhesion strength were evaluated, and the DES-CNCs provided the greatest improvements at a low concentration. A plausible reinforcement mechanism was presented. This work provided an efficient cellulose extraction method and detailed structure elucidation of the nanocellulose together with suggestions for value-added applications of cellulosic nanofillers for reinforcing WWC.
Collapse
Affiliation(s)
- Xiaoxue Song
- Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China
| | - Zhipeng Zhu
- Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China
| | - Sai Tang
- Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China
| | - Xiang Chi
- Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China
| | - Guangping Han
- Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China
| | - Wanli Cheng
- Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, PR China.
| |
Collapse
|
44
|
Yu L, Jia R, Liu G, Liu X, Hu J, Li H, Xu B. Engineering a hierarchical reduced graphene oxide and lignosulfonate derived carbon framework supported tin dioxide nanocomposite for lithium-ion storage. J Colloid Interface Sci 2023; 651:514-524. [PMID: 37556908 DOI: 10.1016/j.jcis.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Tin dioxide (SnO2) is widely recognized as a high-performance anode material for lithium-ion batteries. To simultaneously achieve satisfactory electrochemical performances and lower manufacturing costs, engineering nano-sized SnO2 and further immobilizing SnO2 with supportive carbon frameworks via eco-friendly and cost-effective approaches are challenging tasks. In this work, biomass sodium lignosulfonate (LS-Na), stannous chloride (SnCl2) and a small amount of few-layered graphene oxide (GO) are employed as raw materials to engineer a hierarchical carbon framework supported SnO2 nanocomposite. The spontaneous chelation reaction between LS-Na and SnCl2 under mild hydrothermal condition generates the corresponding SnCl2@LS sample with a uniform distribution of Sn2+ in the LS domains, and the SnCl2@LS sample is further dispersed by GO sheets via a redox coprecipitation reaction. After a thermal treatment, the SnCl2@LS@GO sample is converted to the final SnO2/LSC/RGO sample with an improved microstructure. The SnO2/LSC/RGO nanocomposite exhibits excellent lithium-ion storage performances with a high specific capacity of 938.3 mAh/g after 600 cycles at 1000 mA g-1 in half-cells and 517.1 mAh/g after 50 cycles at 200 mA g-1 in full-cells. This work provides a potential strategy of engineering biomass derived high-performance electrode materials for rechargeable batteries.
Collapse
Affiliation(s)
- Longbiao Yu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ruixin Jia
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Gonggang Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jinbo Hu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Binghui Xu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
45
|
Li H, Li Y, Zhu S, Li Y, Zada I, Li Y. Recent advances in biopolymers-based carbon materials for supercapacitors. RSC Adv 2023; 13:33318-33335. [PMID: 38025848 PMCID: PMC10646438 DOI: 10.1039/d3ra06179e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Supercapacitors as potential candidates for novel green energy storage devices demonstrate a promising future in promoting sustainable energy supply, but their development is impeded by limited energy density, which can be addressed by developing high-capacitance electrode materials with efforts. Carbon materials derived from biopolymers have received much attention for their abundant reserves and environmentally sustainable nature, rendering them ideal for supercapacitor electrodes. However, the limited capacitance has hindered their widespread application, resulting in the proposal of various strategies to enhance the capacity properties of carbon electrodes. This paper critically reviewed the recent research progress of biopolymers-based carbon electrodes. The advances in biopolymers-based carbon electrodes for supercapacitors are presented, followed by the strategies to improve the capacitance of carbon electrodes which include pore engineering, doping engineering and composite engineering. Furthermore, this review is summarized and the challenges of biopolymer-derived carbon electrodes are discussed. The purpose of this review is to promote the widespread application of biopolymers in the domain of supercapacitors.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yanyu Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yulong Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Imran Zada
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
46
|
Luo X, Tian B, Zhai Y, Guo H, Liu S, Li J, Li S, James TD, Chen Z. Room-temperature phosphorescent materials derived from natural resources. Nat Rev Chem 2023; 7:800-812. [PMID: 37749285 DOI: 10.1038/s41570-023-00536-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have enormous potential in many different areas. Additionally, the conversion of natural resources to RTP materials has attracted considerable attention. Owing to their inherent luminescent properties, natural materials can be efficiently converted into sustainable RTP materials. However, to date, only a few reviews have focused on this area of endeavour. Motivated by this lack of coverage, in this Review, we address this shortcoming and introduce the types of natural resource available for the preparation of RTP materials. We mainly focus on the inherent advantages of natural resources for RTP materials, strategies for activating and enhancing the RTP properties of the natural resources as well as the potential applications of these RTP materials. In addition, we discuss future challenges and opportunities in this area of research.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongda Guo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China.
| |
Collapse
|
47
|
Jia J, Lan Y. Synthesis, Characterization, and Applications of Nanomaterials for Energy Conversion and Storage. Molecules 2023; 28:7383. [PMID: 37959802 PMCID: PMC10647492 DOI: 10.3390/molecules28217383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Ever since the commencement of the Industrial Revolution in Great Britain in the mid-18th century, the annual global energy consumption from various fossil fuels, encompassing wood, coal, natural gas, and petroleum, has demonstrated an exponential surge over the past four centuries [...].
