1
|
Weng R, Zhou Y, Zhang Y, Feng X, Liu X. Catalytic asymmetric Michael and Nef-type sequential reaction of nitroolefin with azlactone to construct oxazole-fused succinimide. Chem Commun (Camb) 2024; 60:13384-13387. [PMID: 39450603 DOI: 10.1039/d4cc04858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A series of oxazole-fused succinimides bearing vicinal quaternary carbon centers were synthesized. This process takes place between nitroolefins and azlactones in the presence of a bifunctional chiral guanidine-sulfonamide organocatalyst, followed by a Nef-type transformation under the treatment of DMAP/Ac2O. Several control experiments were conducted to propose the mechanism.
Collapse
Affiliation(s)
- Rui Weng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yaqin Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Jang J, Coquerel G, Seo TS, Kim WS, Park BJ. Microfluidic antisolvent crystallization for chiral symmetry breaking. LAB ON A CHIP 2024; 24:5055-5064. [PMID: 39360418 DOI: 10.1039/d4lc00658e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We report on the use of a microfluidic antisolvent crystallization method to investigate the effect of solution volume on the chiral symmetry breaking (CSB) phenomena of enantiomeric sodium chlorate crystals. The utilization of a microfluidic device is capable of periodically producing emulsion droplets of uniform size and facilitates the quantitative analysis and visualization of crystallization phenomena occurring within the individual emulsions immersed in an oil continuous medium (i.e., dodecane). To promote nucleation and crystallization, a small amount of an antisolvent (i.e., ethanol) is introduced into the continuous phase. We observe that 100% CSB occurs within a certain critical emulsion volume. Beyond this critical volume, the probability of forming two different enantiomeric crystal particles increases. This solution volume-dependent CSB phenomenon can be attributed to the rapid depletion of surrounding molecules by spontaneous crystal growth after the formation of the initial nucleus within the critical volume, thereby suppressing further primary nucleation.
Collapse
Affiliation(s)
- Jiye Jang
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Gerard Coquerel
- SMS Laboratory EA3233, University of Rouen Normandy, F-76821 Mont Saint Aignan, France
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Woo-Sik Kim
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
3
|
Xin S, Liao J, Tang Q, Feng X, Liu X. Photoinduced copper-catalyzed asymmetric cyanoalkylalkynylation of alkenes, terminal alkynes, and oximes. Chem Sci 2024:d4sc05642f. [PMID: 39444560 PMCID: PMC11494415 DOI: 10.1039/d4sc05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
The asymmetric dicarbofunctionalization of alkenes via a radical relay process can provide routes to diverse hydrocarbon derivatives. Three-component carboalkynylation, limited to particular alkyl halides and using readily available cycloketone oxime esters as redox-active precursors, is restricted by the available pool of suitable chiral ligands for broadening the redox potential window of copper complexes and simultaneously creating the enantiocontrol environment. Herein, we report a new hybrid tridentate ligand bearing a guanidine-amide-pyridine unit for photoinduced copper-catalyzed cyanoalkylalkynylation of alkenes. Leveraging the copper catalyst's redox capability is achieved via merging the electron-rich ligand with a readily organized configuration and enhanced absorption in the visible light range, which also facilitates the enantioselectivity. The generality of the catalyst system is exemplified by the efficacy across a number of alkenes, terminal alkynes and cycloketone oxime esters, working smoothly to give alkyne-bearing nitriles with good yields and excellent enantioselectivity. A mechanistic study reveals that the chiral copper catalyst meets the requirements of possessing sufficient reduction ability, good light absorption properties, and appropriate steric hindrance.
Collapse
Affiliation(s)
- Shuang Xin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Jibang Liao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Qi Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
4
|
Wild U, Engels E, Hübner O, Kaifer E, Himmel HJ. Redox-Induced Aromatic Substitution: A Study on Guanidino-Functionalized Aromatics. Chemistry 2024:e202403080. [PMID: 39387154 DOI: 10.1002/chem.202403080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Aromatic substitution of redox-active aromatic compounds could be initiated by a preceding redox step. We report on the different reaction pathways of such redox-induced substitution (RIAS) reactions between a redox-active guanidino-functionalized aromatic molecule (GFA) and an amine or guanidine. Oxidation of the GFA leads to an umpolung of the guanidine from a nucleophile to an electrophile and thereby enables addition of the amine or guanidine. Several examples are given, demonstrating the use of redox substitution in synthetic chemistry, e. g. for the convenient synthesis of novel N-heteropolycyclic molecules and unsymmetrically-substituted aromatics.
Collapse
Affiliation(s)
- Ute Wild
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eliane Engels
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Olaf Hübner
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Elisabeth Kaifer
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
He JY, Zhu C, Duan WX, Kong LX, Wang NN, Wang YZ, Fan ZY, Qiao XY, Xu H. Bifunctional Chiral Electrocatalysts Enable Enantioselective α-Alkylation of Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202401355. [PMID: 38967087 DOI: 10.1002/anie.202401355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Herein, we describe an innovative approach to the asymmetric electrochemical α-alkylation of aldehydes facilitated by a newly designed bifunctional chiral electrocatalyst. The highly efficient bifunctional chiral electrocatalyst combines a chiral aminocatalyst with a redox mediator. It plays a dual role as a redox mediator for electrooxidation, while simultaneously providing remarkable asymmetric induction for the stereoselective α-alkylation of aldehydes. Additionally, this novel catalyst exhibits enhanced catalytic activity and excellent stereoselective control comparable to conventional catalytic systems. As a result, this strategy provides a new avenue for versatile asymmetric electrochemistry. The electrooxidation of diverse phenols enables the C-H/C-H oxidative α-alkylation of aldehydes in a highly chemo- and stereoselective fashion. Detailed mechanistic studies by control experiments and cyclic voltammetry analysis demonstrate possible reaction pathways and the origin of enantio-induction.
Collapse
Affiliation(s)
- Jin-Yu He
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Cuiju Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wen-Xi Duan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ling-Xuan Kong
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Na-Na Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan-Zhao Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhi-Yong Fan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin-Ying Qiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Xu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
7
|
Puigcerver J, Zamora-Gallego JM, Marin-Luna M, Martinez-Cuezva A, Berna J. Urea-Based [2]Rotaxanes as Effective Phase-Transfer Organocatalysts: Hydrogen-Bonding Cooperative Activation Enabled by the Mechanical Bond. J Am Chem Soc 2024; 146:22887-22892. [PMID: 38975636 PMCID: PMC11345763 DOI: 10.1021/jacs.4c06630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
We finely designed a set of [2]rotaxanes with urea threads and tested them as hydrogen-bonding phase-transfer catalysts in two different nucleophilic substitutions requiring the activation of the reactant fluoride anion. The [2]rotaxane bearing a fluorinated macrocycle and a fluorine-containing urea thread displayed significantly enhanced catalytic activity in comparison with the combination of both noninterlocked components. This fact highlights the notably beneficial role of the mechanical bond, cooperatively activating the processes through hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Julio Puigcerver
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose M. Zamora-Gallego
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Marta Marin-Luna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento
de Quimica Organica, Facultad de Quimica, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
8
|
Kondoh A, Kato T, Chen H, Terada M. Asymmetric Auto-Tandem Catalysis with Chiral Organosuperbases: Intramolecular Cyclization/Enantioselective Direct Mannich-Type Addition Sequence. Org Lett 2024; 26:6523-6528. [PMID: 39028997 DOI: 10.1021/acs.orglett.4c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
An enantioselective addition reaction of alkynyl esters with imines was developed under asymmetric autotandem catalysis with a chiral Brønsted base. A chiral bis(guanidino)iminophosphorane organosuperbase, which has much higher basicity than that of conventional chiral organic bases, efficiently promoted both the intramolecular cyclization for the construction of a benzofuran ring or a benzothiophene ring and the sequential enantioselective direct Mannich-type reaction of diarylmethane derivatives, affording enantio-enriched diarylalkane derivatives that are otherwise difficult to access.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takuro Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hao Chen
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Chaudhry MT, Newman JA, Lee AY. Formation, Selective Encapsulation, and Tautomerization Control of Isoindolone Utilizing Guanidinium Sulfonate Frameworks. Chemistry 2024; 30:e202400957. [PMID: 38608156 DOI: 10.1002/chem.202400957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Herein we report the use of tetrakis (guanidinium) pyrenetetrasulfonate (G4PYR) and bis (guanidinium) 1,5-napthalene disulfonate (G2NDS) to catalyze the cyclization of 2-cyanobenzamide (1) to isoindolone (2). Moreover, we demonstrate the remarkable selectivity of these guanidinium organosulfonate hosts in encapsulating 2 over 1. By thoroughly investigating the intramolecular cyclization reaction, we determined that guanidinium and the organosulfonate moiety acts as the catalyst in this process. Additionally, 2 is selectively encapsulated, even in mixtures of other structurally similar heterocycles like indole. Furthermore, the tautomeric state of 2 (amino isoindolone (2-A) and imino isoindolinone forms (2-I)) can be controlled by utilizing different guanidinium organosulfonate frameworks.
Collapse
Affiliation(s)
- Mohammad T Chaudhry
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Justin A Newman
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Alfred Y Lee
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| |
Collapse
|
10
|
Wang Y, Xu T, Jin S, Wang JY, Yuan Q, Liu H, Tang Y, Zhang S, Yan W, Jiao Y, Li G. Design and Asymmetric Control of Orientational Chirality by Using the Combination of C(sp 2)-C(sp) Levers and Achiral N-Protecting Group. Chemistry 2024; 30:e202400005. [PMID: 38497560 DOI: 10.1002/chem.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
New chiral targets of orientational chirality have been designed and asymmetrically synthesized by taking advantage of N-sulfinyl imine-directed nucleophilic addition/oxidation, Suzuki-Miyaura, and Sonogashira cross-coupling reactions. Orientation of single isomers has been selectively controlled by using aryl/alkynyl levers [C(sp2)-C(sp) axis] and tBuSO2- protecting group on nitrogen as proven by X-ray diffraction analysis. The key structural characteristic of resulting orientational products is shown by remote through-space blocking manner. Seventeen examples of multi-step synthesis were obtained with modest to good chemical yields and complete orientational selectivity.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenxin Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| |
Collapse
|
11
|
Xu T, Wang JY, Wang Y, Jin S, Tang Y, Zhang S, Yuan Q, Liu H, Yan W, Jiao Y, Yang XL, Li G. C(sp)-C(sp) Lever-Based Targets of Orientational Chirality: Design and Asymmetric Synthesis. Molecules 2024; 29:2274. [PMID: 38792134 PMCID: PMC11123770 DOI: 10.3390/molecules29102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, the design and asymmetric synthesis of a series of chiral targets of orientational chirality were conducted by taking advantage of N-sulfinylimine-assisted nucleophilic addition and modified Sonogashira catalytic coupling systems. Orientational isomers were controlled completely using alkynyl/alkynyl levers [C(sp)-C(sp) axis] with absolute configuration assignment determined by X-ray structural analysis. The key structural element of the resulting orientational chirality is uniquely characterized by remote through-space blocking. Forty examples of multi-step synthesis were performed, with modest to good yields and excellent orientational selectivity. Several chiral orientational amino targets are attached with scaffolds of natural and medicinal products, showing potential pharmaceutical and medical applications in the future.
Collapse
Affiliation(s)
- Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, School of Pharmacy, Changzhou University, Changzhou 213164, China;
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Hao Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Wenxin Yan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (W.Y.); (Y.J.)
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (W.Y.); (Y.J.)
| | - Xiao-Liang Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| |
Collapse
|
12
|
Chen Q, Zhang Y, Song Y, Zhang Y, Su Z, Feng X, Liu X. Asymmetric Synthesis of Hydroindoles via Desymmetrizing [3+2] Annulation of p-Quinamines and Arylalkylketenes. Org Lett 2024. [PMID: 38606985 DOI: 10.1021/acs.orglett.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The asymmetric desymmetrizing [3+2] annulation reaction of p-quinamines and arylalkylketenes to synthesize hydroindoles was realized. Catalyzed by chiral bisguanidinium hemisalt via multiple hydrogen bond interactions, enantiomerically enriched products with reversal of diastereoselectivity in comparison with the racemic version were afforded in good yields under mild reaction conditions. Diaryl-substituted hydroindoles could also perform the Friedel-Crafts type of addition to give more complicated multicycles. Density functional theory calculations revealed that the enantio- and diastereoselectivity stem from varied hydrogen-bonding manners.
Collapse
Affiliation(s)
- Qianping Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanji Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yang Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Kondoh A, Ojima R, Ishikawa S, Terada M. Construction of 1,3-Nonadjacent Stereogenic Centers Through Enantioselective Addition of α-Thioacetamides to α-Substituted Vinyl Sulfones Catalyzed by Chiral Strong Brønsted Base. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308020. [PMID: 38126668 PMCID: PMC10916638 DOI: 10.1002/advs.202308020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Indexed: 12/23/2023]
Abstract
An enantioselective addition reaction for the construction of 1,3-nonadjacent stereogenic centers is developed by means of a chiral strong Brønsted base catalyst. The chiral sodium ureate catalyst efficiently promoted the reaction of α-thioacetamides as less acidic pronucleophiles with vinyl sulfones having a variety of α-substituents including aryl, alkyl and halo groups, and α-phenylacrylates, accomplishing the construction of various 1,3-nonadjacent stereogenic centers in highly diastereo- and enantioselective manners. This is a rare example of the construction of 1,3-nonadjacent stereogenic centers with less acidic pronucleophiles. In addition, the application of Michael acceptors having various types of α-substituents in a single catalyst system is achieved for the first time, demonstrating the utility of the present catalyst system for the construction of 1,3-nonadjacent stereogenic centers.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant MoleculesGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| | - Rihaku Ojima
- Department of ChemistryGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| | - Sho Ishikawa
- Department of ChemistryGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| | - Masahiro Terada
- Department of ChemistryGraduate School of ScienceTohoku UniversityAramaki, Aoba‐kuSendai980–8578Japan
| |
Collapse
|
14
|
Alaboosh JMH, Hill SP, Kariuki BM, Redman JE. Crystal structures of sulfonamide protected bicyclic guanidines: ( S)-8-{[( tert-butyl-dimethyl-sil-yl)-oxy]meth-yl}-1-[(2,2,4,6,7-penta-methyl-2,3-di-hydro-benzo-furan-5-yl)sulfon-yl]-1,3,4,6,7,8-hexa-hydro-2 H-pyrimido[1,2- a]pyrimidin-1-ium tri-fluoro-methane-sulfonate and ( S)-8-(iodo-meth-yl)-1-tosyl-1,3,4,6,7,8-hexa-hydro-2 H-pyrimido[1,2- a]pyrimidin-1-ium iodide. Acta Crystallogr E Crystallogr Commun 2024; 80:305-309. [PMID: 38456050 PMCID: PMC10915657 DOI: 10.1107/s2056989024001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Two compounds, (S)-8-{[(tert-butyl-dimethyl-sil-yl)-oxy]meth-yl}-1-[(2,2,4,6,7-penta-methyl-2,3-di-hydro-benzo-furan-5-yl)sulfon-yl]-1,3,4,6,7,8-hexa-hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri-fluoro-methane-sulfonate, C27H46N3O4SSi+·CF3O3S-, (1) and (S)-8-(iodo-meth-yl)-1-tosyl-1,3,4,6,7,8-hexa-hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I-, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but-oxy-carbon-yl)-l-me-thio-nine (Boc-l-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta-methyl-dihydro-benzo-furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N-H forms an intra-molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.