Collapse
Affiliation(s)
- Jin Jia
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251, USA
| |
Collapse
|
48
|
Talipova AB, Buranych VV, Savitskaya IS, Bondar OV, Turlybekuly A, Pogrebnjak AD. Synthesis, Properties, and Applications of Nanocomposite Materials Based on Bacterial Cellulose and MXene. Polymers (Basel) 2023; 15:4067. [PMID: 37896311 PMCID: PMC10610809 DOI: 10.3390/polym15204067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
MXene exhibits impressive characteristics, including flexibility, mechanical robustness, the capacity to cleanse liquids like water through MXene membranes, water-attracting nature, and effectiveness against bacteria. Additionally, bacterial cellulose (BC) exhibits remarkable qualities, including mechanical strength, water absorption, porosity, and biodegradability. The central hypothesis posits that the incorporation of both MXene and bacterial cellulose into the material will result in a remarkable synthesis of the attributes inherent to MXene and BC. In layered MXene/BC coatings, the presence of BC serves to separate the MXene layers and enhance the material's integrity through hydrogen bond interactions. This interaction contributes to achieving a high mechanical strength of this film. Introducing cellulose into one layer of multilayer MXene can increase the interlayer space and more efficient use of MXene. Composite materials utilizing MXene and BC have gained significant traction in sensor electronics due to the heightened sensitivity exhibited by these sensors compared to usual ones. Hydrogel wound healing bandages are also fabricated using composite materials based on MXene/BC. It is worth mentioning that MXene/BC composites are used to store energy in supercapacitors. And finally, MXene/BC-based composites have demonstrated high electromagnetic interference (EMI) shielding efficiency.
Collapse
Affiliation(s)
- Aizhan B Talipova
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Volodymyr V Buranych
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
- Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia
| | - Irina S Savitskaya
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Oleksandr V Bondar
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
| | - Amanzhol Turlybekuly
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Aman Technologies, LLP, Astana 010000, Kazakhstan
| | - Alexander D Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
- Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| |
Collapse
|
49
|
Lu QL, Wu J, Wang H, Huang B, Zeng H. Plant-inspired multifunctional fluorescent cellulose nanocrystals intelligent nanocomposite hydrogel. Int J Biol Macromol 2023; 249:126019. [PMID: 37542759 DOI: 10.1016/j.ijbiomac.2023.126019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Intelligent hydrogel has great application potentials in flexible sensing and artificial intelligence devices due to its intrinsic characteristics. However, developing an intelligent hydrogel with favorable properties including high strength, superior toughness, excellent conductivity and ionic sensing via a facile route is still a challenge. Herein, inspired by biologically chelating interactions of phytic acid (PA) in plants, a plant-inspired versatile intelligent nanocomposite hydrogel was readily fabricated by incorporating PA into the interface of fluorescent cellulose nanocrystals (F-CNC). Under PA "molecular bridge", the hydrogel simultaneously realized superflexibility (1000 %), high strength, superb self-healing ability, remarkable fluorescence and chloride ion sensibility as well as good ionic conductivity (2.4 S/m). The hydrogel could be assembled as a flexible sensor for real-time monitoring of human motion with excellent sensitivity and stability since high sensitivity toward both strain and pressure. F-CNC acted as a functional trigger could confer the hydrogel good fluorescence and high sensitivity toward chloride ion. This design confirms the synergy of F-CNC in boosting strength, ionic sensing, and ionic conductivity, addressing a long-standing dilemma among strength, stretchability, and sensitivity for intelligent hydrogel. The one-step incorporating tactic under mild ambient conditions may open an innovative avenue for the construction of intelligent hydrogel with novel properties.
Collapse
Affiliation(s)
- Qi-Lin Lu
- Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada.
| | - Jiayin Wu
- Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanchen Wang
- Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biao Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada.
| |
Collapse
|
50
|
Huang D, Wu M, Kuga S, Huang Y. Size-Controlled Silver Nanoparticles Supported by Pyrolytic Carbon from Microcrystalline Cellulose. Int J Mol Sci 2023; 24:14431. [PMID: 37833880 PMCID: PMC10572184 DOI: 10.3390/ijms241914431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
A facile method was developed for preparing size-controlled silver nanoparticles supported by pyrolytic carbon from microcrystalline cellulose (MCC). The pyrolysis of cellulose-AgNO3 mixture caused the oxidation of cellulose, resulting in carboxyl groups to which silver ions can bind firmly and act as nuclei for the deposition of silver nanoparticles. The structure and properties of the obtained nanocomposite were characterized by using a scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). The results suggest that silver nanoparticles were integrated successfully and dispersed uniformly in the pyrolytic carbon matrix. The average particle size varied between 20 nm and 100 nm in correlation to the dose of silver nitrate and temperature of pyrolysis. The products showed high electric conductivity and strong antimicrobial activity against Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Dayong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Xiong'an Institute of Innovation, Xiong'an 071899, China
- Center of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wu
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Xiong'an Institute of Innovation, Xiong'an 071899, China
- Center of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shigenori Kuga
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|