Collapse
Affiliation(s)
- Jamal M. H. Alaboosh
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Steven P. Hill
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - James E. Redman
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
15
|
El-Remaily MAEAAA, Aboelez MO, Ezelarab HAA, Selim HMRM, Taha EA, Mohamed SK, Soliman AM, Abdallah MS, Fawy MA, Hassany MA, Ahmed N, Alsaggaf AT, El Hamd MA, Kamel MS. Guanidine dicycloamine-based analogs: green chemistry synthesis, biological investigation, and molecular docking studies as promising antibacterial and antiglycation leads. Mol Divers 2024:10.1007/s11030-024-10816-w. [PMID: 38324159 DOI: 10.1007/s11030-024-10816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/21/2024] [Indexed: 02/08/2024]
Abstract
Dicyandiamide (DCD) reacted with amino acids 1a-f to produce biguanides 2 and 4 and guanidine pyrazolones 3, 5, 6, 7, and 8, according to the reaction. DCD exhibited the following reactions: imidodicarbonimidicdiamide 9, diazocan-2-ylguanidine 10, methyl biguanidylthion 11, N-carbamothioylimidodicarbonimidicdiamide 12, 2-guanidinebenzoimidazole 13a, 2-guanidinylbenzoxazole 13b, and 2-guanidinylbenzothiazol 13c. These reactions were triggered by 6-amino caproic acid, thioacetamide, thiourea, o-aminophenol, o-aminothiophenol, and anthranilic acid, respectively. Compound 2 had the least antimicrobial activity, while compound 13c demonstrated the most antibacterial impact against all bacterial strains. Furthermore, in terms of antiglycation efficacy (AGEs), 12, 11, and 7 were the most effective AGE cross-linking inhibitors. Eight and ten, which showed a considerable inhibition on cross-linking AGEs, come next. Compounds 4 and 6 on the other hand have shown the least suppression of AGE production. The most promising antiglycation scaffolds 8, 11, and 12 in the Human serum albumin (HAS) active site were shown to be able to adopt crucial binding interactions with important amino acids based on the results of in silico molecular docking. The most promising antiglycation compounds 8, 11, and 12 were also shown to have better hydrophilicity, acceptable lipophilicity, gastrointestinal tract absorption (GIT), and blood-brain barrier penetration qualities when their physicochemical properties were examined using the egg-boiled method.
Collapse
Affiliation(s)
| | - Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh, Saudi Arabia.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Enas A Taha
- Department of Chemistry, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt
| | - Shaaban K Mohamed
- The Environment and School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Ahmed M Soliman
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mohamed S Abdallah
- The Environment and School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Mariam A Fawy
- Department of Zoology, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Mohamed A Hassany
- Department of Internal Medicine, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Nessar Ahmed
- The Environment and School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | | | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt.
| | - Moumen S Kamel
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
16
|
Lee H, Nam H, Lee SY. Enantio- and Diastereoselective Variations on α-Iminonitriles: Harnessing Chiral Cyclopropenimine-Thiourea Organocatalysts. J Am Chem Soc 2024; 146:3065-3074. [PMID: 38281151 DOI: 10.1021/jacs.3c09911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chiral 1-pyrrolines containing a nitrile motif serve as crucial structural scaffolds in biologically active molecules and exhibit diversity as building blocks owing to their valuable functional groups; however, the asymmetric synthesis of such compounds remains largely unexplored. Herein, we present an enantio- and diastereoselective method for the synthesis of α-chiral nitrile-containing 1-pyrroline derivatives bearing vicinal stereocenters through the design and introduction of chiral cyclopropenimine-based bifunctional catalysts featuring a thiourea moiety. This synthesis entails a highly stereoselective conjugate addition of α-iminonitriles to a wide array of enones, followed by cyclocondensation, thereby affording a series of cyanopyrroline derivatives, some of which contain all-carbon quaternary centers. Moreover, we demonstrate the synthetic utility of this strategy by performing a gram-scale reaction with 1% catalyst loading, along with a variety of chemoselective transformations of the product, including the synthesis of a vildagliptin analogue. Finally, we showcase the selective synthesis of all four stereoisomers of the cyanopyrroline products through trans-to-cis isomerization, highlighting the versatility of our approach.
Collapse
Affiliation(s)
- Hooseung Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeongwoo Nam
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
17
|
Huang J, Lu D, Wu C, Pei D, Guo C, Guo H, Yu S, Gao B. Guanidinylated bioactive chitosan-based injectable hydrogels with pro-angiogenic and mechanical properties for accelerated wound closure. Int J Biol Macromol 2024; 258:128943. [PMID: 38143070 DOI: 10.1016/j.ijbiomac.2023.128943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Wound healing is a complex process involving the concerted action of many genes and signaling pathways, with angiogenesis being crucial for expediting wound closure. Dressings that possess pro-angiogenic properties are increasingly recognized as attractive candidates for wound care. Drawing inspiration from the active closure of wounds in embryos, we have developed a thermo-responsive hydrogel with mechanoactive properties, combining vascular regeneration and skin wound contraction to accelerate healing. The significant improvement in vascular reconstruction is attributed to the synergistic effect of arginine and deferoxamine (DFO) released from the hydrogels. Additionally, the contraction force of the hydrogel actively promotes skin closure in wounds. Remarkably, groups treated with hydroxybutyl chitosan methacrylate combined with arginine (HBC_m_Arg/DFO) exhibited increased vascularization, and greater wound maturity, leading to enhanced healing. These results highlight the synergistic impact of pro-angiogenic and mechanical properties of the HBC_m_Arg/DFO hydrogel in accelerating wound healing in rats.
Collapse
Affiliation(s)
- Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Caixia Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Dating Pei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Cuiping Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Huilong Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, PR China; National Engineering Research Center for Healthcare Devices, Guangzhou 510632, PR China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, PR China.
| |
Collapse
|
18
|
Pan G, Pu M, Wang H, Ying M, Li Y, Dong S, Feng X, Liu X. Catalytic Enantioselective Nucleophilic Addition to Arynes by a New Quaternary Guanidinium Salt-Based Phase-Transfer Catalyst. J Am Chem Soc 2023; 145:26318-26327. [PMID: 37962558 DOI: 10.1021/jacs.3c09594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Owing to the mild generation methods, arynes have been widely used in synthetic chemistry. However, achieving asymmetric organocatalytic reactions with arynes remains a formidable and infrequent challenge, primarily because these neutral and transient species tend to spontaneously quench. To address this issue, a solid-liquid phase-transfer strategy is devised in which the generation speed of arynes could be controlled by the in situ generated fluoride-based chiral phase-transfer catalyst. In this study, we present a catalytic enantioselective nucleophilic addition reaction involving arynes, utilizing an amino amide-based guanidinium salt QG•X. Furthermore, we demonstrate the broad compatibility of this reaction with various arynes and cyclic/acyclic β-keto amides, leading to the creation of diverse α-aryl quaternary stereocenters with good stereoselectivity. Mechanistic investigations have uncovered the potential involvement of a chiral intramolecular cationic-anionic pair and HF during the ion exchange between QG•X and CsF for nucleophile activation and aryne generation. Additionally, DFT calculations suggested that the observed high levels of enantioselectivity can be attributed to steric repulsion and the cumulative noncovalent interactions between the catalysts and substrates.
Collapse
Affiliation(s)
- Guihua Pan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Meijia Ying
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Goswami D, Mishra D, Phukan P. Silver acetate-catalyzed synthesis of cyclic sulfonyl guanidine with exocyclic double bond. Mol Divers 2023; 27:2545-2553. [PMID: 36376719 DOI: 10.1007/s11030-022-10568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
An efficient protocol for the synthesis of cyclic guanidine with exocyclic double bond has been developed. The synthesis has been achieved via intramolecular hydroamination of an intermediate propargyl guanidine by using silver acetate as catalyst in the presence of acetic acid. The reaction proceeds via the formation of acyclic propargyl guanidine in a one-pot reaction of N,N-dibromoarylsulfonamides, isonitriles, and propargylamine in the presence of K2CO3. In the second stage of the synthesis, the acyclic guanidine selectively undergoes 5-exo-dig cyclization in the presence of silver acetate and acetic acid to produce the five-membered cyclic guanidine framework having an exocyclic double bond as the constituent part. Short reaction time, wide substrate scope with good to high yields, and good functional group tolerance are the remarkable achievement of the present protocol.
Collapse
Affiliation(s)
- Dikshita Goswami
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Debashish Mishra
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Prodeep Phukan
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
20
|
Oiarbide M, Palomo C. Brønsted Base-Catalyzed Enantioselective α-Functionalization of Carbonyl Compounds Involving π-Extended Enolates. CHEM REC 2023; 23:e202300164. [PMID: 37350363 DOI: 10.1002/tcr.202300164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Chiral Brønsted base (BB) catalyzed asymmetric transformations constitute an important tool for synthesis. A meaningful fraction of these transformations proceeds through transiently generated enolate intermediates, which display quite versatile reactivity against a variety of electrophiles. Some years ago, our group became interested in developing BB-catalyzed asymmetric reactions of enolizable carbonyl substrates that involve π-extended enolates in which, besides control of reaction diastereo and enantioselectivity, the site-selectivity control is an additional issue in most cases. In the examples covered in this account the opportunities deployed, and the challenges posed, by these methods are illustrated, with a focus on the generation of quaternary carbon stereocenters. In the way, new bifunctional BB catalysts as well as achiral templates were developed that may find further applications.
Collapse
Affiliation(s)
- Mikel Oiarbide
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018 San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018 San Sebastián, Spain
| |
Collapse
|
21
|
Das K, Halder S. Synthesis of Functionalized Five-Membered Heterocycles from Epoxides: A Hydrogen-Bond Donor Catalytic Approach. J Org Chem 2023; 88:12872-12883. [PMID: 36007267 DOI: 10.1021/acs.joc.2c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of highly functionalized five-membered oxa- and aza-heterocycles has been reported utilizing hydrogen-bond donor (HBD) catalysis. In this method, an epoxide was taken as a substrate and reacted with functionalized arylidene/alkylidene malononitrile derivatives in the presence of a newly designed HBD catalyst. In all the cases, the products 2,5-disubstituted tetrahydrofurans (2,5-THFs) were obtained in good to excellent yields (up to 86%) with high diastereoselectivity (dr up to 99:1) as a single regioisomer. The stereochemistry at the 2- and 5-positions of the five-membered ring has been confirmed by single-crystal X-ray analysis, and cis is found to be the major product. The same strategy has been further utilized to obtain substituted oxazolidines whenever the epoxide has been reacted with isocyanate as an electrophile. In order to induce enantioselectivity, a chiral epoxide has been reacted with both the electrophiles in the presence of the same catalyst system to afford the single stereoisomer of the final products. This synthetic methodology involves a low catalyst loading and ambient reaction condition and has been generalized with various substituents present in the starting electrophiles to produce the resultant products in acceptable yields and stereoselectivity.
Collapse
Affiliation(s)
- Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| |
Collapse
|
22
|
Mishra D, Rajkhowa S, Phukan P. Unanticipated switch of reactivity of isonitrile via N≡C bond scission: Cascade formation of symmetrical sulfonyl guanidine. iScience 2023; 26:107258. [PMID: 37520733 PMCID: PMC10384224 DOI: 10.1016/j.isci.2023.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Unanticipated formation of symmetrical sulfonyl guanidine was observed while treating isonitriles with N,N-dibromoarylsulfonamides in absence of an external amine source. Interesting feature of this work is that one molecule of isonitrile initially reacts with dibromoarylsulfonamide via the C-end to produce the intermediate carbodiimide while the other molecule undergoes C≡N triple bond cleavage to react as amine source with the intermediate. This switch of reactivity from C-center to N-center of the isonitrile generated symmetrical guanidine.
Collapse
Affiliation(s)
- Debashish Mishra
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| | - Sagarika Rajkhowa
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| | - Prodeep Phukan
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| |
Collapse
|
23
|
Wei Q, Zhang Y, Lv C, Hu C, Su Z. Theoretical Study on Cooperation Catalysis of Chiral Guanidine/ Copper(I) in Asymmetric Azide-Alkyne Cycloaddition/[2 + 2] Cascade Reaction. J Org Chem 2023. [PMID: 37437267 DOI: 10.1021/acs.joc.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Density functional theory (DFT) calculations with BP86-D3(BJ) functionals were employed to reveal the mechanism and stereoselectivity of chiral guanidine/copper(I) salt-catalyzed stereoselective three-component reaction among N-sulfonyl azide, terminal alkyne, and isatin-imine for spiroazetidinimines that was first reported by Feng and Liu (Angew. Chem. Int. Ed. 2018, 57, 16852-16856). For the noncatalytic cascade reaction, the denitrogenation to generate ketenimine species was the rate-determining step, with an activation barrier of 25.8-34.8 kcal mol-1. Chiral guanidine-amide promoted the deprotonation of phenylacetylene, generating guanidine-Cu(I) acetylide complexes as active species. In azide-alkyne cycloaddition, copper acetylene coordinated to the O atom of the amide moiety in guanidium, and TsN3 was activated by hydrogen bonding, affording the Cu(I)-ketenimine species with an energy barrier of 3.5∼9.4 kcal mol-1. The optically active spiroazetidinimine oxindole was constructed via a stepwise four-membered ring formation, followed by deprotonation of guanidium moieties for C-H bonding in a stereoselective way. The steric effect of the bulky CHPh2 group and chiral backbone in the guanidine, combined with the coordination between the Boc group in isatin-imine with a copper center, played important roles in controlling the stereoselectivity of the reaction. The major spiroazetidinimine oxindole product with an SS configuration was formed in a kinetically more favored way, which was consistent with the experimental observation.
Collapse
Affiliation(s)
- Qi Wei
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Cidan Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
24
|
Rozsar D, Farley AJM, McLauchlan I, Shennan BDA, Yamazaki K, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Nitroalkane Addition to Unactivated α,β-Unsaturated Esters. Angew Chem Int Ed Engl 2023; 62:e202303391. [PMID: 36929179 PMCID: PMC10946890 DOI: 10.1002/anie.202303391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,β-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including β-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | - Alistair J. M. Farley
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | - Iain McLauchlan
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| | | | - Ken Yamazaki
- Division of Applied ChemistryOkayama University700-8530TsushimanakaOkayamaJapan
| | - Darren J. Dixon
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOX1 3TAOxfordUK
| |
Collapse
|
25
|
Wang S, Zhu C, Ning L, Li D, Feng X, Dong S. Regioselective C-H alkylation of anisoles with olefins by cationic imidazolin-2-iminato scandium(iii) alkyl complexes. Chem Sci 2023; 14:3132-3139. [PMID: 36970095 PMCID: PMC10033784 DOI: 10.1039/d2sc06725k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
A new type of rare-earth alkyl complexes supported by monoanionic imidazolin-2-iminato ligands were synthesised and structurally characterised by X-ray diffraction and NMR analyses. The utility of these imidazolin-2-iminato rare-earth alkyl complexes in organic synthesis was demonstrated by their performance in highly regioselective C-H alkylation of anisoles with olefins. With as low as 0.5 mol% catalyst loading, various anisole derivatives without ortho-substitution or 2-methyl substituted anisoles reacted with several alkenes under mild conditions, producing the corresponding ortho-Csp2-H and benzylic Csp3-H alkylation products in high yield (56 examples, 16-99% yields). Control experiments revealed that rare-earth ions, ancillary imidazolin-2-iminato ligands, and basic ligands were crucial for the above transformations. Based on deuterium-labelling experiments, reaction kinetic studies, and theoretical calculations, a possible catalytic cycle was provided to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Shiyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Chenhao Zhu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Lichao Ning
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Dawei Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
26
|
Li J, Zhang X, Han N, Wan P, Zhao F, Xu T, Peng X, Xiong W, Zeng Z. Mechanism of Action of Isopropoxy Benzene Guanidine against Multidrug-Resistant Pathogens. Microbiol Spectr 2023; 11:e0346922. [PMID: 36475769 PMCID: PMC9927234 DOI: 10.1128/spectrum.03469-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The increasing emergence of antibiotic resistance is an urgent threat to global health care; thus, there is a need for new therapeutics. Guanidine is the preferred functional group for antimicrobial design and development. Herein, the potential antibacterial activity of the guanidine derivative isopropoxy benzene guanidine (IBG) against multidrug-resistant (MDR) bacteria was discovered. The synergistic antibacterial activity of IBG and colistin was determined by checkerboard assay, time-killing curve, and mouse experiments. The antibacterial mechanism of IBG was verified in fluorescent probe experiments, intracellular oxidative phosphorylation assays, and transcriptome analysis. The results showed that IBG displays efficient antibacterial activity against Gram-positive pathogens and Gram-negative pathogens with permeabilized outer membranes. Further mechanistic studies showed that IBG triggers cytoplasmic membrane damage by binding to phosphatidylglycerol and cardiolipin, leading to the dissipation of proton motive force and accumulation of intracellular ATP. IBG combined with low levels of colistin enhances bacterial outer membrane permeability and increases the accumulation of reactive oxygen species, as further evidenced by transcriptome analysis. Furthermore, the efficacy of IBG with colistin against MDR Escherichia coli in three infection models was demonstrated. Together, these results suggest that IBG is a promising adjuvant of colistin, providing an alternative approach to address the prevalent infections caused by MDR Gram-negative pathogens. IMPORTANCE As antibiotic discovery stagnates, the world is facing a growing menace from the emergence of bacteria that are resistant to almost all available antibiotics. The key to winning this race is to explore distinctive mechanisms of antibiotics. Thus, novel efficient antibacterial agents and alternative strategies are urgently required to fill the void in antibiotic development. Compared with the large amount of money and time required to develop new agents, the antibiotic adjuvant strategy is a promising approach to inhibit bacterial resistance and increase killing of bacteria. In this study, we found that the guanidine derivatives IBG not only displayed efficient antibacterial activities against Gram-positive bacteria but also restored colistin susceptibility of Gram-negative pathogens as an antibiotic adjuvant. More in-depth study showed that IBG is a potential lead to overcome antibiotic resistance, providing new insight into future antibiotic discovery and development.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xiufeng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Feifei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xianfeng Peng
- Guangzhou Insighter Biotechnology Co., Ltd., Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Sugimoto K, Mori I, Kato T, Yasui K, Xu B, Tan CH, Odagi M, Nagasawa K. Guanidinium Hypoiodite-Catalyzed Intramolecular Oxidative Coupling Reaction of Oxindoles with β-Dicarbonyls. J Org Chem 2023. [PMID: 36702628 DOI: 10.1021/acs.joc.2c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spiro[indoline-3,4'-piperidine] is a fundamental motif present in various biologically active compounds. Here, we report an intramolecular oxidative coupling reaction of oxindoles with β-dicarbonyls in the presence of a guanidinium hypoiodite catalyst, providing spiro-coupling products in moderate to excellent yields. Furthermore, a chiral hypoiodite catalyst derived from the chiral guanidinium organocatalyst is effective for the challenging asymmetric carbon-carbon bond-forming reaction, affording optically active spiro[indoline-3,4'-piperidines].
Collapse
Affiliation(s)
- Kota Sugimoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Io Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takanari Kato
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Yasui
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ban Xu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Choon Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
28
|
Némethová V, Krištofíková D, Mečiarová M, Šebesta R. Asymmetric Organocatalysis Under Mechanochemical Conditions. CHEM REC 2023:e202200283. [PMID: 36703542 DOI: 10.1002/tcr.202200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Asymmetric organocatalysis is a robust methodology providing access to numerous valuable compounds while having green chemistry principles in mind. The realization of organocatalytic transformation under solvent-free mechanochemical conditions brings additional benefits in terms of yields, selectivities, and, last but not least overall improved sustainability. This overview describes developments in the use of mechanochemistry as a vehicle for asymmetric organocatalytic transformations. The material is organized according to main catalytic activation modes, starting with covalent activation and proceeding to non-covalent activation modes. The advantages of mechanochemical organocatalytic reactions are particularly highlighted, but in some cases also, limitations are mentioned. Possibilities for target compound synthesis are also discussed.
Collapse
Affiliation(s)
- Viktória Némethová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Dominika Krištofíková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
29
|
Li Q, Zhang W, Zhu C, Pan H, Shi KY, Zhang Y, Han MY, Tan CH. Organobase-Catalyzed Umpolung of Amides: The Generation and Transfer of Carbamoyl Anion. J Org Chem 2023; 88:1245-1255. [PMID: 36628963 DOI: 10.1021/acs.joc.2c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel organobase-catalyzed umpolung reaction of amides was disclosed. This method provides an efficient method to generate and transfer carbamoyl anions. In this transformation, some of the inherent disadvantages of carbamoyl metal were avoided. The mechanistic analysis revealed that the reaction proceeds through polarity inversion of amide, and various carbamoyl anions were applied in the reaction. Moreover, a wide range of substrates was achieved with moderate to excellent yield.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Hong Pan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Kang-Yue Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371
| |
Collapse
|
30
|
Zhang Y, Wu J, Ning L, Chen Q, Feng X, Liu X. Enantioselective synthesis of tetrasubstituted allenes via addition/arylation tandem reaction of 2-activated 1,3-enynes. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Conti R, Widera A, Müller G, Fekete C, Thöny D, Eiler F, Benkő Z, Grützmacher H. Organocatalyzed Phospha-Michael Addition: A Highly Efficient Synthesis of Customized Bis(acyl)phosphane Oxide Photoinitiators. Chemistry 2023; 29:e202202563. [PMID: 36200550 PMCID: PMC10100105 DOI: 10.1002/chem.202202563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/05/2022]
Abstract
Addition of the P-H bond in bis(mesitoyl)phosphine, HP(COMes)2 (BAPH), to a wide variety of activated carbon-carbon double bonds as acceptors was investigated. While this phospha-Michael addition does not proceed in the absence of an additive or catalyst, excellent results were obtained with stoichiometric basic potassium or caesium salts. Simple amine bases can be employed in catalytic amounts, and tetramethylguanidine (TMG) in particular is an outstanding catalyst that allows the preparation of bis(acyl)phosphines, R-P(COMes)2 , under very mild conditions in excellent yields after only a short time. All phosphines RP(COMes)2 can subsequently be oxidized to the corresponding bis(acyl)phosphane oxides, RPO(COMes)2 , a substance class belonging to the most potent photoinitiators for radical polymerizations known to date. Thus, a simple and highly atom economic method has been found that allows the preparation of a broad range of photoinitiators adapted to their specific field of application even on a large scale.
Collapse
Affiliation(s)
- Riccardo Conti
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Anna Widera
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Georgina Müller
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Csilla Fekete
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and Economics1111BudapestMűegyetem rakpart 3.Hungary
| | - Debora Thöny
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Frederik Eiler
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Zoltán Benkő
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and Economics1111BudapestMűegyetem rakpart 3.Hungary
- ELKH-BME Computation Driven Chemistry Research Group1111BudapestMűegyetem rakpart 3.Hungary
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| |
Collapse
|
32
|
Qu H, Liang XS, Wang WJ, Zhao XH, Deng YH, An XT, Chu WD, Zhang XZ, Fan CA. Catalytic Enantioselective Desymmetrization of Prochiral Triacylamines via Pseudopeptidic Guanidine–Guanidinium Catalysis. Org Lett 2022; 24:6851-6856. [DOI: 10.1021/acs.orglett.2c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hu Qu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xin-Shen Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Wen-Juan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Wen-Dao Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xiang-Zhi Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
33
|
Carrillo-Hermosilla F, Fernández-Galán R, Ramos A, Elorriaga D. Guanidinates as Alternative Ligands for Organometallic Complexes. Molecules 2022; 27:5962. [PMID: 36144698 PMCID: PMC9501388 DOI: 10.3390/molecules27185962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
For decades, ligands such as phosphanes or cyclopentadienyl ring derivatives have dominated Coordination and Organometallic Chemistry. At the same time, alternative compounds have emerged that could compete either for a more practical and accessible synthesis or for greater control of steric and electronic properties. Guanidines, nitrogen-rich compounds, appear as one such potential alternatives as ligands or proligands. In addition to occurring in a plethora of natural compounds, and thus in compounds of pharmacological use, guanidines allow a wide variety of coordination modes to different metal centers along the periodic table, with their monoanionic chelate derivatives being the most common. In this review, we focused on the organometallic chemistry of guanidinato compounds, discussing selected examples of coordination modes, reactivity and uses in catalysis or materials science. We believe that these amazing ligands offer a new promise in Organometallic Chemistry.
Collapse
Affiliation(s)
- Fernando Carrillo-Hermosilla
- Departamento de Química Inorgánica, Orgánica y Bioquímica—Centro de Innovación en Química Avanzada (ORFEO−CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | | | | | |
Collapse
|
34
|
Tan Q, Chen Q, Zhu Z, Liu X. Asymmetric organocatalytic sulfenylation for the construction of a diheteroatom-bearing tetrasubstituted carbon centre. Chem Commun (Camb) 2022; 58:9686-9689. [PMID: 35959638 DOI: 10.1039/d2cc03443c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic enantioselective sulfenylation to construct diheteroatom-bearing carbon centres was achieved by employing chiral guanidine organocatalysts. This protocol provided a facile route towards the synthesis of α-fluoro-α-sulfenyl-β-ketoamides, azlactone adducts and α-sulfur-substituted amino acid derivatives in high yields with good to excellent enantioselectivities. A possible working mode was proposed to elucidate the chiral control of the process.
Collapse
Affiliation(s)
- Qingfa Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qianping Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zitong Zhu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
35
|
Isfeld KA, Killeen C, Konowalchuk DJ, Davis RL. Exploring the catalytic role of the guanidine TBD in carboxylative cyclizations. Org Biomol Chem 2022; 20:5730-5734. [PMID: 35852820 DOI: 10.1039/d2ob01012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing a combination of mechanistic, kinetic and computational studies we have examined the mechanism of the TBD-catalyzed carboxylative cyclization of indole derivatives. Our studies provide insight into the role of the guanidine superbase TBD in catalyzing C-C bond formation between indole derivatives and CO2.
Collapse
Affiliation(s)
- Kaitlin A Isfeld
- Chemistry Department, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2.
| | - Charles Killeen
- Chemistry Department, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2.
| | - Dawson J Konowalchuk
- Chemistry Department, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2.
| | - Rebecca L Davis
- Chemistry Department, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2.
| |
Collapse
|
36
|
Ramirez V, Van Pelt EB, Pooni RK, Melchor Bañales AJ, Larsen MB. Thermodynamic, kinetic, and mechanistic studies of the thermal guanidine metathesis reaction. Org Biomol Chem 2022; 20:5861-5868. [PMID: 35849512 DOI: 10.1039/d2ob01036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe studies of the thermal guanidine metathesis (TGM) reaction, a reversible transformation that results in exchange of N-substituents of the guanidine functional group. By comparing the effects of discrete structural variations, we find that steric congestion is an important factor in determining both the equilibrium guanidine composition and the reaction kinetics. The alkyl versus aryl nature of N-substitution also plays an essential role in the reaction rate, up to the point that minimal TGM reactivity is observed when the guanidine contains wholly alkyl substituents. Furthermore, we demonstrate that TGM occurs under thermodynamic control and present evidence that it proceeds by a dissociative mechanism, supported by direct observation of a carbodiimide intermediate.
Collapse
Affiliation(s)
- Venecia Ramirez
- Department of Chemistry, Western Washington University, Bellingham, WA, 98225, USA.
| | - Evan B Van Pelt
- Department of Chemistry, Western Washington University, Bellingham, WA, 98225, USA.
| | - Reeth K Pooni
- Department of Chemistry, Western Washington University, Bellingham, WA, 98225, USA.
| | | | - Michael B Larsen
- Department of Chemistry, Western Washington University, Bellingham, WA, 98225, USA.
| |
Collapse
|
37
|
Raczyńska ED, Gal JF, Maria PC, Sakhawat GS, Fahim MQ, Saeidian H. Nitriles with High Gas-Phase Basicity-Part II Transmission of the Push-Pull Effect through Methylenecyclopropene and Cyclopropenimine Scaffolds Intercalated between Different Electron Donor(s) and the Cyano N-Protonation Site. Molecules 2022; 27:4370. [PMID: 35889241 PMCID: PMC9323925 DOI: 10.3390/molecules27144370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
This work extends our earlier quantum chemical studies on the gas-phase basicity of very strong N-bases to two series of nitriles containing the methylenecyclopropene and cyclopropenimine scaffolds with dissymmetrical substitution by one or two electron-donating substituents such as Me, NR2, N=C (NR2)2, and N=P (NR2)3, the last three being strong donors. For a proper prediction of their gas-phase base properties, all potential isomeric phenomena and reasonable potential protonation sites are considered to avoid possible inconsistencies when evaluating the energetic parameters and associated protonation or deprotonation equilibria B + H+ = BH+. More than 250 new isomeric structures for neutral and protonated forms are analyzed. The stable structures are selected and the favored ones identified. The microscopic (kinetic) gas-phase basicity parameters (PA and GB) corresponding to N sites (cyano and imino in the cyclopropenimine or in the substituents) in each isomer are calculated. The macroscopic (thermodynamic) PAs and GBs, referring to the isomeric mixtures of favored isomers, are also estimated. The total (pushing) substituent effects are analyzed for monosubstituted and disubstituted derivatives containing two identical or two different substituents. Electron delocalization is examined in the two π-π conjugated transmitters, the methylenecyclopropene and cyclopropenimine scaffolds. The aromatic character of the three-membered ring is also discussed.
Collapse
Affiliation(s)
- Ewa D. Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Jean-François Gal
- Institut de Chimie de Nice, Université Côte d’Azur, Parc Valrose, 06108 Nice, France;
| | - Pierre-Charles Maria
- Institut de Chimie de Nice, Université Côte d’Azur, Parc Valrose, 06108 Nice, France;
| | - Ghulam Sakhi Sakhawat
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran P.O. Box 14515-775, Iran; (G.S.S.); (M.Q.F.)
| | - Mohammad Qasem Fahim
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran P.O. Box 14515-775, Iran; (G.S.S.); (M.Q.F.)
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU), Tehran P.O. Box 19395-4697, Iran
| |
Collapse
|
38
|
Tang Y, Wu G, Jin S, Liu Y, Ma L, Zhang S, Rouh H, Ali AIM, Wang JY, Xu T, Unruh D, Surowiec K, Li G. From Center-to-Multilayer Chirality: Asymmetric Synthesis of Multilayer Targets with Electron-Rich Bridges. J Org Chem 2022; 87:5976-5986. [PMID: 35442684 DOI: 10.1021/acs.joc.2c00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asymmetric synthesis of new atropisomerically multilayered chiral targets has been achieved by taking advantage of the strategy of center-to-multilayer chirality and double Suzuki-Miyaura couplings. Diastereomers were readily separated via flash column chromatography and well characterized. Absolute configuration assignment was determined by X-ray structural analysis. Five enantiomerically pure isomers possessing multilayer chirality were assembled utilizing anchors involving electron-rich aromatic connections. An overall yield of 0.69% of the final target with hydroxyl attachment was achieved over 11 steps from commercially available starting materials.
Collapse
Affiliation(s)
- Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Guanzhao Wu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Shengzhou Jin
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yangxue Liu
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Liulei Ma
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Hossein Rouh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Ahmed I M Ali
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Jia-Yin Wang
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ting Xu
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daniel Unruh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Kazimierz Surowiec
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States.,Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
39
|
Bai YJ, Cheng ML, Zheng XH, Zhang SY, Wang PA. Chiral Cyclopropenimine-catalyzed Asymmetric Michael Addition of Bulky Glycine Imine to α,β-Unsaturated Isoxazoles. Chem Asian J 2022; 17:e202200131. [PMID: 35415949 DOI: 10.1002/asia.202200131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/26/2022] [Indexed: 11/11/2022]
Abstract
A highly efficient asymmetric Michael addition of bulky glycine imine to α,β-unsaturated isoxazoles has been achieved by using 5 mol% of chiral cyclopropenimine as a chiral organo-superbase catalyst under mild conditions. Michael adducts were obtained in excellent yields (up to 97%) and stereoselectivities (up to>99 : 1 dr and 98% ee). A significant solvent effect was found in these chiral organosuperbase catalyzed asymmetric Michael reactions. Gram-scale preparation of Michael adducts and their transformations are realized to provide corresponding products without loss of stereoselectivities. The configurations of Michael adduct was determined by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Yu-Jun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China) E-mails.,Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Mei-Ling Cheng
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China) E-mails
| | - Sheng-Yong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China) E-mails.,Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ping-An Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
40
|
Gao A, Li F, Xu Z, Ji C, Gu J, Zhou YH. Guanidyl-implanted UiO-66 as an efficient catalyst for the enhanced conversion of carbon dioxide into cyclic carbonates. Dalton Trans 2022; 51:2567-2576. [PMID: 35048931 DOI: 10.1039/d1dt04110j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The development of heterogeneous catalysts for promoting epoxide cycloaddition with carbon dioxide is highly desirable for recycling CO2 and achieving the goal of carbon neutrality. Herein, we designed and synthesized Zr-based metal organic frameworks (MOFs) by implanting functional guanidyl into the framework via mixing different molar ratios of 4-guanidinobenzoic acid (Gua) with 1,4-benzenedicarboxylic acid (BDC). Consequently, a small sized Zr-MOF (∼350 nm) can be prepared by implanting Gua with 20% molar ligands, denoted as UiO-66-Gua0.2(s). Compared to large sized and different guanidyl Zr-MOFs, UiO-66-Gua0.2(s) exhibited an optimal activity on catalyzing epoxide cycloaddition with CO2 in the presence of the Bu4NBr cocatalyst. A yield of 97% for the product of chloropropene carbonate was achieved at 90 °C under 1 atm CO2. The great performance of UiO-66-Gua0.2(s) might be attributed to the synergistic effect of guanidyl groups as hydrogen-bond donors and Zr centers acting as Lewis-acidic sites. In addition, the heterogeneous catalyst of UiO-66-Gua0.2(s) exhibited a great versatility towards converting other epoxides and a satisfactory recyclability for five consecutive runs. Moreover, a plausible reaction mechanism has been proposed for UiO-66-Gua0.2(s) in promoting CO2 epoxide cycloaddition reactions.
Collapse
Affiliation(s)
- Aijia Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Fangfang Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Zhi Xu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Changchun Ji
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | - Jing Gu
- Department of Chemistry and Biochemistry, San Diego State University, USA.
| | - Ying-Hua Zhou
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| |
Collapse
|
41
|
Direct synthesis of sulfonimidoyl guanidines from sulfonimidoyl azides under dual (Co‐ and photoredox) catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Rozsar D, Formica M, Yamazaki K, Hamlin TA, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Sulfa-Michael Addition to Unactivated α,β-Unsaturated Amides. J Am Chem Soc 2022; 144:1006-1015. [PMID: 34990142 PMCID: PMC8793149 DOI: 10.1021/jacs.1c11898] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The
first metal-free catalytic intermolecular enantioselective
Michael addition to unactivated α,β-unsaturated amides
is described. Consistently high enantiomeric excesses and yields were
obtained over a wide range of alkyl thiol pronucleophiles and electrophiles
under mild reaction conditions, enabled by a novel squaramide-based
bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0
mol %) were achieved on a decagram scale, demonstrating the scalability
of the reaction. Computational analysis revealed the origin of the
high enantiofacial selectivity via analysis of relevant transition
structures and provided substantial support for specific noncovalent
activation of the carbonyl group of the α,β-unsaturated
amide by the catalyst.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Michele Formica
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
43
|
Wenzel M, Steup J, Ohto K, Weigand JJ. Recent Advances in Guanidinium Salt Based Receptors and Functionalized Materials for the Recognition of Anions. CHEM LETT 2022. [DOI: 10.1246/cl.210527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marco Wenzel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Johannes Steup
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Keisuke Ohto
- Department of Chemistry and Applied Chemistry, Saga University, 1-Honjo, Saga 840-8502, Japan
| | - Jan J. Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
44
|
Zhang Y, Chen Y. Recent advances in catalytic asymmetric [1,3]-rearrangement reactions. Org Chem Front 2022. [DOI: 10.1039/d2qo01027e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covering the recent advances of asymmetric 1,3-rearrangement reactions is divided into four different fields, including transition metal catalysis, nucleophilic catalysis, Brønsted acid catalysis and Lewis acid catalysis.
Collapse
Affiliation(s)
- Yulong Zhang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yushuang Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
45
|
Wang CC, Wang XL, Zhang QL, Liu JT, Ma ZW, Liu Z, Chen YJ. Direct synthesis for N2-unprotected five-membered cyclic guanidines by regioselective [3+2] annulation of aziridines and cyanamides. Org Chem Front 2022. [DOI: 10.1039/d1qo01926k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient [3+2] annulation of 2-substituted aziridines and N-tosyl cyanamides via domino regioselective ring-opening/5-exo-dig cyclization procedure has been developed, allowing the direct preparation for N2-unprotected five-membered cyclic guanidines...
Collapse
|
46
|
Hu L, Li J, Zhang Y, Feng X, Liu X. Enantioselective [1,2]-Stevens Rearrangement of Thiosulfonates to Construct Dithio-Substituted Quaternary Carbon Centers. Chem Sci 2022; 13:4103-4108. [PMID: 35440994 PMCID: PMC8985575 DOI: 10.1039/d2sc00419d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
An enantioselective [1,2] Stevens rearrangement was realized by using chiral guanidine and copper(i) complexes. Bis-sulfuration of α-diazocarbonyl compounds was developed through using thiosulfonates as the sulfenylating agent. It was undoubtedly an atom-economic process providing an efficient route to access novel chiral dithioketal derivatives, affording the corresponding products in good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er). A novel catalytic cycle was proposed to rationalize the reaction process and enantiocontrol. An asymmetric [1,2] Stevens rearrangement was realized via chiral guanidine and copper(i) complexes. A series of novel chiral dithioketal derivatives were obtained with good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er).![]()
Collapse
Affiliation(s)
- Linfeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yongyan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
47
|
Li K, Li Z, Shen Y, Fu X, Chen C, Li Z. Organobase 1,1,3,3-tetramethyl guanidine catalyzed rapid ring-opening polymerization of α-amino acid N-carboxyanhydrides adaptive to amine, alcohol and carboxyl acid initiators. Polym Chem 2022. [DOI: 10.1039/d1py01508g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For amine, hydroxyl and carboxyl terminated initiators, the organobase 1,1,3,3-tetramethylguanidine (TMG) catalyzes the rapid polymerization to afford polypeptides with controllable molecular weights and dispersities.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zheng Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
48
|
Chassillan L, Yamashita Y, Yoo WJ, Toffano M, Guillot R, Kobayashi S, Vo-Thanh G. Enantioselective hydrophosphonylation of N-Boc imines using chiral guanidine-thiourea catalysts. Org Biomol Chem 2021; 19:10560-10564. [PMID: 34870670 DOI: 10.1039/d1ob01953h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective hydrophosphonylation of N-Boc imines was investigated using a new family of pseudo-symmetric guanidine-thiourea catalysts, providing α-amino phosphonates in moderate to high yields with good enantioselectivity. The catalyst was heterogenized by polymerization with styrene and the resulting catalyst was applied to reactions under continuous-flow conditions.
Collapse
Affiliation(s)
- Louis Chassillan
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France. .,Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Woo-Jin Yoo
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Martial Toffano
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.
| | - Régis Guillot
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Giang Vo-Thanh
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.
| |
Collapse
|
49
|
Hara M, Minagawa K, Imada Y, Arakawa Y. Synthesis of Optically Active Polyguanidines by Polyaddition Reaction of Biscarbodiimides with Chiral Diamines. ACS OMEGA 2021; 6:33215-33223. [PMID: 34901673 PMCID: PMC8656201 DOI: 10.1021/acsomega.1c05892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Herein, we present the first study on the polyaddition reaction of biscarbodiimides with chiral diamines, which focuses on a definite case using optically active trans-4a,8a-decahydroquinoxaline and 1,4-phenylenebis(arylcarbodiimide)s, which readily react with each other under ambient and catalyst-free conditions. The specific reactivity allows for facile access to not only the corresponding chiral polyguanidines under balanced stoichiometry but also their oligomeric analogues under imbalanced stoichiometry via a step-by-step procedure. Spectroscopic, chromatographic, and computational characterization of the novel molecular chains containing arrayed guanidines have revealed their structural, optical, and conformational properties as well as the mechanism of polymerization assisted by molecular association. Their potential use as asymmetric catalysts is also described.
Collapse
|
50
|
Wani AA, Chourasiya SS, Kathuria D, Bharatam PV. 1,1-Diaminoazines as organocatalysts in phospha-Michael addition reactions. Chem Commun (Camb) 2021; 57:11717-11720. [PMID: 34697617 DOI: 10.1039/d1cc04657h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1,1-Diaminoazines can act as effective organocatalysts for the formation of phosphorus-carbon bonds between biphenylphosphine oxide and an activated alkene (Michael acceptor). These catalysts provide the P-C adducts at a faster rate and with relatively better yields in comparison to the organocatalysts employed earlier. The notable advantage is that 1,1-diaminoazines catalyse the reaction even in an aqueous medium with very good yields. Organocatalysis using 1,1-diaminoazines was also successfully carried out between dimethylphosphite and benzylidenemalononitrile under multicomponent conditions.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| | - Sumit S Chourasiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| | - Deepika Kathuria
- University Center for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Punjab 140413, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| |
Collapse
|